BERING STRAIT MOORING CRUISE REPORT - RUSALCA 2009 LEG 1

Russian Research Vessel Professor Khromov (also called Spirit of Enderby) Nome, 23rd August 2009 – Nome, 2nd September 2009

Rebecca Woodgate, University of Washington (UW),woodgate@apl.washington.edu Funding from NSF ARC-0632154 and NOAA RUSALCA program. An International Polar Year Project.

(Photo by Aleksey Ostrovskiy)

(Photo by R Woodgate)

Expedition Leader: Vladimir Bakhmutov, State Research Navigational Hydrographical Institute, RF. **Science Coordinators:** Kathleen Crane, NOAA, USA; Mikhail Zhdanov, Group Alliance, Russia (RF) and Aleksey Ostrovsky, Group Alliance, Russia. **US Expedition Leader:** Terry Whitledge, University of Alaska, Eairbanks (UAE), USA

US Expedition Leader: Terry Whitledge, University of Alaska, Fairbanks (UAF), USA Chief Scientist: Rebecca Woodgate, University of Washington (UW), USA. Science Liaison at Sea: Kevin Wood, NOAA/UW, USA.

As part of the joint US-Russian RUSALCA (Russian US Long-term Census of the Arctic Ocean) Program, a team of US and Russian scientists undertook two oceanographic cruises in August/September 2009 on board the Russian vessel 'Khromov', operated by Heritage Expeditions (under the name of Spirit of Enderby). This report concerns the first of these cruises, Leg 1, in August 2009.

The major objective of the Leg 1 cruise was mooring work in the Bering Strait region, i.e., the recovery and redeployment of 8 moorings, a joint project by the University of Washington (UW), the University of Alaska, Fairbanks (UAF), and the Arctic and Antarctic Research Institute (AARI). The US portion of the mooring recoveries are supported by an NSF-OPP IPY grant (PIs: Woodgate, Weingartner, Whitledge and Lindsay). The US portion of the mooring deployments are supported by a NOAA-RUSALCA grant (PIs: Woodgate, Weingartner, Whitledge and Lindsay). The us portion, ice thickness (crudely) and some bio-optics.

Although the start of the cruise was delayed by a day due to bad weather in Nome (and the off-load was delayed by 2 days, again for bad weather), the majority of the cruise goals were met, viz., recovery and redeployment of the 8 moorings, and the occupation of 2 high resolution CTD lines, one in the Bering Strait proper and one just north of the strait (see map below). These sections were also sampled for nutrients, chlorophyll and other water properties. For details of the water measurements and of opportunistic benthic grab work done at various locations during the cruise, please contact the US Expedition Leader, Terry Whitledge. Cruise time was also used to set-up equipment for Leg 2 RUSALCA. This included a CTD water sampler, run by Marshall Swartz of the Woods Hole Oceanographic Institution (WHOI). For details for the CTD set up and explicit parameters of the CTD, see the Leg 2 cruise report.

The Leg 1 cruise was scheduled to on-load in Nome on 22nd August 2009, with the ship docking on 21st or early 22nd August. However strong south winds and the ensuing high seas prevented the ship coming into Nome until early on the 23rd August 2009. An efficient on-load allowed us to sail on the evening of the 23rd August, and arrive on site in the strait on the afternoon of the 24th August. Fair weather and the long daylight of this time of year greatly expedited our operations for the next 6 days, during which we completed the mooring operations and 2 high resolution CTD lines. On the morning of the 30th August, we concluded the CTD operations for this leg to allow for further testing/set up of Leg 2 equipment and steamed for Nome, in anticipation of possibly getting dock space on 31st August. Although we were off Nome from early on 31st August, strong south winds on 31st August and winds/swell on 1st Sept prevented us coming to dock until early on 2nd September. Offload of the mooring equipment was complete by about midday, allowing for an afternoon on-load of Leg 2.

RUSALCA 2009 LEG 1 - MAP OF STATIONS

Map of the Bering Strait region (left) and detail of the strait (right) showing Khromov RUSALCA 2009 Leg 1 CTD sites (small green dots) and mooring locations for the eight moorings recovered in 2009 (A12-08, A11-08, A13-08, A2W-08, A2-08, A4-08, A4R-08, and A3-08) and the eight moorings deployed in 2009 (A12-09, A11-09, A13-09, A3-09, A2W-09, A2-09, A4W-09, A4-09, and A3-09). Blue dots with red center indicate a site of recovery and deployment. Blue dot (A4W) indicates deployment only. Depth contours are every 10m from the International Bathymetric Chart of the Arctic Ocean [Jakobsson et al., 2000].

Woodgate 2009 RUSALCA Leg 1 Khromov Mooring report

RUSALCA 2009 LEG 1 CRUISE PARTICIPANTS

- US

- 1. Terry Whitedge (M), UAF, USA US Expedition Leader, nutrients, moored nutrient sampler
- 2. Kathleen Crane (F), NOAA Program Manager, NOAA;
- 3. Kevin Wood (M), NOAA/UW Science Liaison
- 4. Rebecca Woodgate (F), UW US Chief Scientist, Moorings, UW Mooring lead
- 5. Wendy Ermold (F), UW Moorings
- 6. David Leech (M), UAF Moorings, UAF Mooring lead
- 7. Kevin Taylor (M), UAF Moorings
- 8. Dan Naber (M), UAF Mooring, moored nutrient sampler, nutrients
- 9. Mike Kong (M), UAF UAF graduate student, nutrients, mooring assistance
- 10. Marshall Swartz (M), WHOI CTD
- 11. Jeff Jones (M), Reuters, Canada Media

- Russian (directly part of RUSALCA 2009 Leg 1mooring work)

- 12. Vladimir Bakhmutov (M), State Research Navigational Hydro. Institute, RF Expedition Leader
- 13. Aleksey Ostrovskiy (M), Group Alliance Liaison and translator
- 14. Elena Bondareva (F), Arctic and Antarctic Research Institute (AARI), RF Moorings

- Other Russian Scientists:

Alex Savvichev, Boris Smirnov, Alexey Sazonov, Natalia Chernova, Evgeny Vekhov, Iouri Pashchenko, Konstanin Kramchanin, Alexander Kolesnik, Stanislav Denisenko, Petr Strelkov, Daria Petrova, Elizaveta Ershova, Elena Zakharova, Alexey Sherbinin, Valentina Pimenova, Sergey Yarosh, Dmitry Korshunov, Alexander Bosin, Valentina Pimenova.

