

Carbon Program Overview

- Introduction and Motivation for Research
 An Observational Program for Evolving
 - Science Questions
- 3. New and Future Challenges

PIs: Richard Feely, Christopher Sabine and Simone Alin

Full-Time Technical Staff: Cathy Cosca, Dana Greeley, Stacy Maenner, Paul Covert, Sylvia Musielewicz, Geoff Lebon, Cynthia Peacock Part-Time Technical Staff: Dave Wisegarver, Antonio Jenkins Post-Doc: Laurie Juranek Graduate Students (through UW): Katie Fagan, Andrea Fassbender

Rising Atmospheric CO₂ was first discovered by Dr. David Keeling in the mid 1900s.

Motivation for the PMEL CO2 Program

The NOAA's Climate Mission Goal -- To understand climate variability and change to enhance society's ability to plan and respond.

Research Area: Develop an Integrated Global Observation and Data Management System for routine delivery of information, including attribution of the state of the climate.

Performance Objective: Describe and understand the state of the climate system through integrated observations, analysis, and data stewardship.

Global Carbon Budget for 1990s published in the Nov. 2007 First State of the Carbon Cycle Report (SOCCR)

Global Carbon Budget for 1990s published in the Nov. 2007 First State of the Carbon Cycle Report (SOCCR)

early 1990s view of the global carbon cycle could not account for all the CO_2 released to the atmosphere.

l ppm in the atmosphere = 2.1 Pg C

By the mid 1990s the World Ocean Circulation Experiment (WOCE), the Joint Global Ocean Flux Study (JGOFS), and the NOAA/OACES program had completed a global survey of CO₂ in the oceans.

The GLODAP carbon database of >70,000 sample locations grew out of a 5 year NOAA synthesis effort. http://cdiac.esd.ornl.gov/oceans/glodap/Glodap_home.htm

Column inventory of anthropogenic CO₂ that has accumulated in the ocean between 1800 and 1994 (mol m⁻²)

Mapped Inventory =106±17 Pg C; Global Inventory =118±19 Pg C

Quantifying the ocean inventory helped constrain the net terrestrial biosphere fluxes

Over the past 200 years, the ocean has been the only reservoir to consistently take up anthropogenic CO_2 from the atmosphere.

CLIVAR/CO2 Repeat Hydrography

R.A. Feely, C.L. Sabine, R. Wanninkhof, G.C. Johnson, J.L. Bullister, M. Barringer, C.W. Mordy, J.-Z. Zhang, D. Greeley, F.J. Millero, and A.G. Dickson

Goal: To quantify decadal changes in the inventory and transport of heat, fresh water, carbon dioxide (CO_2), chlorofluorocarbon tracers and related parameters in the oceans.

Approach: The sequence and timing of the CLIVAR/CO₂ Repeat Hydrography cruises have been selected so that there is roughly a decade between them and the WOCE/JGOFS global survey.

Achievements: The U.S. CLIVAR/CO₂ Repeat Hydrography Program has completed 11 of 18 lines and is on schedule to complete global survey by 2012.

Global map of planned CLIVAR/CO₂ Repeat Hydrography Program hydrographic sections

http://ushydro.ucsd.edu/

CLIVAR/CO₂ Repeat Hydrography Interim Results

- •Global Survey is 60% complete with all measurements meeting or exceeding anticipated quality requirements.
- •Meridional sections in the Atlantic, Pacific and Indian oceans show that there are significant and measureable inorganic carbon changes in all three ocean basins over the last decade.
- •We are working to improve our tools for isolating the anthropogenic component of the decadal carbon changes, including working with modelers to compare and interpret results.
- Diagnosis of the changes suggests that variations in ocean circulation can have an important, and sometimes dominant, impact on the observed regional carbon distributions.
- Preliminary analyses suggest that the regional anthropogenic carbon inventory changes over the last decade may have a different pattern from the long-term carbon storage distributions.

Global Carbon Budget for 1990s published in the Nov. 2007 First State of the Carbon Cycle Report (SOCCR)

PMEL surface CO₂ observation network

In the early 1990s surface CO₂ measurements capture the influence of El Niño on equatorial CO₂ fluxes

1992: Instrument placed on the ship that services the TAO array captured the low fluxes of the 1992 El Niño and was in place for the 1998 El Niño.

1998: Prototype moored pCO₂ systems developed by MBARI and placed on TAO moorings at 0, 155°W and 2°S, 170°W in collaboration with PMEL

Mean annual net CO₂ flux estimated by Takahashi et al. 1997

~ 250,000 measurements between 1960-1995

Annual Flux (Wanninkhof Gas Exchange) Nominal Year 1990 0' 160' 160' 160' 140' 120' 100' 80' 60' 40' 20' 20' 10 10 20 0' 20' 40' 60' 80' 100'120'140'160'180'160'140'120'100' 80' 9876549210129456789

Net Flux (1012 grams C yr-1 in each 4' x 5' area)

Net flux ranges from 0.6 to 1.34 Pg C yr⁻¹ with ~75% uncertainty

2003: MBARI transitions Moored Autonomous pCO₂ system to PMEL

After initial design modifications PMEL begins building moored CO2 network

The Basics:

LiCor 820 NDIR detector to measure air and water CO₂

gas calibration traceable to WMO standards

Self contained modular design to fit a range of buoys

Daily satellite data transmission

Annual net CO₂ flux estimated by Takahashi et al., DSR, 2002

0°

~ 940,000 measurements between 1960-2000

Net flux ~2.2 (+22% or -19%) Pg C yr⁻¹ later this estimate was revised to 1.5 Pg C yr⁻¹ to correct an error in wind speed.

First global assessment of the relative biological and temperature controls on surface water pCO_2

Surface Ocean pCO₂ Measurement Project

R. Wanninkhof, R. Feely, C. Sabine, T. Takahashi, S. Sutherland, N. Bates, F. Chavez, S. Cooke, F. Millero and S. Maenner

 G_{OQ} ; To quantify the daily to interannual variability in air-sea CO_2 fluxes and understand the mechanisms controlling these fluxes.

Approach: Make autonomous surface pCO₂ measurements using research and volunteer observing ships (VOS) to get spatial coverage at seasonal time scales and using a network of surface moorings to get high frequency temporal resolution.

Achievements: The VOS program has outfitted 7 ships and has a full data exchange policy with 4 other ships. The moored pCO_2 program currently has 10 open ocean systems deployed.

Large-Scale EqPac Results: 1997-2007

El Niño : 0.2-0.4 Pg C yr⁻¹ Non El Niño : 0.5-0.7 Pg C yr⁻¹ La Niña: 0.6-0.8 Pg C yr⁻¹ Average: 0.5 ± 0.2 Pg C yr⁻¹

Today we are working with a number of academic colleagues to instrument research and volunteer observing ships with underway pCO_2 systems

Takahashi climatological annual mean air-sea CO₂ flux for reference year 2000

Based on 3 million measurements since 1970 and NCEP/DOE/AMIP II reanalysis winds. Global flux is 1.4±0.7 Pg C/yr

Takahashi et al., Deep Sea Res. II, in press

Concept: Use Multiple Platforms to Produce Seasonal CO2 Flux Maps

Global Flux Map suggests an interannual variability of 0.23 Pg C

moored CO_2 observations

NOAA Ocean Carbon Cycle Program

NOAA Climate Strategic Plan Objective: Describe and Understand the State of the Climate System Through Observations, Analysis and Data Stewardship

Ocean Inventory:

<u>10 yrs ago</u>- making baseline measurements <u>5 yrs ago</u> - first data-based global inventories <u>Today</u> - looking at decadal inventory changes

Ocean Uptake: <u>10 yrs ago</u> - first ocean CO₂ flux climatology <u>5 yrs ago</u> -T vs. Biological controls on global map <u>Today</u> - looking at seasonal to interannual variability

Global Carbon Budget for 1990s published in the Nov. 2007 First State of the Carbon Cycle Report (SOCCR)

The carbon budget of ocean margins (coastal regions) are not well-characterized due to lack of observations coupled with complexity and highly localized geographic variability. 2007 SOCCR, chapter 15 key findings

New Directions: NOAA Coastal CO₂ Surveys, coastal CO₂ moorings, and underway CO₂ from coastal ships

Goal: To gather large-scale coastal CO₂ data for the purpose of determining U.S. air-sea CO₂ fluxes

Monthly climatological pCO₂ and flux maps for the West Coast

Hales et al. (in prep.)

Bimonthly pCO₂ maps for the South Atlantic Bight

Jiang et al. (2008)

New Directions: NOAA Coastal CO₂ Surveys, coastal CO₂ moorings, and underway CO₂ from coastal ships

Goal: To gather large-scale coastal CO₂ data for the purpose of determining U.S. air-sea CO₂ fluxes

Ocean Acidification

Since the beginning of the industrial age, the pH and CO_2 chemistry of the oceans (ocean acidification) have been changing because of the uptake of anthropogenic CO_2 by the oceans.

