National Oceanic and
Atmospheric Administration
United States Department of Commerce


FY 1994

Gradients in the composition of hydrothermal fluids from the Endeavour Segment vent field: Phase separation and brine loss

Butterfield, D.A., R.E. McDuff, M.J. Mottl, M.D. Lilley, J.E. Lupton, and G.J. Massoth

J. Geophys. Res., 99(B5), 9561–9583, doi: 10.1029/93JB03132 (1994)

Hydrothermal fluid samples collected in 1984, 1987, and 1988 from a large vent field near 47°57′N on the Endeavour segment of the Juan de Fuca Ridge (JFR) have been analyzed for major and minor elements and gases. There are of the order of 100 individual smoker vents on ~10 large sulfide structures, which are localized along faults and fault intersections across the vent field. Each sulfide structure has a characteristic fluid composition, which varies very little from one vent orifice to the next, or from year to year, on a given structure. However, there are large gradients in fluid composition across the vent field, with endmember chlorinity increasing from ~255 mmol/kg in the SW to 505 mmol/kg in the NE. End-member concentrations of major elements are well correlated with chlorinity, and endmember volatile concentrations in the lowest chlorinity fluids are approximately twice as high as in the highest chlorinity fluids. The gradients in composition across the vent field and measured vent fluid temperatures >400°C are consistent with supercritical phase separation and loss of brine phase below the seafloor. The factor-of-2 variation in CO2 (and H2S) is larger than expected for loss of a very high-chlorinity brine. Concentrations of iron and manganese are not positively correlated with chlorinity, suggesting that temperature and pH are more important in controlling metal solubility. Elevated ammonia and bromide/chloride ratios indicate that there has been subseafloor interaction between the hydrothermal fluids and organic matter, and high boron concentrations point to a sedimentary source.

Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |