National Oceanic and
Atmospheric Administration
United States Department of Commerce


 

FY 1983

Response of stratified flow in the lee of the Olympic Mountains

Walter, Jr., B.A., and J.E. Overland

Mon. Weather Rev., 110(10), 1458–1473, doi: 10.1175/1520-0493(1982)110<1458:ROSFIT>2 (1982)


The behavior of stratified air flowing around an isolated mountain is dependent on an internal Froude number (F), which indicates the relative importance of upstream velocity and vertical stratification. Three cases of the flow in the lee of the Olympic Mountains in the State of Washington are studied where the measured F was in the range 1.0–1.4 but apparently dominated by stable stratification. This study combined measurements of spatial variation of low-level winds and other parameters from a NOAA P-3 research aircraft with a dense network of surface stations including eight meteorological buoys and six upper-air stations. Results from these cases show the presence of an area of light winds in the lee of the Olympic Mountains. The characteristics of the flow are shown to be similar to laboratory results for low Froude number flow around an isolated obstacle where the flow is confined to quasi-horizontal planes. These cases are contrasted with a situation which led to the formation of a mesoscale low-pressure area and high surface winds in the lee of the mountains. The latter case was the Hood Canal Bridge storm on 13 February 1979 where local winds in the lee of the Olympic Mountains were in excess of 50 m s−1. The flow at the surface was produced by down-pressure-gradient acceleration in the confined channels of Puget Sound toward the orographically produced low-pressure center. The measured internal Froude number in this situation was 4.6, and the pressure fields are shown to agree with the linear hydrostatic model developed by Smith (1980) for F > 1. It is suggested that the Froude number calculated from routine, upper-air sounding data is an index that forecasters can use to determine the potential for severe wind conditions over the inland waters of Puget Sound.




Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |