National Oceanic and
Atmospheric Administration
United States Department of Commerce

What's New Archive

February 14, 2020
Ocean Sciences Meeting Banner with Wave Background
February 14, 2020

41 scientists from PMEL, including scientists from NOAA's cooperative institutes at the University of Washington's Joint Institute for the Study of the Ocean and Atmosphere (JISAO) and Oregon State University's Cooperative Institute for Marine Resources Studies (CIMRS), the National Research Council, graduate and undergraduate students are heading to the Ocean Sciences Meeting in San Diego to share their current research. Talks and posters cover a range of topics include saildrone research, ocean observing systems, marine heatwaves, Arctic, acoustics, Deep Argo, genetics and genomics, El Nino, hydrothermal vents, methane, nutrients, technologies, ocean carbon and data management.

The 2020 Oceans Science Meeting is the flagship conference for the ocean sciences and the larger ocean-connected community.  As we approach the UN Decade of Ocean Science for Sustainable Development, beginning in 2021, it is increasingly important to gather as a scientific community to raise awareness of the truly global dimension of the ocean, address environmental challenges, and set forth on a path towards a resilient planet. The meeting is co-sponsored by the American Geophysical Union (AGU), the Association for the Sciences of Limnology and Oceanography (ASLO), and The Oceanography Society (TOS).

PMEL research groups that will be present at the conference are: AcousticsArctic including Innovative Technology for Arctic ExplorationClimate-Weather InterfaceEarth-Ocean InteractionsEcoFOCIEngineering, Genetics and GenomicsGlobal Tropical Moored Buoy Array, , Large Scale Ocean PhysicsOcean CarbonOcean Climate StationsPacific Western Boundary Currents, and Science Data Integration Group.

January 30, 2020
TELOS mooring deployed off the coast of Hawaii in November 2019

The TELOS protoype mooring interfaces with multiple sensors on the mooring line collecting, storing and transmitting the data in real-time.

Map of TELOS deployment in reference to Hawaii and ALOHA stations

Map of two PMEL prototype TELOS moorings deployed east of Station ALOHA (blue and green stars). 

January 30, 2020

On November 20, 2019, a team of PMEL scientists, engineers, and technicians successfully deployed two deep water oceanographic moorings off the coast of Hawaii to test PMEL’s newest data acquisition system, known as TELOS (Telemetry, Electronics & Logging of Oceanographic Sensors).  The “brain” behind oceanographic data collection, TELOS interfaces with the atmospheric and oceanic sensors aboard the moorings -- collecting, storing, and transmitting measured data in real-time via satellite telemetry.

Station ALOHA, located 90 miles north of Oahu, is a well-established hub of ocean research.  The site contains a cabled array seafloor observatory, a Woods Hole Oceanographic Institution surface mooring (WHOTS), long-range profilers, autonomous gliders, and other equipment.  With the abundance of ocean observations on site, frequent ship visits, and ease of access from a US port to ocean depths greater than 4,500 meters (nearly 3 miles), the site offers an ideal testbed to evaluate the new TELOS technology.

The two deployments near Station ALOHA represent the first-ever open-ocean moorings with TELOS.  One mooring contains a standard set of 13 line-mounted temperature/salinity instruments at depths ranging from 1 meter to 500 meters, two current meters, and a full suite of six meteorological instruments similar to the instrumentation on well-established Global Tropical Moored Buoy Array and Ocean Climate Stations moorings.  A backup data acquisition system with a duplicate suite of six meteorological instruments is deployed on this mooring for comparison to an established control system.  The second mooring also includes the standard set of 6 meteorological instruments and features a PMEL subsurface Prawler device that crawls up and down the mooring line, transmitting upper-ocean temperature/salinity profile data and potentially replacing the need for multiple in-line instruments.  Both moorings will be evaluated over the 1-year deployment period to compare the data acquisition systems, using measurements from both moorings as well as the WHOTS mooring for additional comparison. TELOS has already demonstrated the capability to collect, process, and return higher volumes of real-time data than previous data acquisition systems, with the additional capacity for integrating new instrumentation.