- Decrease in pH 0.1 over the last two centuries
 - 30% increase in acidity; decrease in carbonate ion of about 16%

Corals Corals These changes in pH and carbonate chemistry may have serious impacts on open ocean and coastal marine ecosystems.

What we know about ocean CO₂ chemistry

... from field observations

WOCE/JGOFS/OACES Global CO2 Survey

~72,000 sample locations collected in the 1990s

DIC $\pm 2 \mu mol kg^{-1}$ TA $\pm 4 \mu mol kg^{-1}$

Sabine et al (2004)

What we know about ocean CO₂ chemistry

...from GLODAP data files

Pre-industrial pH calculated from GLODAP residuals after Anthropogenic CO₂ values have been removed.

Present-day pH calculated from GLODAP DIC and TALK data.

pH difference (present pre-industrial).

Data from Key et al. (2004)

Feely et al. (2004)

Predictions of Ocean Acidification in the Global Oceans

Calcification rates in the tropics may decrease by 30% over the next century

after Feely et al (in press) with Modeled Saturation Levels from Orr et al (2005)

North American Carbon Program

Continental Carbon Budgets, Dynamics, Processes, and Management

NACP West Coast Survey Cruise : 11 May - 14 June 2007 and mooring locations Feely et al. (2008)

Upwelling Induced Acidification of the Continental Shelf

Vertical sections from Line 5 (Pt. St. George, California)

The 'ocean acidified' corrosive water was upwelled from depths of 150-200 m onto the shelf and outcropped at the surface near the coast.

Red dots represent sample locations.

Feely et al. (2008)

North American Carbon Program

Continental Carbon Budgets, Dynamics, Processes, and Management

Ocean Acidification of the North American Continental Shelf

NACP Coastal Survey Cruise: 11 May - 14 June 2007

Distribution of the depths of the corrosive water (aragonite saturation < 1.0; pH < 7.75) on the continental shelf of western North America from Queen Charlotte Sound, Canada to San Gregorio Baja California Sur, Mexico.

On transect lines 5 and 6 the corrosive water reaches all the way to the surface in the inshore waters near the coast.

First ocean acidification mooring in the Gulf of Alaska at Station Papa

Preliminary results show a clear seasonal trend in pH and a strong correlation with pCO₂

Scorecard of Biological Impacts of Ocean Acidification

		Response to increasing CO_2				
Physiological	Major	# species				\frown
process	group	studied				
Calcification						
	Coccolithophores	4	2	1	1	1
Plankt	onic Foraminifera	2	2	-	-	-
ANNOT ST	Molluscs	4	4	-	-	-
	Echinoderms	2	2	-	-	-
	Tropical Corals	11	11	-	-	-
Co	oralline Red Algae	1	1	-	-	-
Photosynthesis ¹						
	Coccolithophores ²	2	-	2	2	-
	Prokaryotes	2	-	1	1	-
	Seagrasses	5	-	5	-	-
Nitrog <u>en Fi</u> xation						
	Cyanobacteria	1	-	1	-	-
Reproduction						
	Molluscs	4	4	-	-	-
	Echinoderms	1	1	-	-	-

1) Strong interactive effects with nutrient and trace metals availability, light, and temperature

2) Under nutrient replete conditions

Figure from Doney et al. (2009)

NW Eifuku: A unique CO₂ laboratory

 \circ One of only two sites in the ocean, and the only submarine volcano, known to be venting liquid CO_2 and forming natural CO_2 clathrates.

 A ideal natural laboratory for studying <u>the</u> <u>effects of ocean acidification</u> in the marine environment.

Supercritcial CO2 and CO2 droplets

Shell thinning in an acidified ocean Tunnicliffe et al. (2008)

NOAA Ocean Acidification Research and Planning Activities

- Existing and planned NOAA activities have important relevance to this rapidly emerging issue.
- VOS and Repeat Hydrography
- Technology Development
- Remote Sensing Applications
- \succ CO₂ Mooring Network
- Environmental Modeling
- > Physiological Research
- Joint Workshop's & Interagency Collaboration

Future Challenges for the Ocean Carbon Program

- 1. Completion of the Observing System
- 2. Continuation of the Coastal Program
- 3. Integration of an Ocean Acidification Network with the Ocean Carbon Observing Network
- 4. Integration of the Ocean Carbon Observing System into Carbon Tracker

Thank you for your time!

The NOAA Ship Ronald H. Brown Arriving in Easter Island for the 2nd Leg of P18 January 2008