FY 2017 Late summer zoogeography of the northern Bering and Chukchi seas Sigler, M.F., F.J. Mueter, B.A. Bluhm, M.S. Busby, E.D. Cokelet, S.L. Danielson, A. De Robertis, L.B. Eisner, E.V. Farley, K. Iken, K.J. Kuletz, R.R. Lauth, E.A. Logerwell, and A.I. Pinchuk Deep-Sea Res. II, 135, Arctic Ecosystem Integrated Survey (Arctic EIS): Marine ecosystem dynamics in the rapidly changing Pacific Arctic Gateway, 168–189, doi: 10.1016/j.dsr2.2016.03.005, Available online (2017) Ocean currents, water masses, and seasonal sea ice formation contribute to determining relationships among the biota of the Bering and Chukchi seas. The Bering Sea communicates with the Chukchi Sea via northward advection of water, nutrients, organic matter, and plankton through Bering Strait. We used data from concurrent surveys of zooplankton, pelagic fishes and jellyfish, epibenthic fishes and invertebrates, and seabirds to identify faunal distribution patterns and environmental factors that are related to these faunal distributions within the US portions of the Chukchi Sea shelf and Bering Sea shelf north of Nunivak Island. Regional differences in late summer (August–September) distributions of biota largely reflected the underlying hydrography. Depth, temperature, salinity, stratification, and chlorophyll a, but less so sediment-related or nutrient-related factors, were related to the distributions of the assemblages (zooplankton: depth, salinity, stratification; pelagic fishes and jellyfish: depth, stratification, chlorophyll a; epibenthic fishes and invertebrates: depth, temperature, salinity; seabirds: temperature, salinity, stratification). These six environmental factors that most influenced distributions of zooplankton, pelagic fishes/jellyfish, epibenthic fishes and invertebrate, and seabird assemblages likely can be simplified to three factors reflecting bottom depth, water mass, and their stratification and productivity (which are tightly linked in the study region). The assemblages were principally structured from nearshore to offshore and from south to north. The nearshore to offshore contrast usually was stronger in the south, where the enormous discharge of the Yukon River is more apparent and extends farther offshore, influencing zooplankton, pelagic fish/jellyfish, and seabird assemblages. Some assemblages overlapped spatially (e.g., seabird and zooplankton), indicating shared influential environmental factors or trophic linkages among assemblages. The gradients in assemblage composition were gradual for epibenthic taxa, abrupt for zooplankton taxa, and intermediate for pelagic fish/jellyfish and seabird taxa, implying that zooplankton assemblage structure is most strongly tied to water mass, epibenthic least, with the other two taxa intermediates. Three communities (i.e., cross-assemblage groupings) emerged based on maps of ordination axes and core use areas by taxa; one associated with Alaska Coastal Water (warmer, fresher, nutrient depauperate), second associated with Chirikov Basin and the southern Chukchi Sea (colder, saltier, nutrient rich), and third associated with the northern Chukchi shelf (colder and saltier but not as nutrient rich). Gradients in species composition occurred both within and between these communities. The Chirikov Basin/southern Chukchi Sea community was characterized by distinct zooplankton and seabird taxa, but was not strongly associated with distinct pelagic or epibenthic fish and invertebrate taxa. Although comprehensive data were only available for a single year and annual variation may affect the generality of our results, our comprehensive ecosystem survey approach yielded new insights into the ecological relationships (specifically, gradients in assemblage composition and identification of communities) of this Arctic region. Feature Publications | Outstanding Scientific Publications Contact Sandra Bigley | Help