National Oceanic and
Atmospheric Administration
United States Department of Commerce


 

FY 2014

Updated analysis of flatfish recruitment response to climate variability and ocean conditions in the Eastern Bering Sea

Wilderbuer, T., W. Stockhausen, and N.A. Bond

Deep-Sea Res. II, 94, 157–164, doi: 10.1016/j.dsr2.2013.03.021 (2013)


This study provides a retrospective analysis of the relationship between physical oceanography, biology and recruitment of three Eastern Bering Sea flatfish stocks: flathead sole (Hippoglossoides elassodon), northern rock sole (Lepidopsetta polyxystra), and arrowtooth flounder (Atheresthes stomias) during the period 1978–2005. Stock assessment model estimates of recruitment and spawning stock size indicate that temporal patterns in productivity are consistent with decadal scale (or shorter) patterns in climate variability, which may influence marine survival during the early life history phases. Density-dependence (through spawning stock size) was statistically significant in a Ricker stock-recruit model of flatfish recruitment that included environmental terms. Wind-driven advection of northern rock sole and flathead sole larvae to favorable nursery grounds was found to coincide with years of above-average recruitment. Ocean forcing of Bristol Bay surface waters during springtime was mostly on-shelf (eastward) during the 1980s and again in the early 2000s, but was off-shelf (westerly) during the 1990s, corresponding with periods of good and poor recruitment, respectively. Finally, the Arctic Oscillation was found to be an important indicator of arrowtooth flounder productivity. Model results were applied to IPCC (Intergovernmental Panel on Climate Change) future springtime wind scenarios to predict the future impact of climate on northern rock sole productivity and indicated that a moderate future increase in recruitment might be expected because the climate trends favor on-shelf transport but that density-dependence will dampen this effect such that northern rock sole abundance will not be substantially affected by climate change.



Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |