National Oceanic and
Atmospheric Administration
United States Department of Commerce


FY 2017

Modeling connectivity of walleye pollock in the Gulf of Alaska: Are there any linkages to Bering Sea and Aleutian Islands?

Parada, C., S. Hinckley, J. Horne, M. Mazur, A.J. Hermann, and E. Curchister

Deep-Sea Res. II, 132, 227–239, doi: 10.1016/j.dsr2.2015.12.010, Understanding Ecosystem Processes in the Gulf of Alaska: Volume 1 (2016)

We investigated the connectivity of walleye pollock in the Gulf of Alaska (GOA) and linkages to the Bering Sea (BS) and Aleutian Island (AL) regions. We used a spatially-explicit Individual-based model (IBM) coupled to 6 years of a hydrodynamic model that simulates the early life history of walleye pollock in the GOA (eggs to age-0 juveniles). The processes modeled included growth, movement, mortality, feeding and the bioenergetics component for larvae and juveniles. Simulations were set to release particles on the 1st of the month (February to May) in fourteen historical spawning areas in the GOA up to the 1st of September each year. Model results reproduced the link between the Shelikof Strait spawning area and the Shumagin nursery region for March and April spawners, besides other Potential Nursery Areas (PNAs) found in the GOA. A prominent finding of this study was the appearance of the BS as important PNAs for several GOA spawning grounds, which is supported by a consistent flow into the BS through Unimak Pass. The simulations showed the highest density of simulated surviving pollock in the western Bering Sea (WBS) region with the lowest coefficients of variation of the whole domain. Three spawning sectors were defined, which aggregate multiple spawning areas in the eastern (EGOA), central (CGOA) and western Gulf of Alaska (WGOA). A connectivity matrix showed strong retention within the CGOA (25.9%) and EGOA (23.8%), but not in the WGOA (7.2%). Within the GOA, the highest connectivity is observed from EGOA to CGOA (57.8%) followed by the connection from CGOA to WGOA (24.3%). Overall, one of the most prominent connections was from WGOA to WBS (62.8%), followed by a connection from CGOA to WBS (29.2%). In addition, scenarios of shifting spawning locations and nursery sectors of GOA, BS and AL are explored and implications for walleye pollock stock structure hypotheses are discussed.

Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |