# LECTURE 3

EARTHQUAKES: DETECTION,

LOCATION & FOCAL GEOMETRY

# **EARTHQUAKE LOCATION**

Retrieved (*Inverted*) from **arrival times** of BODY (principally *P*) waves

The problem consists of determining



## P times are usually easiest to pick

## EXAMPLE: JAPAN SEA Event, 14 NOV 2005

Station AAK (Ala Archa, Kyrgyzstan);  $\Delta = 52.4^{\circ}$ 



 $\rightarrow$  Gather such data for many stations

Obtain dataset of *observed* arrivals  $\{ o_i \}$ .

### IN THE NEAR FIELD

• In the presence of a dense array, the

Easiest, Simplest, Crudest Algorithm

consists of identifying



Epicenter ≈ Station with Earliest Arrival

#### IN THE FAR FIELD

• *Position of problem:* 

Retrieve

Latitude  $\lambda$ Longitude  $\phi$ Depth hOrigin time  $t_0$ 

from dataset  $\{o_i\}$ .

• P —wave arrival times can be computed as functions of source and station parameters (Latitude and Longitude  $\Lambda_i$ ,  $\Phi_i$ ) using a model of Earth structure.

$$c_i = f(\lambda, \phi, h, t_0; \Lambda_i, \Phi_i)$$

• DIFFICULTY:

Function f is NON - LINEAR.

#### LINEARIZING the PROBLEM

• Assume *Trial Solution* 

$$\lambda^{0}$$
,  $\phi^{0}$ ,  $h^{0}$ ,  $t_{0}^{0}$ 

and compute a set of *predicted arrival times*  $\{c_i\}$  for that solution, based on a chosen Earth model (*Jeffreys-Bullen, PREM, iaspei91*, etc.).

- $\rightarrow$  If all the data were perfect (no noise), as well as the model, and we had guessed the right solution, then for all i, we should have  $c_i = o_i$ .
- Define *RESIDUALS*

$$\delta t_i = o_i - c_i = (o - c)_i$$

Hopefully, the  $\delta t_i$  are small compared with the propagation times  $c_i - t_0^0$ .

## LINEARIZING the PROBLEM (2)

• Then try improving the solution from  $\{\lambda^0, \phi^0, h^0, t_0^0\}$  to  $\{\lambda^1, \phi^1, h^1, t_0^1\}$ 

$$\begin{pmatrix} \lambda^1 \\ \phi^1 \\ h^1 \\ t_0^1 \end{pmatrix} = \begin{pmatrix} \lambda^0 \\ \phi^0 \\ h^0 \\ t_0^0 \end{pmatrix} + \begin{pmatrix} \delta \lambda \\ \delta \phi \\ \delta h \\ \delta t_0 \end{pmatrix}$$

Again, we expect the terms  $\delta \cdots$  to be small, so that the change in each  $c_i$  is simply

$$\delta c_i = \frac{\partial f}{\partial \lambda} \cdot \delta \lambda + \frac{\partial f}{\partial \phi} \cdot \delta \phi + \frac{\partial f}{\partial h} \cdot \delta h + \frac{\partial f}{\partial t_0} \cdot \delta t_0$$

• If we know the function f ("direct problem"), we should be able to compute the partial derivatives such as  $\frac{\partial f}{\partial \lambda}$ .

## LINEARIZING the PROBLEM (3)

• Ideally, we would like, for each station,  $\delta c_i$  to be exactly  $\delta t_i = (o - c)_i$ , so we seek to solve



# LINEARIZING the PROBLEM (4)

The problem has been *LINEARIZED* but it is still *OVER-DETERMINED* as *A* is a very tall matrix (4 columns (4 unknowns) and tens or hundreds of rows (data points)).

→ It can be solved by the *classical LEAST-SQUARES* algorithm:

$$\begin{bmatrix} \delta \lambda \\ \delta \phi \\ \delta h \\ \delta t_0 \end{bmatrix} = (\mathbf{A^T A})^{-1} \cdot \mathbf{A^T} \begin{bmatrix} \cdots \\ \cdots \\ \delta t_i \\ \cdots \\ \cdots \\ \cdots \end{bmatrix}$$

• Note that  $(\mathbf{A^T A})$  is a  $4 \times 4$  matrix, and  $\mathbf{A^T} \cdot \delta t$  is a 4-dimensional vector.

### **DETAILED LOOK at the MATRIX A**

The elements of A are the partial derivatives of the arrival times  $c_i$  at station i with respect to a change in a source parameter

• An easy case

$$\frac{\partial c_i}{\partial t_0} = 1 \qquad \text{for all } i$$

Otherwise, for a spherical Earth, the travel-time  $t_P$  is function of the angular distance  $\Delta$  to the station, and of the source depth, h.



$$\frac{\partial c_i}{\partial h} = -\frac{\cos j_i}{V^P(h)}$$

j is itself a function of  $\Delta$  and h

NOTE that, at teleseismic distances, j is always a small angle...

# **DETAILED LOOK at the MATRIX A (2)**

### • Latitude and Longitude

If we change the latitude by  $\delta \lambda$ , we move the epicenter North by an amount  $\delta \lambda \cdot l_{deg.}$  where  $l_{deg.} = 111.195$  km is the length of one degree at the Earth's surface.



Thus, we change the distance to the station i by  $\delta \Delta_i = -\delta \lambda \cdot \cos \alpha_i$ , and

$$\frac{\partial c_i}{\partial \lambda} = -\cos \alpha_i \cdot \frac{\partial T_P}{\partial \Delta}$$

If we change the longitude by  $\delta \phi$ , we move Eastwards, but only by  $\delta \phi \cdot \cos \lambda \cdot l_{deg.}$ , so that

$$\frac{\partial c_i}{\partial \phi} = -\sin \alpha_i \cdot \cos \lambda \cdot \frac{\partial T_P}{\partial \Delta}$$

## **IN SUMMARY**

- We can compute all the partial derivatives
- We can compute the matrix **A**
- We can compute  $(A^T A)$  and invert it
- We can find the "best" change in earthquake source parameters to minimize the new residuals
- We can iterate the process until the solution stabilizes

### LIMITATIONS of THIS ALGORITHM

• The matrix can be inverted only if it is

#### *NON – SINGULAR*

[ in practice NOT APPROACHING SINGULARITY ]

- The matrix is singular if 2 rows (or columns) are identical.
- Recall

$$\frac{\partial c_i}{\partial t_0} = 1$$
 and  $\frac{\partial c_i}{\partial h} = -\frac{\cos j_i}{V^P(h)}$ 

If all the stations are at the same distance, then all  $j_i$  are the same and the two partials are proportional.

#### SINGULARITY!

In practice, if all stations are *far away*, then all  $j_i$  are small ( $< 10^\circ$ ; rays all take off nearly vertically at the source), all  $\cos j_i \approx 1$ , and one has

#### PERFECT TRADE-OFF BETWEEN O.T. and DEPTH

In general, the inversion becomes unstable. The only way out is to

#### **CONSTRAIN** the **DEPTH...**

#### **SIMILARLY**

• Recall

$$\frac{\partial c_i}{\partial \lambda} = -\cos \alpha_i \cdot \frac{\partial T_P}{\partial \Delta}$$

and



$$\frac{\partial c_i}{\partial \phi} = -\sin \alpha_i \cdot \cos \lambda \cdot \frac{\partial T_P}{\partial \Delta}$$

If all stations are in [approximately] the same azimuth. the two columns of partials are proportional, and the matrix features [or approaches] **singularity.** 

→ STABLE LOCATIONS REQUIRE

A GOOD AZIMUTHAL COVERAGE

[This is usually not an issue for large events ]

## INFLUENCE of TRIAL SOLUTION

• If dataset is global, any trial solution (even the antipodes of the true epicenter) will lead to a converging algorithm [Okal and Reymond, 2003].

• In practice, one can always use the station with earliest arrival as a trial epicenter.

#### **ONE-STATION ALGORITHMS**

#### **Detection** and Location

- → Enhance performance of single station/observatory
- Detection Algorithms

Generally based on the monitoring of energy in the ground (or velocity) motion at the station.

- \* Define a SHORT-TERM AVERAGE over a short sliding window
- \* Compare it with a *delayed LONG-TERM AVERAGE*.



• When  $\frac{E \text{ in } STA}{E \text{ in } LTA}$  exceeds a given threshold,

#### TRIGGER DETECTION

\* Earthquake spectrum is generally *WHITE*, so do this in *SEVERAL FREQUENCY BANDS*.

Coherence across spectrum is required to trigger detection

[or across several stations of a local network, when available to prevent triggering on human noise.]

 $\rightarrow$  Arrival times  $o_i$  can be defined by evolution of  $E_{STA}/E_{LTA}$ .

## SINGLE-STATION LONG-PERIOD LOCATION

#### • IDEA ONE

" S - P " interval between P and S waves can give DISTANCE



## **SINGLE-STATION LONG-PERIOD LOCATION**

#### • IDEA TWO

Polarization of P wave can give AZIMUTH of ARRIVAL,  $\beta$ 



### SINGLE-STATION LONG-PERIOD LOCATION

• Combine *DISTANCE and BACK AZIMUTH* to obtain

## **Estimate of Epicenter**

### 14 NOV 2005



#### EXAMPLE of SINGLE-STATION LONG-PERIOD LOCATION

**TREMORS** — Reymond et al. [1991]



Earthquake located about 300 km from true epicenter

### From Single Force to Double-Couple

The physical representation of an earthquake source is a system of forces known as a *Double-Couple*, the direction of the forces in each couple being the direction of slip on the fault and the direction of the normal to the fault plane.



[Stein and Wysession, 2002]

Mathematically, the system of forces is described by a Second-Order Symmetric Deviatoric TENSOR (3 angles and a scalar).

The focal geometry of earthquakes can vary depending on the orientation of the double-couple representing the source. Here are some basic examples:









[Stein and Wysession, 2002]

#### HOW CAN WE

- Best describe this gemoetry?
- Determine it from seismological data?
- Represent it graphically in simple terms?

THREE ANGLES are necessary to describe the focal mechanism of an earthquake:



- The *strike angle*  $\phi$  identifies the azimuth of the trace of the fault on the horizontal Earth surface;
- The *dip angle*  $\delta$  indicates how steeply the fault penetrates the Earth;
- The *slip angle*  $\lambda$  describes the relative motion of the two blocks on the fault plane determined by  $\phi$  and  $\delta$ .
- → The physical description of an earthquake source is thus **more complex than a vector** since it requires *three* angles as opposed to two.

## The strike angle $\phi$

(between  $0^{\circ}$  and  $360^{\circ}$ )





defines the azimuth of the trace of the fault on the Earth's surface (the *orientation of the knife*)

## The dip angle $\delta$

(between  $0^{\circ}$  and  $90^{\circ}$ )

defines the slope (dip) of the fault to be cut through the material (the *inclination of the blade* on the horizontal)





Vertical dip ( $\delta = 90^{\circ}$ )

**Shallow dip** ( $\delta = 30^{\circ}$ )

### The slip (or rake) angle $\lambda$

(between  $0^{\circ}$  and  $360^{\circ}$ )

defines the direction of motion of the blocks on the fault plane (cut) defined by  $\phi$  and  $\delta$ .





No vertical motion



**Dip-slip** ( $\lambda = 270^{\circ}$ )

Motion along line of steepest descent

## Varying the slip (or rake) angle $\lambda$ (ctd.)

Thrust Faulting ( $\lambda = 90^{\circ}$ )



(Typical of subduction zones)

Normal Faulting ( $\lambda = 270^{\circ}$ )



(Typical of tensional environments)

## Varying the slip (or rake) angle $\lambda$ (ctd.)

#### HYBRID MECHANISMS

Thrust and Strike-slip  $(\lambda = 120^{\circ})$ 



Normal Faulting and Strike-Slip ( $\lambda = 315^{\circ}$ )



Double-Couple mechanisms give rise to *P* waves which can have positive (first-motion "up") or negative (first-motion "down") initial motions.



[Stein and Wysession, 2002]

The repartition of such motions on a small sphere surrounding the source involves four alternating *quadrants* in space.

We represent focal mechanisms by giving a stereographic view of a small focal [hemi]sphere with positive quadrants shaded and negative ones left open.

Thrust faulting, Vanuatu Islands, July 3, 1985 Location: 17.2°S, 167.8°E. Depth: 30 km Strike: 352°, Dip: 26°, Slip: 97°



General case



# **EXAMPLES of EARTHQUAKE SOURCE GEOMETRIES**



[Stein and Wysession, 2002]

# ALL FOCAL MECHANISMS ARE CREATED EQUAL...

They are just ONE SOLID ROTATION away from Each Other



Strike-Slip



**Vertical Dip-Slip** 



**Thrust** 



Normal



Hybrid



## **DETERMINATION of FOCAL MECHANISMS**

### • Historically

Examine first motion of *P* waves and plot them on a beach ball.

Strike-slip faulting, west of Oregon, March 13, 1985 Location: 43.5°N, 127.6°W. Depth: 10 km Strike: 302°, Dip: 90°, Slip: 186°



[Stein and Wysession, 2002]

### **DETERMINATION of FOCAL MECHANISMS**

Modern Technique

Directly invert waveforms at many stations for the *components of the moment tensor* representing the double-couple.

#### "Centroid Moment Tensor Inversion"

→ This is possible because that seismic ground displacement is a linear combination of these components.

### **Body Waves**

$$u_{n}(\mathbf{x};t) = M_{pq} * G_{np,q} = \frac{\gamma_{n}\gamma_{p}\gamma_{q}}{4\pi\rho\alpha^{3}r} \dot{M}_{pq} \left(t - \frac{r}{\alpha}\right)$$
**P waves**

$$-\left(\frac{\gamma_{\gamma_{p}} - \delta_{np}}{4\pi\rho\beta^{3}r}\right)\gamma_{q} \dot{M}_{pq} \left(t - \frac{r}{\beta}\right)$$
**S waves**

#### Normal modes

$$\mathbf{u}(r,t) = \sum_{N} \mathbf{s}_{n}(\mathbf{r}) \left( \varepsilon_{n}^{*}(\mathbf{r}_{s}) : \boldsymbol{M}(\mathbf{r}_{s}) \right) \cdot \frac{1 - \cos \omega_{n} t \exp\left(-\omega_{n} t/2Q_{n}\right)}{\omega_{n}^{2}}$$

NOTE LINEARITY of all Equations with respect to  $M_{pq}$ .

#### **NEAR-REAL TIME CMT SOLUTIONS**

Computed routinely by the NEIC (body waves) and the Global CMT (*ex*-Harvard) project (body *and surface* waves)

#### Example: 08 JUL 2007, ALEUTIAN ISLANDS



The two focal solutions are separated by a solid rotation of 11°.