National Oceanic and
Atmospheric Administration
United States Department of Commerce


 

FY 1997

Scales of variability in the equatorial Pacific inferred from the Tropical Atmosphere-Ocean (TAO) buoy array

Kessler, W.S., M.C. Spillane, M.J. McPhaden, and D.E. Harrison

J. Climate, 9(12), 2999–3024, doi: 10.1175/1520-0442(1996)009<2999:SOVITE>2 (1996)


The highly temporally resolved time series from the Tropical Atmosphere-Ocean moored buoy array are used to evaluate the scales of thermal variability in the upper equatorial Pacific. The TAO array consists of nearly 70 deep-ocean moorings arranged nominally 15° longitude and 2°-3° latitude apart across the equatorial Pacific. The bulk of the data from the array consists of daily averages telemetered in real time, with some records up to 15 years long. However, at several sites more finely resolved data exist, in some cases with resolution of 1 minute. These data form the basis for spectral decomposition spanning virtually all scales of variability from the Brunt-Väisälä frequency to the El Niño-Southern Oscillation timescale. The spectra are used to define the signal-to-noise ratio as a function of sample rate and frequency, and to investigate the effects of aliasing that results from sparser sampling, such as ship-based observational techniques. The results show that the signal-to-noise ratio is larger in the east, mostly because the low-frequency signals are larger there. The noise level for SST varies by as much as a factor of 10 among the locations studied, while noise in thermocline depth is relatively more homogeneous over the region. In general, noise due to aliased high-frequency variability increases by roughly a factor of 10 as the sample rate decreases from daily to 100-day sampling. The highly resolved spectra suggest a somewhat more optimistic estimate of overall signal-to-noise ratios for typical ship of opportunity (VOS) XBT sampling (generally about 2) than had been found in previous studies using sparser data. Timescales were estimated for various filtered versions of the time series by integration of the autocorrelation functions. For high-passed data (periods longer than about 150 days removed), the timescale is about 5 days for both surface and subsurface temperatures everywhere in the region. Conversely, for low-passed data (the annual cycle and periods shorter than 150 days removed), the timescale is roughly 100 days. Horizontal space scales were estimated from cross-correlations among the buoys. Zonal scales of low-frequency SST variations along the equator were half the width of the Pacific, larger than those of thermocline depth (about 30°-40° longitude). In the east, meridional scales of low-frequency SST were large (greater than about 15° latitude), associated with the coherent waxing and waning of the equatorial cold tongue, whereas in the west these scales were shorter. Thermocline depth variations had meridional scales associated with the equatorial waves, particularly in the east. Spatial scale estimates reported here are generally consistent with those found from the VOS datasets when the ENSO signals in the records of each dataset are taken into account. However, if signals with periods of 1 to 2 months are to be properly sampled, then sampling scales of 1°-2° latitude by 8°-10° longitude, with a 5-day timescale, are needed.




Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |