U.S. Dept. of Commerce / NOAA / OAR / PMEL / Publications

Observed patches of walleye pollock eggs and larvae in Shelikof Strait, Alaska: Their characteristics, formation and persistence

Phyllis J. Stabeno,1 James D. Schumacher,1 Kevin M. Bailey,2 Richard D. Brodeur,2 and Edward D. Cokelet1

1National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115

2National Oceanic and Atmospheric Administration, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115

Fisheries Oceanography, 5(Suppl. 1), 81-91 (1996)
Copyright ©1996 by Blackwell Science Ltd. Further electronic distribution is not allowed.


Using observations from 38 ichthyoplankton surveys conducted near Shelikof Strait, Alaska between 1979 and 1992, we characterized the horizontal distribution and spatial patchiness of the early life stages of walleye pollock (Theragra chalcogramma). Lloyd's index of patchiness ranged from 3.9–6.1 for eggs and 3.9–16.2 for larvae. This index was size (age) dependent: low for eggs, high for newly hatched larvae, then decreasing through late larval stage. By the early juvenile stage, patchiness increased as pollock began to school. The percentage of larvae in a patch (defined as the percentage of larvae present at stations where larval counts exceeded the mean by one standard deviation during the given survey) varied greatly (26–92%). Larval distributions were used to deduce physical mechanisms responsible for patches. Three categories of patches were identified: those created by interaction of larvae with time-dependent currents, those in the vicinity of Sutwik Island, and those associated with eddies. Simulation experiments were utilized to examine processes influencing patch formation and the role of larval swimming. Between 5 and 6 weeks after hatching, larvae have swimming abilities that enable them to maintain a patch already created by physical mechanisms.

Sampling Methods
Statistics of Patches
Physical Mechanisms for Creating Patches
A Biological Mechanism Influencing Patch Dymamics
Discussion and Acknowledgments

PMEL Outstanding Papers

PMEL Publications Search

PMEL Homepage