RUSALCA 2009 LEG 1 CRUISE SCHEDULE

Tuesday 18 th Aug 2009 Wednesday 19 th Aug 2009 Thursday 20 th Aug 2009 Friday 21 st Aug 2009 Saturday 22 nd Aug 2009 Sunday 23 rd Aug 2009	UW mooring team (Woodgate, Johnson, Stewart) arrive Nome UW mooring team (Ermold) arrive Nome, prep mooring gear prep mooring gear prep mooring gear, other scientists arrive, on-load meeting with agent prep mooring gear, waiting for weather Khromov docks ~8am, customs & USCG inspection, onload, sail 8:30pm
Monday 24 th Aug 2009	(Johnson and Stewart return to Seattle)
	arrive A11 ~ 3pm, recover A11-08, A12-08, A13-08, download iscats
Tuesday 25 th Aug 2009	Recover A2W-08, A2-08, A4R-08, A4-08 by lunchtime (1pm),
	Stearn to A3, Recover A3-08 (by dragging) just before dinner (7:30pm)
Wednesday 26 th Aug 2009	Deploy A3-09 A2-09 A4-09 and A4W-09
	Download SBEs
Thursday 27 th Aug 2009	Deploy A2W-09, A13-09, A11-09, A12-08,
	Download ADCPs
Friday 28 th Aug 2009	Run BStrait CTD line with mud (10am-6am, 45min per station with transit) Finish Russian downloads
Saturday 29 th Aug 2009	Run A3L CTD line (noon – 6am), Fix CTD salinity problem (see below)
	Transfer of Russian Mooring Data, finish US downloads
Sunday 30 th Aug 2009	Run for Nome, packing. Stewart arrives Nome to assist offload.
Monday 31 st Aug 2009	Off Nome, waiting for weather to dock.
Tuesday 1 st Sep 2009	Off Nome, waiting for weather to dock.
Wednesday 2 nd Sep 2009	Dock ~ 9am, offload by noon, air cargo by 4pm, UW team leave Nome.
Thursday 3 rd Sep 2009	Return to Seattle

Total: 9.5 days at sea

BACKGROUND TO MOORING AND CTD PROGRAM

Moorings: The moorings serviced on this cruise are part of a multi-year time-series (started in 1990) of measurements of the flow through the Bering Strait. This flow acts as a drain for the Bering Sea shelf, dominates the Chukchi Sea, influences the Arctic Ocean, and can be traced across the Arctic Ocean to the Fram Strait and beyond. The long-term monitoring of the inflow into the Arctic Ocean via the Bering Strait is important for understanding climatic change both locally and in the Arctic. Data from 2001 to 2004 suggest that heat and freshwater fluxes are increasing through the strait [*Woodgate et al.*, 2006]. The work completed this summer should tell us if this is a continuing trend.

An overview of the Bering Strait mooring work (including access to mooring and CTD data) is available at http://psc.apl.washington.edu/BeringStrait.html.

Eight moorings were recovered on this cruise. These moorings (three in Russian waters – A11-08, A12-08, A13-08; five in US waters – A2W-08, A2-08, A4R-08, A4-08, A3-08) were deployed in another joint US-Russian cruise supported by NSF-OPP (*Woodgate, Weingartner, Whitledge, Lindsay, NSF-OPP-ARC-0632154*) with ship-time from the NOAA-led RUSALCA (Russian-American Long-term Census of the Arctic, <u>http://www.arctic.noaa.gov/aro/russian-american/</u>) program. This same NSF grant, an International Polar Year (IPY) project, funded the 2009 recoveries described here and data work up.

Eight moorings were deployed on this cruise under funding from NOAA-RUSALCA. These moorings (three in Russian waters – A11-09, A12-09, A13-09; five in US waters – A2W-09, A2-09, A4W-09, A4-09, A3-09) are almost entirely direct replacements of the recoveries, with one exception - site A4W, which was deployed on this cruise, was not deployed in 2008. (Note A4R-08 and A4-08 were at essentially the same position, and only 1 mooring was placed at this location in 2009.) To correct for a gradual shift of mooring positions over the last years, A11-09, A12-09, A13-09 and A2-09 were placed at their design positions established in the RUSALCA agreement started in 2004.

This is the 3rd year of the highest resolution array ever deployed in the Bering Strait (see map above). Three moorings were deployed across the western (Russian) channel of the strait (from west to east - A12-09, A11-09, A13-09). Four moorings were deployed across the eastern (US) channel of the strait (from west to east - A2W-09, A2-09, A4W-09, A4-09). A final 8th mooring (A3-09) was deployed ca. 35 nm north of the strait at a site proposed as a "climate" site, hypothesized to measure a useful average of the flow through both channels [*Woodgate et al.*, 2007]. Testing this hypothesis is one of the main aims of this work. All moorings (recovered and deployed) measure water velocity, temperature and salinity near bottom (as per historic measurements). Additionally, 6 of the 8 moorings (i.e., all eastern channel moorings, the climate site mooring A3, and the mooring central in the western channel, A11) also carried upward-looking ADCPs (measuring water velocity in 1-2 m bins up to the surface, ice motion, and medium quality ice-thickness) and ISCATS (upper level temperature-salinity-pressure sensors in a trawl resistant housing designed to survive impact by ice keels). Bottom pressure gauges were also deployed on the moorings at the edges of the eastern channel (A2W-09 and A4-09). Two moorings (A2-09, central eastern channel; and A12-09, western part of western channel) also carried ISUS nitrate sensors. For a full instrument listing, see the table below.

This coverage should allow us to assess year-round stratification in the strait and also to study the the physics of the Alaskan Coastal Current, a warm, fresh current present seasonally in the eastern channel, and suggested to be a major part of the heat and freshwater fluxes [*Woodgate and Aagaard*, 2005; *Woodgate et al.*, 2006]. The current meters and ADCPs (which give an estimate of ice thickness and ice motion) allow the quantification of the movement of ice and water through the strait. The nutrient sampler, the transmissometer and fluorometer time-series measurements should advance our understanding of the biological systems in the region.

CTD: The moorings are usually supported by annual CTD sections, with water samples for nutrients. This year, two high resolution CTD sections were run – one across the Bering Strait (BSL), and one through mooring site A3 (A3L line) – using the WHOI CTD setup, described in the cruise report for Leg 2. The third proposed line (CSL line) is due to be run on RUSALCA Leg 2.

International links: Maintaining the time-series measurements in Bering is important to several national and international programs, e.g., the Arctic Observing Network (AON) started as part of the International Polar Year (IPY) effort; NSF's Freshwater Initiative (FWI) and Arctic Model Intercomparison Project (AOMIP), and the international Arctic SubArctic Ocean Fluxes (ASOF) program. The mooring work also supports regional studies in the area, by providing key boundary conditions for the Chukchi Shelf/Beaufort Sea region; a measure of integrated change in the Bering Sea, and an indicator of the role of Pacific Waters in the Arctic Ocean. Furthermore, the Bering Strait inflow may play a role in Arctic Ocean ice retreat and variability (especially in the freshwater flux) is considered important for the Atlantic overturning circulation and possibly world climate [*Woodgate et al.*, 2005].

MOORING OPERATIONS DURING RUSALCA 2009 LEG 1 KHROMOV CRUISE

Much of the efficiency of this mooring cruise is attributable to the excellent weather and long daylight available by doing the cruise in August. That said, although there was a 6-day weather window which allowed us to service the moorings and complete the CTD lines, both on-load and off-load were delayed by weather preventing docking in Nome, losing a total of 3 days of ship-time. This reinforces our standard conclusion that at any time of year, it is essential to include several weather days in the cruise planning.

For mooring recoveries, acoustics were done from the aft lab on the main deck, with the hydrophone deployed just forward of the aft starboard A-frame. Once released, the ship brought the floating mooring along the starboard side where it was hooked with a detachable hook on a long pole. Grapples were used to hold the mooring for hooking. Also a top-float catching noose (a ~ 2 m of chain suspended from 2 hand-held lines, thrown over the top float) was used to hold moorings for hooking. Once hooked, line was tied off to the hook of the starboard crane and lifted aboard. As soon as possible the lscat was recovered by hand as the rest of the mooring was being lifted. Many moorings could be brought aboard with 1 pick, but as necessary a stopper line was used on the aft-starboard rail. Although there was a learning curve to bringing the mooring along side and hooking the mooring with the detachable hook, once the method was established, it could work very time-efficiently, and thus we chose not to deploy a small boat to capture the top of the mooring. Once recovered, moorings were

cleaned and rinsed with freshwater by hand. (Preliminary attempts were unsuccessful in connecting the electric power washer to the ship's water and electric supplies, however, since biofouling was very light this year, no more strenuous efforts were pursued.)

Deployments were done off the aft-deck, using the ship's trawl wire and stern A-frame for lifting, with the ship steaming slowly (1.5 knots) into the wind, and the mooring being deployed anchor last from the aft deck. As the weather was good and the moorings were short, this operation did not require stopper points on the aft deck, although tag lines were used on the picking of the anchor.

Overall, mooring operations went exceptionally smoothly. A few points are noteworthy:

1) One mooring, A3-08, required dragging, possibly due to a starfish on the release hook. Other moorings previously with release issues due to biofouling had been painted with antifouling. This proved effective. A3-09 was redeployed without antifouling but with extra floatation and with a spring on the release hook of the mooring. Other US moorings were redeployed with anti-fouling. **Prepare for dragging on all Bering Strait mooring cruises. Use Antifouling measures on releases.**

2) Mooring A2W-08 confirmed release but did not surface for 8 minutes. The suspicion is that this was hung-up on the bottom pressure gauge, possibly held by the plastic wrap used to inhibit biofouling on the pressure gauge, although A4-08 exhibited no problems in this regard. However, the plastic wrap solution was abandoned for the redeployments. The rubber piping connecting the gauge to the anchor was loosened as in previous years. Be prepared for a delay in the mooring surfacing.

3) Other (non-Bering Strait) cruises this year experienced significant release problems. UW uses dual releases on all moorings, pairing new releases with old. This year, all the new releases were used for recoveries and all functioned without hitch.

4) Biofouling was remarkably light this year. Discussions with Peter Strelkov (who took samples of biofouling from the moorings) suggest this is due to the late timing of the deployments. In previous years, barnacle larvae may establish themselves on the moorings before winter. In particularly warm years, there may be 2 seasons of this per year. A CD was made of all mooring fouling pictures since 2003, which shows substantial interannual variability. **Investigate.**

5) Of the 5 lscats deployed in 2008, 2 of the upper layer sensors were lost (those on A11-08 and A3-08) in mid Feb 2009 and early March 2009. In both cases, loggers returned good data up to the time of loss. The remained 3 iscats gave good data all year round. **This yields the first ever year-round record of stratification in the eastern channel of the Bering Strait.** (Although 1 logger experienced logging problems, the data was successfully recovered from the microcat itself. The problematic logger had significant corrosion on the pins of the tether connected to the logger. This may be responsible for logger battery being low voltage on recovery.) The 2008 deployments were targeted at 17-18m depth, and the losses were not from the shallowest deployments. Thus 17-18m was taken as the target depth for the iscats for 2009 also. It is perhaps a coincidence that both of the lost iscats were on the ADCPs deployed in syntactic foam floats. Note that downloading of the iscats via the modem takes around 8 hours each. Also, in preparation, issues were found with the memory battery of the logger failing to connect. **Investigate logger issues.**

6) The 2008 deployments experienced problems with weak chain. No further problems were encountered on recovery.

7) During this cruise, all deck operations were assisted by Russian personnel from RosHydroMet. We are extremely grateful for their expert assistance, which greatly facilitated operations. Particular thanks go to Alexey Sherbinin, who twice used a grappling hook to catch a mooring that had evaded the hooking technique.

Very preliminary analysis of the mooring data show very good data return from all instrumentation, with the exception of the ISUS on A12-08, which returned no data, likely due to a fault in the battery cable. Preliminary plots are given below.

The data show the **usual large annual cycle in temperature and salinity.** Many of the usual features are present, i.e. high variability in autumn, generally with freshening and cooling; salting (at the freezing point) in the winter; freshening and warming in the spring [*Woodgate et al.*, 2005].

As usual A4R (sampling the Alaskan Coastal Current) is warmer and fresher than the rest of the strait. Yet, it seems that this mooring showed less Iscat-SBE salinity difference than last year. It needs

to be investigated if this reflects a change in the ACC or the fact that the recent iscat was deployed around 17m compared to 14.5m in the first year.

Very **unusually, all salinity sensors at A4R show a strong freshening in midwinter**, around mid March. This freshening turns up also at A2 (to a lesser extent), but is only weakly present at A2W at depth. A possibly related mid March freshening is seen at A3 at depth (by this time, the A3 iscat was lost). This curious phenomenon (at a time when we expect salinities to be increasing due to ice formation) requires more investigation.

Very preliminary comparisons suggest that **2008 and 2009 are cold years compared to 2007**. Also, interestingly, **A3 maximum salinities in these 2008-2009 deployments are ~ 0.5 psu fresher than in the previous year**. Does this relate to a significant freshening in the strait?

Velocity data also show the typical high correlation both across the strait and in the vertical. As in previous years, the ACC is present in the eastern channel as evidenced by seasonal velocity shear. As in previous recent years, southward flow events are rare.

The flow through the strait is believed to be driven by a sea-level difference between the Pacific and the Arctic, which drives a flow northwards towards the Arctic. Local winds (usually southward in the annual mean) tend to oppose this flow and may reverse it on timescales of days [*Woodgate et al.*, 2005b]. However, the recovered data suggest that reversals have been unusually uncommon this summer, as other recent data. Since the variability of northward fluxes of heat and freshwater are dominantly dependent on the variability of the volume transport [*Woodgate et al.*, 2006], this may imply further increases in this fluxes, with possible implications for the Arctic and beyond.

Details of mooring positions and instrumentation are given below, along with schematics of the moorings, photos of the mooring fouling, and preliminary plots of the data.

CTD AND WATER SAMPLING DURING RUSALCA 2009 LEG 1 KHROMOV CRUISE

Two high resolution CTD lines were completed during the cruise, using the WHOI Seabird CTD system with water sampling rosette. The CTD was deployed through the aft A-frame, and bottles were fired at regular depths.

Unprocessed data should be treated with some caution. The first cast (BSL-1) was taken without the instrument soaking at depth. Anomalous salinity signals suggested that air had not been sufficiently purged from the system, and subsequent to this cast, all CTD casts started with soaking the CTD at 10m depth until the pumps came on. However, as the lines progressed, this problem reemerged, although it was not fully recognized until late in the A3L line (A3L Line, also possibly named AL Line in some CTD documentation), since it was initially (erroneously) considered to be a problem with the sharp temperature gradients in the vertical. Yo-yo-ing part of one cast confirmed that temperature was not the culprit, and further investigation showed the small hole that vented air from the CTD piping was blocked. This resulted in the pump pumping air rather than water, and thus the time lag between the temperature and conductivity sensors was not as expected, resulting in anomalous salinity signals. Once the vent hole was cleaned (secondary sensors cleaned on consecutive casts) the anomalous salinity signals disappeared. The upcasts did not experience this issue, presumably since once the CTD had descended to depth all the air was finally purged from the system.

On data processing, be prepared to use upcasts instead of downcasts.

During operation, be alert to this problem, and prepared to clean the vent frequently.

Since the CTD operations were taken by WHOI, who had other priorities on this leg of the cruise, calibrated CTD data are not available for this report. However, impressions gained during CTDing suggest that in the Bering Strait line, only the first cast (BSL-01) appeared to sample the Siberian Coastal water. Add extra stations at the Russian Coast.

Water samples were taken for a variety of parameters, including nutrients. For details please see the cruise report for the second leg, or contact Terry Whitledge.

RUSALCA 2009 LEG 1 BERING STRAIT MOORING POSITIONS AND INSTRUMENTATION

ID	LATITUDE (N) (WGS-84)	LONGITUDE (W) (WGS-84)	WATER DEPTH /m (corrected)	INST.
09 Recoveries				
- Russian EEZ				
A11-08	65 54.033	169 26.174	52	ISCAT, ADCP, SBE37
A12-08	65 56.060	169 36.738	51	ISUS, SBE/TF, RCM9
A13-08	65 51.897	169 16.907	50	AARI, RCM9, SBE37
- US EEZ				
A2W-08	65 48.124	168 48.371	53	ISCAT, ADCP, SBE16, BPG
A2-08	65 47.195	168 34.691	56	ISCAT, ADCP, SBE/TF, ISUS
A4R-08	65 44.946	168 15.964	50	ISCAT, ADCP, SBE16
A4-08	65 44.882	168 15.761	50	SBE16, BPG
A3-08	66 19.595	168 57.875	58	ISCAT, ADCP, SBE37

ID	LATITUDE (N)	LONGITUDE (W)	WATER DEPTH	INST.
	(WGS-84)	(WGS-84)	/m (corrected)	
09 Deployments				
- Russian EEZ				
A11-09	65 54.002	169 25.984	52	ISCAT, ADCP, SBE37
A12-09	65 55.993	169 37.005	51	ISUS, SBE/TF, RCM9
A13-09	65 52.006	169 16.987	51	AARI, RCM9T, SBE37
- US EEZ				
A2W-09	65 48.062	168 47.957	54	ISCAT, ADCP, SBE16, WR, BPG
A2-09	65 46.870	168 34.044	57	ISCAT, ADCP, SBE/TF, ISUS
A4W-09	65 45.424	168 21.937	56	ISCAT, ADCP, SBE16
A4-09	65 44.762	168 15.746	50	ISCAT, ADCP, SBE16, BPG
A3-09	66 19.601	168 57.928	58	ISCAT, ADCP, SBE37, WR

AARI = AARI Current meter and CTD ADCP = RDI Acoustic Doppler Current Profiler BPG=Seabird Bottom Pressure Gauge ISCAT = near-surface Seabird TS sensor in trawl resistant housing, with near-bottom data logger ISUS= Nutrient Analyzer WR=Whale Recorder RCM9= Aanderaa Acoustic Recording Current Meter RCM9T = Aanderaa Acoustic Recording Current Meter with Turbidity SBE/TF = Seabird CTD recorder with transmissometer and fluorometer

SBE16 = Seabird CTD recorder SBE37 = Seabird Microcat CTD recorder

RUSALCA 2009 LEG 1 TARGET CTD POSITIONS (For actual, see Leg 2 report)

<pre>% - 24 stations just north of the Bering Strait % Lat (N) Long (W) Station</pre>	8=	==== Bei	ring Strait	: Line						
<pre>% Lat (N) Long (N) Lat (N) Long (N) Station 65.980 169.643 65 58.01 169 38.56 %1 %BS1 65.963 169.498 65 56.71 169 28.7 %3 %BS3 65.927 169.425 65 55.65 169 25.52 %4 %BS4 65.927 169.425 65 54.59 169 21.11 %5 %BS5 65.892 169.280 65 53.55 169 16.77 %6 %BS6 65.802 169.142 65 51.72 169 %49 %8 %BS8 65.801 169.314 65 52.78 169 12.83 %7 %BS7 65.862 169.142 65 51.72 169 %49 %8 %BS8 65.881 169.072 65 50.47 169 4.31 %9 %BS9 65.825 169.000 65 49.50 169 0.00 %10 %BS10 65.805 168.933 65 48.31 168 55.96 %11 %BS13 65.708 168.860 65 47.26 168 51.62 %12 %BS12 65.772 168.794 65 45.28 168 43.29 %14 %BS14 65.773 168.63 65 44.31 168 47.64 %13 %BS13 65.772 168.794 65 45.28 168 43.29 %14 %BS14 65.772 168.691 65 43.29 168 35.46 %16 %BS16 65.702 168.591 65 43.29 168 35.46 %16 %BS16 65.702 168.391 65 40.35 168 2.344 %19 %BS19 65.625 168.318 65 39.29 168 12.8 %17 %BS17 65.686 168.449 65 41.18 168 26.94 %18 %BS18 65.672 168.391 65 40.35 168 2.344 %19 %BS19 65.652 168.171 65 35.96 168 0.03 %22 %BS20 65.642 168.250 65 38.53 168 14.97 %21 %BS21 65.652 168.171 65 34.91 168 7.00 %24 %BS24 %*==== A3L 1ine * = -24 stations heading Southwest=northeast through mooring site A3 % Lat (N) Long (W) Lat (N) Long (W) Station % deg min deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1380 169.5362 66 3.2800 169 22.1700 %26 %AL2 66.1700 169.4223 66 10.5600 169 23.7550 %27 %AL3 66.1300 169.5362 66 13.9800 169 23.21700 %26 %AL2 66.1700 169.4223 66 10.5600 169 23.550 %27 %AL3 66.1190 169.3085 66 17.4000 169 23.500 %33 %AL6 66.2100 169.3085 66 12.8400 169 13.6800 %33 %AL6 66.2100 169.32516 66 13.9800 169 13.0500 %33 %AL6 66.2100 169.32516 66 13.9800 169 13.0500 %33 %AL6 66.2300 169.233 66 10.5000 169 23.7500 %33 %AL14 66.3300 169.233 66 10.5000 169 23.550 %33 %AL14 66.3300 169.233 66 10.5000 169 23.550 %33 %AL14 66.3300 169.233 66 10.5000 169 23.500 %33 %AL14 66.3300 169.233 66 10.5000 169 23.500 %33 %AL14 66.3300 169.233 66 10.5000 169 23.500 %33 %AL14 66.3300 169.233 66 10.5000 169 13.6300 %33 %AL14 66.3300 169.233 66 23.9200 168 %3.70</pre>	%	- 24 sta	ations just	north	of	the Be	ring St	trait		
<pre> deg min deg min Num Num Nume 65.980 169.511 65 58.81 169 38.56 %1 %BS1 65.945 169.498 65 56.71 169 34.24 %2 %BS2 65.945 169.498 65 56.71 169 29.87 %3 %BS3 65.945 169.498 65 56.75 169 25.52 %4 %BS4 65.910 169.352 65 55.65 169 25.52 %4 %BS4 65.802 169.280 65 53.55 169 16.77 %6 %BS6 65.825 169.20 65 53.55 169 16.77 %6 %BS6 65.880 169.214 65 52.78 169 12.83 %7 %BS7 65.881 169.024 65 51.72 169 8.49 %8 %BS9 65.841 169.072 65 50.47 169 4.31 %9 %BS9 65.825 168.000 65 49.50 169 0.00 %10 %BS10 65.805 168.933 65 48.31 168 55.96 %11 %BS11 65.781 168.860 65 47.26 168 51.62 %12 %BS12 65.772 168.794 65 46.33 168 47.64 %13 %BS13 65.781 168.663 65 47.26 168 39.80 %15 %BS15 65.721 168.794 65 44.35 168 39.80 %15 %BS15 65.721 168.521 65 43.29 168 31.28 %17 %BS17 65.668 168.449 65 41.18 168 26.94 %18 %BS18 65.672 168.391 65 43.32 168 31.28 %17 %BS17 65.665 168.138 65 39.29 168 19.09 %20 %BS20 65.642 168.149 65 41.18 168 26.94 %18 %BS18 65.675 168.318 65 39.29 168 19.09 %20 %BS21 65.655 168.177 65 37.48 168 10.63 %22 %BS22 65.599 168.161 65 35.96 168 9.66 %23 %BS23 65.652 168.177 65 37.48 168 10.63 %22 %BS22 65.659 168.177 65 37.48 168 10.63 %22 %BS22 65.599 168.161 65 35.96 168 9.66 %23 %BS23 65.170 169.4793 66 9.4200 169 32.7700 %26 %AL1 66.1700 169.5931 66 7.1400 169 35.5850 %27 %AL3 66.1700 169.4233 66 10.5600 169 25.3400 %28 %AL4 66.1950 169.3656 66 12.8400 169 18.5100 %30 %AL6 66.2500 169.9236 66 15.200 169 18.5100 %33 %AL4 66.3160 169.4233 66 10.8600 169 32.770 %33 %AL4 66.330 169.512 00 %33 %AL4 66.330 169.512 66 13.9800 169 32.5850 %27 %AL3 66.1700 169.4233 66 10.2600 169 25.3400 %28 %AL4 66.1950 169.3656 66 12.8400 169 32.5850 %27 %AL3 66.1700 169.4233 66 10.2600 169 32.5850 %27 %AL3 66.1700 169.4233 66 10.2600 169 32.5300 %27 %AL3 66.330 169.5216 66 13.9800 169 32.5850 %27 %AL3 66.330 169.5216 66 13.9800 169 32.5300 %28 %AL4 66.330 169.5316 66 2.2</pre>	%	Lat (N)	Long (W)	Lat (N)	Lon	q (W)	Stat	cion	
65.980 169.571 65 58.81 160 38.56 %1 %BS1 65.943 169.459 65 57.75 169 34.24 %2 %BS2 65.945 169.425 65 55.65 169 25.52 %4 %BS3 65.927 169.425 65 55.65 169 12.83 %7 %BS5 65.801 169.224 65 53.55 169 16.77 %6 %BS6 65.802 169.124 65 51.72 169 8.49 %BS10 65.825 169.007 65 50.47 169 4.31 %9 %BS10 65.825 168.933 65 48.31 168 55.96 %11 %BS11 65.788 168.80 65 44.35 168 39.80 %15 %BS15 65.712 168.721 65 43.29 168 39.424 %14 %BS14 65.722 168.931 65 43.29 168 31.88 %15 %555 65.625 168.318	00			dea m	in	deq	min	Num	Name	
65.963 169.571 65 57.75 169 34.24 %2 %BS3 65.945 169.498 65 56.56 169 29.87 %3 %BS3 65.945 169.426 55.56 169 25.52 %4 %BS4 65.801 169.214 65 53.55 169 16.77 %6 %BS6 65.801 169.214 65 51.72 169 8.49 %8 %BS3 65.811 169.000 65 49.50 169 0.00 %10 %BS10 65.825 168.900 65 47.26 168 51.62 %11 %BS11 65.772 168.794 65 46.33 168 47.64 %13 %BS14 65.721 168.591 65 41.29 168 31.28 %17 %BS17 65.621 168.391 65 49.29 168 1.90 %20 %BS20 65.721 168.591 65 32.92 168 1.91 %BS24 %BS24 65.622 168.116 <td></td> <td>65.980</td> <td>169.643</td> <td>65 58</td> <td>.81</td> <td>169</td> <td>38.56</td> <td>81</td> <td>%BS1</td> <td></td>		65.980	169.643	65 58	.81	169	38.56	81	%BS1	
65.945 169.498 65 56.71 169 29.87 %3 %BS1 65.927 169.425 65 55.65 169 25.52 %4 %BS4 65.921 169.280 65 53.55 169 16.77 %6 %BS5 65.821 169.142 65 51.72 169 8.49 %8 %BS7 65.825 169.072 65 50.47 169 4.31 %9 %BS10 65.825 168.933 65 48.31 168 55.62 %11 *BS10 65.772 168.791 65 45.28 168 39.80 %15 *BS15 65.772 168.591 65 41.28 168 39.80 %15 *BS17 65.662 168.491 65 41.28 168 16.4 *BS17 65.672 168.391 65 41.28 168 169.92 *BS20 65.652 168.117 65 37.92		65.963	169.571	65 57	.75	169	34.24	82	%BS2	
65.927 169.425 65 55.65 169 25.52 %4 %BS4 65.910 169.322 65 54.59 169 21.11 %5 %BS5 65.820 169.214 65 52.78 169 12.83 %7 %BS7 65.841 169.072 65 50.77 169 4.31 %9 %BS9 65.825 169.000 65 47.26 168 51.62 %11 %BS11 65.825 168.933 65 44.31 168 55.96 %11 %BS14 65.772 168.794 65 42.23 168 31.28 %17 %BS14 65.772 168.591 65 42.23 168 31.28 %17 %BS14 65.721 168.318 65 32.29 168 32.44 %19 %BS19 65.655 168.318 65 32.29 168 9.420 %BS22 65.655 168.117 65 32.29 168 9.64 %22 %BS24 %===== A31		65.945	169.498	65 56	.71	169	29.87	83	%BS3	
65.910 169.352 65 54.59 169 21.11 %5 %B35 65.892 169.280 65 53.55 169 16.77 %6 %B36 65.880 169.214 65 52.78 169 12.83 %7 %B57 65.862 169.142 65 51.72 169 %.49 %8 %B58 65.841 169.072 65 50.47 169 4.31 %9 %BS9 65.825 169.000 65 49.50 169 0.00 %10 %BS10 65.805 168.933 65 48.31 168 55.96 %11 %BS11 65.788 168.860 65 47.26 168 51.62 %12 %BS12 65.772 168.794 65 46.33 168 47.64 %13 %BS13 65.755 168.721 65 45.28 168 43.29 %14 %BS14 65.759 168.663 65 44.35 168 39.80 %15 %BS15 65.722 168.591 65 43.29 168 35.46 %16 %BS16 65.704 168.521 65 42.23 168 31.28 %17 %BS17 65.665 168.349 65 41.18 168 26.94 %18 %BS18 65.672 168.318 65 39.29 168 19.09 %20 %BS20 65.642 168.250 65 38.53 168 14.97 %21 %BS21 65.655 168.318 65 39.29 168 19.09 %20 %BS20 65.642 168.250 65 34.91 168 7.00 %24 %BS24 %*==== A3L line * - 24 stations heading Southwest-northeast through mooring site A3 % Lat (N) Long (W) Lat (N) Long (W) Station % deg min deg min Mum Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1570 169.4723 66 7.1400 169 32.1700 %26 %AL2 % *==== A3L line * - 24 stations heading Southwest-northeast through mooring site A3 % Lat (N) Long (W) Lat (N) Long (W) Station % deg min deg min Mum Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1570 169.4723 66 10.5600 169 28.7550 %27 %AL3 66.2140 169.3085 66 12.8400 169 18.5100 %30 %AL6 66.2300 169.2516 66 13.9800 169 18.5100 %30 %AL6 66.2300 169.2516 66 13.9800 169 18.5100 %30 %AL6 66.2300 169.0239 66 15.200 169 18.5100 %33 %AL9 66.2100 169.0239 66 12.8400 169 18.5100 %33 %AL9 66.220 169.1478 66 16.2600 169 8.2650 %33 %AL9 66.2300 169.0239 66 12.8400 169 18.5100 %32 %AL11 66.333 168.7515 66 22.0067 168 49.393 %AL14 66.333 168.7515 66 22.007 168 45.0875 %39 %AL13 66.3369 168.6078 66 22.007 168 45.0875 %39 %AL13 66.3391 168.6078 66 22.007 168 45.0875 %39 %AL13 66.4300 168.3244 66 22.0407 168 49.333 %		65.927	169.425	65 55	.65	169	25.52	84	%BS4	
65.892 169.280 65 53.55 169 16.77 %6 %836 65.800 169.214 65 52.78 169 12.83 %7 %BS7 65.861 169.142 65 51.72 169 8.49 %88 %858 65.811 169.072 65 50.47 169 0.00 %10 %BS10 65.825 169.000 65 49.50 169 0.00 %10 %BS10 65.788 168.933 65 43.1 168 51.62 %11 %BS11 65.771 168.794 65 45.28 168 43.29 %14 %BS14 65.772 168.521 65 42.23 168 31.28 %17 %BS17 65.642 168.449 65 41.18 168 20.44 %18 %BS14 65.655 168.318 65 37.29 168 14.97 %21 %BS21 65.642 168.177 65 37.48 168 10.63 %22 %BS24 %===== <td></td> <td>65.910</td> <td>169.352</td> <td>65 54</td> <td>.59</td> <td>169</td> <td>21.11</td> <td>%5</td> <td>%BS5</td> <td></td>		65.910	169.352	65 54	.59	169	21.11	%5	%BS5	
65.880 169.214 65 52.78 169 12.83 %7 %BS7 65.862 169.142 65 51.72 169 8.49 %8 %BS8 65.841 169.072 65 50.47 169 4.31 %9 %BS9 65.825 169.000 65 49.50 169 0.00 %10 %BS10 65.805 168.933 65 48.31 168 55.96 %11 %BS11 65.782 168.721 65 45.28 168 43.29 %14 %BS13 65.755 168.721 65 45.28 168 43.29 %14 %BS14 65.722 168.591 65 43.29 168 31.28 %17 %BS17 65.686 168.449 65 41.18 168 26.94 %18 %BS18 65.672 168.391 65 42.23 168 31.28 %17 %BS17 65.686 168.449 65 41.18 168 26.94 %18 %BS18 65.672 168.391 65 42.23 168 19.09 %20 %BS20 65.642 168.250 65 38.53 168 14.97 %21 %BS19 65.652 168.318 65 39.29 168 19.09 %20 %BS20 65.642 168.250 65 38.53 168 14.97 %21 %BS21 65.625 168.318 65 39.29 168 10.63 %22 %BS22 65.582 168.117 65 34.91 168 7.00 %24 %BS24 % *==== A3L line % - 24 stations heading Southwest-northeast through mooring site A3 % Lat (N) Long (W) Lat (N) Long (W) Station % deg min deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1570 169.4723 66 9.4200 169 28.7550 %27 %AL3 66.170 169.4723 66 11.700 169 28.7550 %27 %AL3 66.170 169.4793 66 9.4200 169 28.7550 %27 %AL3 66.170 169.4793 66 12.8400 169 18.5100 %30 %AL6 66.2300 169.2516 66 13.9400 169 18.5100 %30 %AL6 66.2300 169.2516 66 13.9400 169 18.5100 %30 %AL6 66.220 169.1737 66 15.1200 169 18.5100 %30 %AL6 66.220 169.1747 66 15.1200 169 18.5100 %31 %AL7 66.220 169.1947 66 15.1200 169 18.5100 %33 %AL9 66.220 169.1947 66 15.1200 169 18.5100 %33 %AL9 66.220 169.039 66 17.4000 169 8.2650 %33 %AL9 66.220 169.039 66 17.4000 169 8.2650 %33 %AL14 66.338 168.7515 66 21.8000 169 15.0950 %31 %AL7 66.320 169.0239 66 12.8000 169 15.0950 %31 %AL7 66.320 169.039 66 17.4000 169 4.8500 %34 %AL10 66.330 169.039 66 17.4000 169 4.8500 %34 %AL10 66.330 168.9570 66 19.6800 168 58.0200 %36 %AL12 66.331 168.6751 66 21.0933 168 49.393 %AL14 66.333 8168.7515 66 21.0933 168 49.393 %AL14 66.333 8168.7515 66 21.0933 168 49.393 %AL14 66.334 168.7676 66 29.000 168 45.0875 %39 %AL14 66.3351 168.6078 66 22.5076 18 40.7767 %40 %AL16 66.4300 168.3204		65.892	169.280	65 53	.55	169	16.77	%6	%BS6	
65.862 169.142 65 51.72 169 8.49 %8 %858 65.841 169.072 65 50.47 169 4.31 %9 %859 65.825 168.933 65 48.31 168 55.96 %11 %8510 65.805 168.933 65 48.31 168 55.96 %11 %8513 65.788 168.860 65 47.26 168 \$1.62 %12 %8513 65.771 168.721 65 45.28 168 33.98 %15 %8516 65.739 168.63 65 44.35 168 35.46 %16 %8517 65.72 168.391 65 40.35 168 31.28 %17 %8517 65.655 168.318 65 39.29 168 19.09 %20 %8520 65.651 168.117 65 35.96 168 14.97 %21 %8523 65.562 168.117 65 35.96 168 9.66 %23 %8523 65.579		65.880	169.214	65 52	.78	169	12.83	%7	%BS7	
65.841 169.072 65 50.47 169 4.31 \$9 \$BS9 65.825 169.000 65 49.50 169 0.00 \$10 \$BS10 65.825 168.933 65 48.31 168 55.66 \$11 \$10 \$10 \$10 65.772 168.794 65 46.33 168 47.64 \$13 \$12 \$12 \$13 \$16 65.772 168.63 65 44.35 168 39.80 \$15 \$18515 65.722 168.591 65 42.23 168 31.28 \$17 \$15 \$151 65.664 168.449 65 41.18 168 20.44 \$19 \$151 \$151 65.655 168.318 65 39.29 168 10.63 \$22 \$BS22 \$25 \$26 \$168 \$168 \$16.62 \$188 \$153 \$168 \$17 \$1852 \$168 \$168 \$16.62 \$188 \$155 \$152 \$1821 \$1555 \$1822 \$165 \$1831 \$168		65 862	169 142	65 51	72	169	8 49	%8	%BS8	
65.825 169.000 65 49.50 169 0.00 %10 %BS10 65.805 168.933 65 48.31 168 55.96 %11 %BS11 65.772 168.794 65 46.33 168 47.64 %13 %BS13 65.755 168.721 65 44.35 168 39.80 %15 %BS14 65.722 168.591 65 43.29 168 35.46 %16 %BS14 65.722 168.591 65 43.29 168 31.28 %17 %BS17 65.665 168.391 65 40.35 168 24.4 %19 %BS18 65.655 168.318 65 39.29 168 19.09 %20 %BS20 65.655 168.117 65 37.48 168 10.63 %22 %BS23 65.599 168.117 65 34.91 168 7.00 %24 %BS24 %===== A3L line % Max Max Max 66.1190 169.5931 <td></td> <td>65 841</td> <td>169 072</td> <td>65 50</td> <td>47</td> <td>169</td> <td>4 31</td> <td>8 Q</td> <td>%BS9</td> <td></td>		65 841	169 072	65 50	47	169	4 31	8 Q	%BS9	
