National Oceanic and
Atmospheric Administration
United States Department of Commerce


 

FY 2012

Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

Sato, K., J. Inoue, Y.-M. Kodama, and J.E. Overland

Geophys. Res. Lett., 39(10), L10503, doi: 10.1029/2012GL051850 (2012)


Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999–2010 cruises of the Japanese R/V Mirai. In comparison with cloud-base heights in an ice-covered case (the Surface Heat Budget of the Arctic Ocean project in 1998), our ice-free results showed a 30% decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere.



Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |