Modeling Ice-Ocean-Ecosystem in the Bering-Chukchi-Beaufort Seas: Using IPY (2007-2008), RUSALCA 2004 and 2009 measurements Jia Wang

NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan USA

Haoguo Hu, Xuezhi Bai University of Michigan Ann Arbor

And RUSALCA Pis: Pickart, Whitledge, Hopcroft Woodgate

RUSALCA Pls Meeting, February 20-22, 2014, Honolulu

Modeling Bering-Chukchi Sea Marine Ecosystem

- CIOM with fully dynamics and thermodynamics, multiple category ice thickness (ridging)
- 3.8km and 21 level
- 6-hourly or daily forcing
- 3 configurations:

Bering Sea only (7-12km), Chukchi only (3.8km), Bering-Chukchi Sea (3.8-12km)

- Hypotheses test/RUSALCA synthesis
- Realistic simulation

View From Space

Coupled Ice-Ocean-Ecosystem Model in the Bering-Beaufort-Chukchi Seas (IPY)

Alaska Coastal Water Bering Shelf Water

Alaskan Stream

Aleutian North Slope - Bering Slope - Anadyr Waters

September Ice Edge Maximum and Minimum Extents March Ice Edge Maximum and Minimum Extents

during 2000-2011. (Wang et al. 2013, JGR)

Coupled Ice-Ocean-Ecosystem Model in the Bering-Beaufort-Chukchi Seas (IPY)

Verification of CIOM using 2004 RUSALCA Data (T) in the Bering-Beaufort-Chukchi Seas (work in progress)

CIOM-simulated ice-ocean system

Verification of CIOM using 2004 RUSALCA Data (T&V) in the Bering-Beaufort-Chukchi Seas

Verification of CIOM using 2004 RUSALCA Data (S) in the Bering-Beaufort-Chukchi Seas

Verification of CIOM using 2009 RUSALCA Data in the Bering-Beaufort-Chukchi Seas (work in progress)

Cruise stations, Sep 3-29, 2009

Bering Strait.

Table: Water transports in the Chukchi Sea in 2009, positive and negative values denote flowing into and out of Chukchi Sea, respectively.

	73.0 71.0 69.0 67.0	°N - 0 °N - 0	Salinity (PSU)	1 1 1 1	34 33 32.6 32.2 31.8 31.4 31.4 30.6 30.2 29.8 29.4 27.4 27.8 27.8 27.4 27.8
Unit: x10 ⁶ m ³	Mean	STD	Max	Min	Observations
Barrow Canyo n	0.443	0.606	1.373	-1.419 (westw ard)	0.45 (itoh et al 2013)
Central Valley	0.269	0.302	1.120	-0.568 (south ward)	0.2 ± 0.1 (Weingartner et al. 2005)
Herald Valley	0.248	0.364	0.835	-0.909 (south ward)	0.1~0.3 (Woodgate et al 2004)
Long Strait	0.056	0.420	1.128	-1.147 (eastw ard)	??
Bering Strait	0.997	0.791	2.465	-0.982 (south ward)	0.8 ± 0.2 (Woodgate et al. 2004)

Depth-averaged currents in the Chukchi Sea 2009

RUSALCA Measurements in 2009

August depth-averaged currents in the Chukchi Sea

Measurement of August 2004 in the Chukchi Sea

Regional Average

Simulated seasonal variation of phytoplankton (Chl a) for the subregions and the whole domain.

Modeled seasonal variations of sea ice cover (black line), nitrate (blue dashed), chlorophyll a (green), and zooplankton (red dashed) over the Bering Shelf . The units and factors are given.

Table 1. Subdomain- and time- (May-November) average chl-a comparison between the control run (second column) and sensitivity experiments of 1) an increase of solar radiation by 10% (third column), 2) an increase of nutrients from open boundaries (OB) by 20% (fourth column), and 3) an increase of air temperature by 2 oC (fifth column). Numbers in parentheses are the relative increase rate.

Chl-a (uɑ/L)	Standard	Solar +by 10%	Nutrients +by 20%	SAT +by 2 oC
Basin	0.204	0.003 (1.47%)	0.050 (24.5%)	-0.035 (-17.15%)
Slope	0.186	0.008 (4.30%)	0.096 (51.6%)	0.041 (22.04%)
Shelf	0.987	0.005 (0.51%)	0.051 (5.10%)	0.135 (13.66%)
Chukchi	1.160	0.002 (0.17%)	0.016 (1.30%)	0.220 (18.97%)
Whole	0.507	0.004 (0.78%)	0.035 (6.90%)	0.054 (10.65%)

Table 3. Bering shelf domain- and time (May-November) average comparison between the control run (second column) and sensitivity experiments of 1) an increase of solar radiation by 10% (third column), 2) an increase of nutrients from open boundaries (OB) by 20% (fourth column), and 3) an increase of air temperature by 2 oC (fifth column). Numbers in parentheses are the relative increase rate.

Variables	Standard	Solar +by 10%	Nutrients +by 20%	SAT +by 2 oC
Ice Cover (km2)	2.20×105	-2.97×10^3 (-1.35%	b)	-2.32×10^4 (-10.56%)
Chl-a (μg/L)	0.987	0.005 (0.51%)	0.051 (5.10%)	0.135 (13.66%)
Zoopl. (µg/L)	0.272	-0.012 (-4.42%)	0.016 (5.89%)	0.055 (20.08%)
NO3 (µmol/L)	15.71	0.194 (1.23%)	1.612 (10.3%)	5.053 (32.16%)

Calculated net surface heat flux (W/m^2 , positive upward) with wind vectors overlain during the passage of the cyclone on 25-27 February 2007.

Simulated vertical sections of winter mean zonal velocity (contour, unit: cm/s) and temperature (shaded) and salinity (black line) along 156.5W, 155W and 152W. (e) Observed winter mean vertical section of along stream velocity (cm/s) from the 152W mooring array in 2002 (from Nikolopoulos et al. 2009). (f) Same as (e) but for potential temperature (color shaded, ° C) and salinity (contours).

Future Plan

- Writing up papers of 2004, 2009 on physical characteristics of volume transport
- Simulate nutrient transport through these straits and channels, validated by RUSALCA measurements (Hopcroft, Asjian)
- Synthesis work on physical dynamics (Pickard, Woodgate, UAF PIs)
- Synthesis work on lower trophic level dynamics in 2009, 2012 (Hopcroft, Whitledge)

Verification of CIOM using 2004 RUSALCA Data (T) in the Bering-Beaufort-Chukchi Seas (GLERL)