So far, the mission has been a success.  High-resolution real-time data are transmitted to PMEL via satellite, and scientists are developing visualization tools and analyzing data quality.  The full data payload will be downloaded from the moorings in late 2020, testing the ability to survive a yearlong deployment at sea. If successful, TELOS will be scaled up for implementation across the PMEL mooring networks, transforming the future of oceanographic data collection.

 
 

November 26, 2019
Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) buoy recovered.

Buoys part of the Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) are designed to study the Indian Ocean’s role in the monsoons.

November 27, 2019

Rainfall declines may affect U.S. West Coast and parts of the East Coast

New research by NOAA and a visiting scientist from India shows that warming of the Indo-Pacific Ocean is altering rainfall patterns from the tropics to the United States, contributing to declines in rainfall on the United States west and east coasts.

In a study published this week in the journal Nature, researchers report a doubling in the size of a warm pool of water spanning the western Pacific and eastern Indian Ocean in recent years. This Indo-Pacific warm pool in what is already the warmest part of the global ocean is expanding each year by an area the size of California.

The expansion is changing a key weather and climate feature called the Madden Julian Oscillation, which is characterized by a band of rain clouds that move over the tropical ocean from the Seychelles off Africa toward India and into the Pacific Ocean, influencing everything from monsoons in India to heat waves and flooding in the United States.

Warming ocean driving change in key climate pattern

The changes in the behavior of the MJO have brought a decline in rainfall to the central Pacific, the west and east coasts of the United States, north India, east Africa and the Yangtze basin in China. These same changes are causing an increase in rainfall over northern Australia, the Amazon basin, southwest Africa and Southeast Asia, researchers conclude.

“NOAA is part of coordinated international efforts to extend the range of accurate weather forecasts out to lead times of two to four weeks and the MJO is one of the most important keys to the success of this enterprise,” said Michael McPhaden, a senior scientist at NOAA’s Pacific Marine Environmental Lab and co-author of the study. “Our research provides a critical benchmark for determining which computer models to trust for extended range weather forecasting, based on their ability to simulate the observed behavior of the MJO in changing the climate.”

Though the entire Indo-Pacific Ocean has warmed, the warmest waters are over the west Pacific, creating a temperature contrast that drives moisture from the Indian Ocean to the west, enhancing cloud formation. This has changed the life cycle of the MJO. The length of time these clouds linger over the Indian Ocean has shrunk by four days from an average of 19 to 15 days. Over the west Pacific, the clouds now reside five more days. It is this change in the residence of MJO-driven clouds that is altering weather patterns around the globe, researchers found.

“Climate model simulations indicate that continued warming of the Indo-Pacific Ocean is highly likely, which may further intensify these changes in global rainfall patterns,” said Roxy Mathew Koll, lead author of the study with the Indian Institute of Tropical Meteorology who worked with McPhaden while visiting PMEL for the last year. “This means that we need to enhance our ocean observational arrays to monitor these changes accurately, and update our climate models to skillfully predict the challenges presented by a warming world.”

The study is part of a collaboration between NOAA and India’s Ministry of Earth Sciences, facilitated by the National Academy of Sciences with funding from NOAA’s Climate Program Office Climate Variability and Predictability Program. In addition to McPhaden, Chidong Zhang, also of NOAA PMEL, is a co-author of the research.

Originally posted on NOAA Research on November 27, 2019.

March 26, 2019
2019-03-22_rama-countries-v2-march-2019.gif

RAMA—The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction— was established in 2004 to address fundamental questions related to the ocean’s role in monsoon dynamics.  RAMA is the moored buoy component of the Indian Ocean Observing System (IndOOS), which is a coordinated system of sustained ocean based observing systems in the Indian Ocean designed to complement the constellation of earth observing satellites. IndOOS is in the final stages of a comprehensive, community-based decadal review, the goal of which is to update the observing system design based on new knowledge gained, new technologies that can be brought to bear, and practical lessons learned since inception more than 10 years ago.  As part of this review, several recommendations have been made specific to RAMA, including a reconfiguration of the array to reduce its size from 46 to a more manageable 33 moorings. The updated array, referred to as RAMA-2.0, is more robust, capable, and cost-effective for meeting its scientific objectives. The full scope of the IndOOS decadal review, inducing all recommendations, can be found here

July 27, 2018
Current RAMA Array Map as of July 2018 with red circle around new sites.

Current RAMA Array Map as of July 2018. The red circle indictes the three new RAMA sites established. 

July 27, 2018

The recent Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) cruise aboard the NOAA Ship Ronald H. Brown, which departed Goa, India on June 14, established three new RAMA sites in the Arabian Sea along 65E and 67E. The cruise also maintained five existing RAMA moorings along 67E and finished on July 19 in Darwin, Australia.

RAMA was designed to study the Indian Ocean’s role in the monsoons.  One third of the world population depends on monsoon driven rainfall for agricultural production, so improving our understanding and ability to predict the monsoons has been a longstanding objective of the international scientific community. 

RAMA, the newest tropical moored buoy array (the other two being in the Pacific and Atlantic Oceans), was initiated in the traditionally data sparse Indian Ocean in 2004 via multi-national partnerships led by NOAA/PMEL. The new moorings bring RAMA to near completion and will help NOAA and other weather forecast centers around the world continue to improve monsoon predictions. 

Dr. Madhavan Rajeevan, Secretary of India's Ministry of Earth Sciences (MoES), discusses new data sharing agreements at the 2nd India-USA Colloquium for Earth Observations and Sciences for Society and Economy. Photo Credit: US Consulate Mumbai.

June 25, 2018

Oceanographic data will now be easily available worldwide in National Institute of Oceanography (NIO) website. There will be no restrictions of sharing data with the East for security reasons too, said Secretary of Ministry of Earth Sciences (MoES) Dr. M Rajeevan.

Read the article

Celebrating collaboration

Brazil's postal service issued this stamp to celebrate 20 years of collaboration between Brazil, France and the United States on the Prediction and Research Moored Array in the Atlantic, or PIRATA. Courtesy of the Brazil Postal Service
March 12, 2018

NOAA Ship Ronald H. Brown steamed out of Charleston, South Carolina, on February 16, 2018 for a multi-stage trip around the world to improve ocean data that informs United States and global weather prediction.

Ron Brown's first mission will be to investigate ocean currents in the North Atlantic Ocean that influence global climate.  From there, NOAA's ocean workhorse will journey south to the tropical Atlantic Ocean to replace four instrumented observing moorings in the Prediction and Research Moored Array in the Atlantic or PIRATA.  The PIRATA moorings are part of a larger tropical observing system of buoys that provides ocean and atmospheric data that helps the U.S. and other nations predict droughts, floods, hurricanes and other weather affecting millions of people in the Americas and Africa.

Brazil recently issued an official postage stamp with photographs of the Ron Brown and vessels from Brazil and France to celebrate 20 years of collaboration between Brazil, France and the United States on the PIRATA ocean observing system.

See full article here.

 

February 05, 2018
Image of the Willamette River and Fremont Brige in Portland, Oregon

Image of the Willamette River in Portland, OR where the Ocean Sciences Meeting will take place. 

February 05, 2018

 

 
More than 50 PMEL scientists, including scientists from NOAA, University of Washington's Joint Institute for the Study of the Ocean and Atmosphere (JISAO), Oregon State University's Cooperative Institute for Marine Resources Studies (CIMRS) and the National Research Council, will present a talk or share a poster on their research at the 2018 Ocean Sciences Meeting in Portland, Oregon February 12-16, 2018. PMEL research groups that will be present at the conference are: Acoustics, Arctic, Earth-Ocean Interactions, EcoFOCI, Engineering, Global Tropical Moored Buoy Array, Innovative Technology for Arctic Exploration, Large Scale Ocean Physics, Ocean Carbon, Ocean Climate Stations, Pacific Western Boundary Currents, Science Data Integration Group, Thermal Modeling and Analysis Project

28 talks will present research on ocean carbon, ocean acidification, ocean observing systems, Arctic research including the Distributed Biological Observatory and Arctic Marine Pulses (AMP), ENSO, MJO, hydrothermal vents, Saildrone research, air-sea interactions, SOCCOM, and ocean mixing. 26 posters will be up during the poster sessions and highlight research in the Arctic, hydrothermal vents, acoustics, methane bubbles and hydrates, Saildrone, Oculus Coastal Glider, ocean carbon, deep ocean temperatures, glider research in the Solomon Sea, and ocean acidification and hyopxia. 

