National Oceanic and
Atmospheric Administration
United States Department of Commerce


FY 2015

Increased variability in early winter subarctic North American atmospheric circulation

Overland, J.E., and M. Wang

J. Climate, 28(18), 7297–7305, doi: 10.1175/JCLI-D-15-0395.1 (2015)

The last decade shows increased variability in the Arctic Oscillation (AO) index for December. Over eastern North America such increased variability depended on amplification of the climatological longwave atmospheric circulation pattern. Recent negative magnitudes of the AO have increased geopotential thickness west of Greenland and cold weather in the central and eastern United States. Although the increased variance in the AO is statistically significant based on 9-yr running standard deviations from 1950 to 2014, one cannot necessarily robustly attribute the increase to steady changes in external sources (sea temperatures, sea ice) rather than a chaotic view of internal atmospheric variability; this is due to a relatively short record and a review of associated atmospheric dynamics. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influence can reinforce the regional geopotential height pattern. Such reinforcement suggests a conditional or state dependence on whether an Arctic influence will impact subarctic severe weather, based on different circulation regimes. A key conclusion is the importance of recent variability over potential trends in Arctic and subarctic atmospheric circulation. Continued thermodynamic Arctic changes are suggested as a Bayesian prior leading to a probabilistic approach for potential subarctic weather linkages and the potential for improving seasonal forecasts.

Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |