U.S. Dept. of Commerce / NOAA / OAR / PMEL / Publications

Seafloor eruptions and evolution of hydrothermal fluid chemistry

D. A. Butterfield,1 I. R. Jonasson,2 G. J. Massoth,3 R. A.Feely,3 K. K Roe,1 R. E. Embley,4 J. F. Holden,5 R. E. McDuff,5 M. D. Lilley,5 and J. R. Delaney

1Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA 98195
2Geological Survey of Canada, Ottawa, Ontario, Canada
3Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA 98115
4Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Newport, OR 97365
5School of Oceanography, University of Washington, Seattle, WA 98195

Philosophical Transactions of the Royal Society of London A 355, 369-386 (1997).
Copyright ©1997 by the Royal Society. Further electronic distribution is not allowed.

References

Auzende, J.-M., Ballu, V., Batiza, R., Charlou, J.-L., Cormier, M.-H., Fouquet, Y.,Geistdorfer, P., Lagabrielle, Y., Sinton, J. & Spadea, P. 1996 Recent tectonic, magmatic andhydrothermal activity on the East Pacific Rise between 17°S and 19°S:submersible observations. J. Geophys. Res 101, 17,995-18,010.

Berndt, M. E. & Seyfried, W. E. Jr 1990 Boron, bromine, and other trace elements asclues to the fate of chlorine in mid-ocean ridge vent fluids. Geochim. Cosmochim. Acta54, 2235-2245.

Baker, E. T. 1995 Characteristics of hydrothermal discharge following a magmaticintrusion. In Hydrothermal vents and processes (ed. L. M. Parson, C. L. Walker & D. R.Dixon), pp. 65-67. Special Publication No. 87. London: Geological Society.

Baker, E. T., Massoth, G. J., Feely, R. A., Embley, R. W., Thomson, R. E. & Burd, B. J.1995 Hydrothermal event plumes from the CoAxial seafloor eruption site, Juan de Fuca Ridge.Geophys. Res. Lett. 22, 147-150.

Butterfield, D. A., Massoth, G. J., McDuff, R. E., Lupton, J. E. & Lilley, M. D. 1990The geochemistry of hydrothermal fluids from ASHES vent field, Axial Seamount, Juan deFuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J. Geophys. Res.95, 12,895-12,922.

Butterfield, D. A. & Massoth, G.J. 1994 Geochemistry of north Cleft segment ventfluids: temporal changes in chlorinity and their possible relation to recent volcanism. J.Geophys. Res. 99, 4951-4968.

Cann, J. R. & Strens, M. R. 1989 Modeling periodic megaplume emission by blacksmoker systems. J. Geophys. Res. 94, 12,227-12,237.

Cannon, G. A., Pashinski, D. J. & Stanley, T. J. 1995 Fate of event hydrothermalplumes on the Juan de Fuca Ridge. Geophys. Res. Lett. 22, 163-166.

Charlou, J.-L., Fouquet, Y., Donval, J. P., Auzende, J. M., Jean-Baptiste, P., Stievenard,M. & Michel, S. 1996 Mineral and gas chemistry of hydrothermal fluids on an ultrafastspreading ridge: East Pacific Rise, 17° to 19°S (Naudur cruise, 1993) phaseseparation processes controlled by volcanic and tectonic activity. J. Geophys. Res101, 15,899-15,919.

Deming, J. W. & Baross, J. A. 1993. Deep-sea smokers: window to a subsurfacebiosphere? Geochim. Cosmochim. Acta 57, 3219-3230.

Dziak, R. P., Fox, C. G. & Schreiner, A. E. 1995 The June-July 1993 seismo-acousticevent at CoAxial segment, Juan de Fuca Ridge: evidence for a lateral dyke injection.Geophys. Res. Lett. 22, 135-138.

Edmond, J. M., Von Damm, K. L., McDuff, R. E. & Measures, C. I. 1979 Ridge cresthydrothermal activity and the balance of the major and minor elements in the ocean: theGalapagos data. Earth Planet. Sci. Lett. 46, 1-18.

Embley, R.E. & Chadwick, W. W., Jr 1994 Volcanic and hydrothermal processesassociated with a recent phase of seafloor spreading at the southern Cleft Segment, Juan deFuca Ridge. J. Geophys. Res. 99, 4741-4760.

Embley, R. W., Chadwick, W. W., Jonasson, I. R., Butterfield, D. A. & Baker, E. T.1995 Initial results of the rapid response to the 1993 CoAxial event: relationships betweenhydrothermal and volcanic processes. Geophys. Res. Lett. 22, 143-146.

Fox, C. G. 1990 Consequences of phase separation on the distribution of hydrothermalfluids as ASHES vent field, Axial Volcano, Juan de Fuca Ridge. J. Geophys. Res.95, 12,923-12,926.

Fox, C. G. 1995 Special collection on the June 1993 volcanic eruption on the CoAxialsegment, Juan de Fuca Ridge. Geophys. Res. Lett. 22, 129-130.

Fox, C. G., Radford, E., Dziak, R. P., Lau, T.-K., Matsumoto, H. & Schreiner, A. E.1995 Acoustic detection of a seafloor spreading episode on the Juan de Fuca Ridge usingmilitary hydrophone arrays. Geophys. Res. Lett. 22, 131-134.

Goldfarb, M. S. & Delaney, J. R. 1988 Response of two-phase fluids to fractureconfigurations within submarine hydrothermal systems. J. Geophys. Res. 93,4585-4594.

Haymon, R. M. et al. 1993 Volcanic eruption of the mid-ocean ridge along theEast Pacific Rise crest at 9°45-52N, directsubmersible observations of seafloor phenomena associated with an eruption event in April1991. Earth Planet. Sci. Lett. 119, 85-101.

Holden, J.F. 1996 Ecology, diversity, and temperature-pressure adaptation of thedeep-sea hyperthermophilic archaea Thermococcales. Ph.D. dissertation, University ofWashington, Seattle.

Jannasch, H. W. 1995 Microbial interaction with hydrothermal fluids. In Seafloorhydrothermal systems: physical, chemical, biological, and geological interactions (ed. S. E.Humphris et al.), pp. 273-296. Washington, DC: AGU.

Juniper, S. K., Martineau, P., Sarrazin, J. & Gelinas, Y. 1995 Microbial-mineral Flocassociated with nascent hydrothermal activity on CoAxial segment, Juan de Fuca Ridge.Geophys. Res. Lett. 22, 179-182.

Karl, D. M. 1995 Ecology of free-living, hydrothermal vent microbial communities. InThe microbiology of deep-sea hydrothermal vents (ed. D. M. Karl), pp. 35-125. BocaRaton, FL: Chemical Rubber Company.

Lavelle, J.W. 1995 The initial rise of a hydrothermal plume from a line segmentsource-results from a three-dimensional numerical model. Geophys. Res. Lett.22, 159-162.

Lowell, R. P. & Germanovich, L. N. 1995 Dyke injection and the formation ofmegaplumes at ocean ridges. Science 267, 1804-1807.

Lupton, J. E. 1995 Hydrothermal plumes: Near and far field. In Seafloorhydrothermal systems: physical, chemical, biological, and geological interactions (ed. S. E.Humphris et al.) pp. 317-346. Washington, DC: American Geophysical Union.

Lupton, J. E., Baker, E. T., Massoth, G. J., Thomson, R. E., Burd, B. J., Butterfield, D.A., Embley, R. W. & Cannon, G. A. 1995 Variation in water-column 3He/heat ratios associatedwith the 1993 CoAxial event, Juan de Fuca Ridge. Geophys. Res. Lett. 22,155-158.

Lupton, J. E., Baker, E. T., Mottl, M. J., Sansone, F. J., Wheat, C. G., Resing, J. A.,Massoth, G. J., Measures, C. I. & Feely, R. A. 1993 Chemical and physical diversity ofhydrothermal plumes along the East Pacific Rise, 8°45N to 11°50N.Geophys. Res. Lett. 20, 2913-2916.

Massoth, G. J., Butterfield, D. A., Lupton, J. E., McDuff, R. E., Lilley, M. D. &Jonasson, I. R. 1989 Submarine venting of phase-separated hydrothermal fluids at AxialVolcano, Juan de Fuca Ridge. Nature 340, 702-705.

Massoth, G. J., Baker, E. T., Feely, R. A., Butterfield, D. A., Embley, R. W., Lupton, J.E., Thomson, R. E. & Cannon, G. A. 1995 Observations of manganese and iron at the CoAxialseafloor eruption site, Juan de Fuca Ridge. Geophys. Res. Lett. 22, 151-154.

Palmer, M. R. & Edmond, J. M. 1989 The strontium isotope budget of the modernocean. Earth Planet. Sci. Lett. 92, 11-26.

Seyfried, W. E. Jr & Ding, K. 1995 Phase equilibria in subseafloor hydrothermalsystems: a review of the role of redox, temperature, pH, and dissolved Cl on the chemistry ofhot spring fluids at mid-ocean ridges. In Seafloor hydrothermal systems: physical, chemical,biological, and geological interactions (ed. S. E. Humphris et al.), pp. 248-272.Washington DC: AGU.

Seyfried, W. E. Jr. & Mottl, M. J. 1995 Geologic setting and chemistry of deep-seahydrothermal vents. In The microbiology of deep-sea hydrothermal vents (ed. D. M.Karl), pp. 1-34. Boca Raton, FL: Chemical Rubber Company.

Sleep, N. H., Morton, J. L., Burns, L. E. & Wolery, T. J. 1983 Geophysical constraintson the volume of hydrothermal flow at ridge axes. In Hydrothermal processes at seafloorspreading centers (ed. P. A. Rona, K. Bostrom, L. Laubier & K. L. Smith Jr), pp. 53-69.New York: Plenum.

Tunnicliffe, V., Embley, R. W., Holden, J. F., Butterfield, D. A., Massoth, G. J. &Juniper, S. K. 1997 Biological colonization of new hydrothermal vents following an eruptionon Juan de Fuca ridge. Rev. Deep Sea Res. (In preparation)

Von Damm, K. L. 1995 Controls on the chemistry and temporal variability of seafloorhydrothermal fluids. In Seafloor hydrothermal systems: physical, chemical, biological, andgeological interactions (ed. S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux & R. E.Thomson), pp. 222-247. Washington DC: AGU.

Von Damm, K. L., Edmond, J. M., Grant, B., Measures, C. I., Walden, B. & Weiss, R.F. 1985 Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise.Geochim. Cosmochim. Acta 49, 2197-2220.

Von Damm, K. L., Oosting, S. E., Kozlowski, R., Buttermore, L. G., Colodner, D. C.,Edmonds, H. N., Edmond, J. M. & Grebmeir, J. M. 1995 Evolution of East Pacific Risehydrothermal vent fluids following a volcanic eruption. Nature 375, 47-50.

Discussion

D. Pyle (Department of Earth Sciences, University of Cambridge, UK). In DrButterfield's model he considers the interaction of the hot lava-flow body with the overlyingwater column as a mechanism for producing high-temperature fluids. Is it not possible thatmuch of this hot fluid might be produced by heating of seawater trapped in the shallowfractured water-saturated crust which was engulfed by the rapidly advancing flow-front?

D. A. Butterfield. Indeed, we believe that most of the heat is removed by fluidscirculating around and through the lava mound and underlying dyke, and that hot fluids areprimarily generated below the interface between the open water-column and the lava surface.Fluid flow is facilitated by the high porosity of the upper ca. 100 m of ocean crust inthis area, and by the high permeability of the lava mound itself, as indicated by the extensiveventing of warm fluids from cracks and interstices between pillows. Rapid removal of heatfrom the portion of the dyke and lava flow very near the seafloor can contribute to event plumeformation, while heat from the deeper portions of the dyke would probably be removed moreslowly.
 


Return to Discussion and Acknowledgments or go to Gallery of Figures and Tables

PMEL Outstanding Papers

PMEL Publications Search

PMEL Homepage