PMEL staff will also be chairing sessions and workshops on:

  • El Nino-Southern Oscillation (ENSO) Diversity, Predictability, and Impacts
  • Western Pacific and Indonesian Sea Circulation and Its Environmental and Climatic Impacts
  • New Platform and Sensor Technologies: Advancing Research, Readiness, and Transitioning for Sustained Ocean Observing of Essential Ocean Variables
  • Methane from the Subsurface Through the Bio-, Hydro-, and Atmosphere: Advances in Natural Hydrate Systems and Methane Seeps in Marine Ecosystems
  • Cascadia Margin methane seep and hydrates to share results and coordinate future work 

The 2018 Ocean Sciences Meeting is co-sponsored by the American Geophysical Union (AGU), the Association for the Sciences of Limnology and Oceanography (ASLO), and The Oceanography Society (TOS). The meeting is an important venue for scientific exchange across broad marine science disciplines. Sessions will include all aspects of oceanography, especially multidisciplinary topics, as well as presentations that reflect new and emerging research on the global ocean and society, including science education, outreach, and public policy

July 06, 2017
July 06, 2017

July 2 - July 26: The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) in the Indian Ocean began in 2004 as an international effort to improve understanding and ability to predict variability associated with the monsoon system. The array is now 78% complete and continues to grow through the formation of new partnerships.

The newest RAMA partnership is between NOAA and the Korea Institute of Ocean Science and Technology (KIOST). KIOST recently launched a new all purpose research vessel, the R/V Isabu, and is conducting a cruise in partnership with NOAA/PMEL to service three RAMA moorings along 67°E in throughout July 2017. Initial planning has also commenced for an Indian Ocean-Climate Workshop in Korea in late 2017 to identify common themes for a collaborative Korea-US research program over the next five years. The KIOST-NOAA Partnership is an exciting development to facilitate exchange of ideas and sharing of resources for advancing Indian Ocean science. 

RAMA complements other moored buoy arrays in the Atlantic (PIRATA) and Pacific (TAO/TRITON). To learn more about RAMA, visit PMEL’s Global Tropical Moored Buoy Array’s website here

March 16, 2017

ATLAS buoy deployed at 4N, 90E on 4 March 2017 with the R/V Baruna Jaya VIII in the background.

March 16, 2017

PMEL’s Global Tropical Moored Buoy Array group has begun the 2017 field season of the Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) in the Indian Ocean.

PMEL scientists and engineers just finished participating in the collaborative US-Indonesian research cruise aboard the Indonesian research vessel Baruna Jaya VIII in support of the RAMA array. Dr. Michael McPhaden, Tim Nesseth, and William Higley (from the University of Washington’s Joint Institute for the Study of the Ocean and Atmosphere) serviced 5 RAMA moorings along 90°E.  The cruise left Jakarta on February 20 and returned to Jakarta on March 16 with a mid-cruise port call in Sabang on northern Sumatra.  During the mid-cruise port stop in Mike McPhaden briefed local and regional officials from the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG), which partners with NOAA in maintaining RAMA buoys in the eastern Indian Ocean.

RAMA is an international effort to improve understanding and ability to predict of the African-Asian-Australian monsoon system. It complements other moored arrays in the Atlantic (PIRATA) and Pacific (TAO/TRITON) Oceans. Since RAMA began in 2004, the array has since grown through the formation of new partnerships and is now 78% complete. To learn more about RAMA, visit PMEL’s Global Tropical Moored Buoy Array’s website here

Pages