# Identifying generation mechanisms in U.S. east coast non-seismic tsunami events



Christopher Moore Vasily Titov Diego Arcas Utku Kanoğlu Jose Manuel González-Vida



#### NOAA Center for Tsunami Research

Pacific Marine Environmental Laboratory



#### DART 44402 triggers



• 4 "false" triggers in 4 years

- deep-water amplitudes > 5cm
- no seismic signal
- not a spike







#### 11 April 2013 event

#### Many gauges show a clear wave arrival time (est. in red)





#### 11 April 2013 event

#### Many gauges show a clear wave arrival time (est. in red)





- Reverse isochrons calculated from each gauge and DART
- Contours of time from arrival time estimates
- Overlap shows
  possible forcing region





- Reverse isochrons calculated from each gauge and DART
- Contours of time from arrival time estimates
- Overlap shows possible forcing region





- Reverse isochrons calculated from each gauge and DART
- Contours of time from arrival time estimates
- Overlap shows
  possible forcing region





- Reverse isochrons calculated from each gauge and DART
- Contours of time from arrival time estimates
- Overlap shows possible forcing region





- Reverse isochrons calculated from each gauge and DART
- Contours of time from arrival time estimates
- Overlap shows possible forcing region





- Reverse isochrons calculated from each gauge and DART
- Contours of time from arrival time estimates
- Overlap shows possible forcing region





- Reverse isochrons calculated from each gauge and DART
- Contours of time from arrival time estimates
- Overlap shows
  possible forcing region





- Reverse isochrons calculated from each gauge and DART
- Contours of time from arrival time estimates
- Overlap shows possible forcing region



![](_page_11_Picture_5.jpeg)

- Start and end times shaded for major gauges
- All gauges overlap at head of Hudson Canyon

![](_page_12_Picture_3.jpeg)

![](_page_12_Figure_4.jpeg)

## Preliminary model runs

![](_page_13_Figure_1.jpeg)

- A short landslide study at the forcing region
- Parameters varied:
  - locations (Hudson Canyon)
  - orientations
  - wavelengths = 10-30 km
  - widths = 5-20 km
  - max amps = 20-300 cm

## Preliminary model runs

- First wave at DART arrives directly
- Second wave at DART is reflection off Long Island
- Wave arrival times approximate gauge data
- Reflects from shelf edge
- Very sensitive to direction

![](_page_14_Figure_6.jpeg)

![](_page_14_Picture_7.jpeg)

![](_page_15_Figure_0.jpeg)

Wednesday, March 5, 14

- Stronger event
- Reverse isochrons show a similar forcing region
- Waves seen in gauges as far away as Bermuda and Puerto Rico

![](_page_16_Figure_4.jpeg)

![](_page_16_Picture_5.jpeg)

- Stronger event
- Reverse isochrons show a similar forcing region
- Waves seen in gauges as far away as Bermuda and Puerto Rico

![](_page_17_Figure_4.jpeg)

![](_page_17_Picture_5.jpeg)

- Stronger event
- Reverse isochrons show a similar forcing region
- Waves seen in gauges as far away as Bermuda and Puerto Rico

![](_page_18_Figure_4.jpeg)

![](_page_18_Picture_5.jpeg)

- Stronger event
- Reverse isochrons show a similar forcing region
- Waves seen in gauges as far away as Bermuda and Puerto Rico

![](_page_19_Figure_4.jpeg)

![](_page_19_Picture_5.jpeg)

- Stronger event
- Reverse isochrons show a similar forcing region
- Waves seen in gauges as far away as Bermuda and Puerto Rico

![](_page_20_Figure_4.jpeg)

![](_page_20_Picture_5.jpeg)

- Stronger event
- Reverse isochrons show a similar forcing region
- Waves seen in gauges as far away as Bermuda and Puerto Rico

![](_page_21_Figure_4.jpeg)

![](_page_21_Picture_5.jpeg)

- Stronger event
- Reverse isochrons show a similar forcing region
- Waves seen in gauges as far away as Bermuda and Puerto Rico

![](_page_22_Figure_4.jpeg)

![](_page_22_Picture_5.jpeg)

- Stronger event
- Reverse isochrons show a similar forcing region
- Waves seen in gauges as far away as Bermuda and Puerto Rico

![](_page_23_Figure_4.jpeg)

![](_page_23_Picture_5.jpeg)

- Stronger event
- Reverse isochrons show a similar forcing region
- Waves seen in gauges as far away as Bermuda and Puerto Rico

![](_page_24_Figure_4.jpeg)

![](_page_24_Picture_5.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

Initial runs chosen from landslide sources run for II April event

Wednesday, March 5, 14

![](_page_26_Picture_0.jpeg)

## **High Wind Event**

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

Wednesday, March 5, 14

#### **High Wind Event**

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_2.jpeg)

Wednesday, March 5, 14

## Hydrographic Survey

![](_page_28_Figure_1.jpeg)

![](_page_28_Picture_2.jpeg)

- Okeanos Explorer survey
- Differences show very small debris field (green)
- No evidence of *large* slide
- Provided high-resolution bathymetry for model

![](_page_28_Picture_7.jpeg)

(analysis courtesy of Jason Chayt)or, USGS

### Invert against DART

- Find an initial condition that fits offshore data
- Compare result to onshore gauges
- Use sources drawn from landslide study:
- 10 km x 10 km by 1 m
- 80 sources covering shelf near Hudson Canyon head

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

#### **Inversion result**

![](_page_30_Figure_1.jpeg)

#### **Inversion result**

![](_page_31_Figure_1.jpeg)

Wednesday, March 5, 14

#### **Results: gauge comparison**

![](_page_32_Figure_1.jpeg)

Wednesday, March 5, 14

![](_page_33_Picture_0.jpeg)

- Probably a meteotsunami
- Free wave leaves forcing region at shelf edge
- Perhaps a triggered landslide
- Next step: comparison with time-dependent pressure field forcing

![](_page_33_Picture_5.jpeg)

![](_page_33_Picture_6.jpeg)