65.805 168.933 65 48.31 168 55.960 \$11 \$BS11 65.788 168.860 65 47.26 168 51.62 \$12 \$BS12 65.772 168.794 65 46.33 168 47.64 \$13 \$BS13 65.755 168.721 65 44.35 168 39.80 \$15 \$BS16 65.739 168.663 65 44.32 168 31.28 \$17 \$BS16 65.721 168.521 65 42.23 168 23.44 \$19 \$BS19 65.655 168.318 65 39.29 168 19.09 \$20 \$BS22 65.651 168.177 65 37.48 168 10.63 \$22 \$BS23 65.582 168.117 65 34.91 168 7.00 \$24 \$BS24 \$*==== A3L 1ine \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$*==== A3L 1ine \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$		65 825	169 000	65 49	50	169	0 00	%10	%BS10	
65.788 168.860 65 47.26 168 51.62 \$12 \$BS12 65.772 168.794 65 46.33 168 47.64 \$13 \$BS13 65.755 168.721 65 45.28 168 32.9 \$14 \$BS15 65.739 168.663 65 44.35 168 32.9 \$12 \$17.7 \$BS16 65.722 168.521 65 42.23 168 35.46 \$16 \$BS16 65.721 168.321 65 40.35 168 23.44 \$19 \$BS19 65.655 168.318 65 30.29 168 10.63 \$22 \$BS21 65.652 168.177 65 37.48 168 10.63 \$22 \$BS23 65.525 168.117 65 34.91 168 7.00 \$24 \$BS24 *==== A31 1ne * 4 \$BS24 \$BS24 \$AL1 *=== A31 1on 66 7.1400 169 35.5850 \$25 \$AL1 <td></td> <td>65 805</td> <td>168 933</td> <td>65 48</td> <td>31</td> <td>168</td> <td>55 96</td> <td>%11</td> <td>%BS11</td> <td></td>		65 805	168 933	65 48	31	168	55 96	%11	%BS11	
65.772 168.794 65 46.33 168 47.64 %13 %BS13 65.775 168.721 65 45.28 168 32.29 %14 %BS15 65.739 168.663 65 44.35 168 39.80 %15 %BS15 65.721 168.521 65 42.23 168 31.28 %17 %BS17 65.672 168.391 65 40.35 168 23.44 %19 %BS19 65.655 168.318 65 39.29 168 19.09 %20 %BS21 65.655 168.177 65 37.48 168 10.63 %22 %BS23 65.552 168.177 65 34.91 168 7.00 %24 %BS24 %===== A3L 11me % 4 Mum Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1190 169.4793 66 7.1400 169 35.5850 %25 %AL1 66.119		65 788	168 860	65 47	26	168	51 62	%12	%BS12	
65.755 168.721 65 45.28 168 43.29 %14 %BS14 65.739 168.663 65 44.35 168 39.80 %15 %BS15 65.722 168.591 65 43.29 168 35.46 %16 %BS16 65.704 168.521 65 42.23 168 31.28 %17 %BS17 65.666 168.449 65 41.18 168 26.94 %18 %BS19 65.655 168.318 65 39.29 168 19.09 %20 %BS20 65.642 168.250 65 38.53 168 14.97 %21 %BS19 65.655 168.318 65 39.29 168 19.09 %20 %BS20 65.642 168.250 65 38.53 168 14.97 %21 %BS21 65.652 168.177 65 37.48 168 10.63 %22 %BS22 65.599 168.161 65 35.96 168 9.66 %23 %BS23 65.582 168.117 65 34.91 168 7.00 %24 %BS24 % *==== A3L line %		65.772	168.794	65 46	.33	168	47.64	%13	%BS13	
65.739 168.663 65 44.35 168 39.80 %15 %BS15 65.722 168.591 65 43.29 168 35.46 %16 %BS17 65.6704 168.521 65 42.23 168 31.28 %17 %BS17 65.664 168.449 65 41.18 168 23.44 %19 %BS19 65.655 168.318 65 39.29 168 19.09 %20 %BS20 65.652 168.177 65 37.48 168 10.63 %22 %BS21 65.652 168.117 65 34.91 168 7.00 %24 %BS23 65.559 168.117 65 34.91 168 7.00 %24 %BS24 %===== A3L line deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %27 %AL3 66.1190 169.5362 66 12.800 169 21.700 %26 %AL2 66.119		65 755	168 721	65 45	2.8	168	43 29	%14	%BS14	
65.722 168.591 65 43.29 168 35.46 %16 %BS16 65.704 168.521 65 42.23 168 31.28 %17 %BS17 65.686 168.449 65 41.18 168 26.94 %18 %BS19 65.672 168.318 65 39.29 168 19.09 %20 %BS20 65.655 168.18 65 37.48 168 14.97 %21 %BS22 65.552 168.161 65 35.96 168 9.66 %23 %BS23 65.582 168.117 65 34.91 168 7.00 %24 %BS24 % deg min deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1380 169.4223 66 0.5600 169 25.3400 %28 %AL4 66.1950 169.4793 66 9.25.3400 \$28 %AL4 66.12760 169.4223		65.739	168,663	65 44	.35	168	39.80	%15	%BS15	
65.704 168.521 65 42.23 168 31.28 %17 %BS17 65.666 168.449 65 41.18 168 23.44 %19 %BS19 65.672 168.391 65 40.35 168 23.44 %19 %BS20 65.655 168.381 65 39.29 168 19.09 %20 %BS20 65.625 168.177 65 37.48 168 10.63 %22 %BS23 65.525 168.117 65 34.91 168 7.00 %24 %BS24 % ===== A3L line % -24 station Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1190 169.5362 66 8.2800 169 32.7700 %26 %AL2 66.1170 169.4723 66 10.5600 169 25.3400 %28 %AL4 66.1260 169 38.510 %30 %AL5 66.2140 169.3085 66		65 722	168 591	65 43	29	168	35 46	%16	%BS16	
65.666 168.449 65 41.18 168 26.94 %18 %BS18 65.672 168.391 65 40.35 168 19.09 %20 %BS20 65.655 168.318 65 39.29 168 19.09 %20 %BS21 65.652 168.177 65 37.48 168 10.63 %22 %BS21 65.559 168.161 65 35.96 168 9.66 %23 %BS24 %===== A3L line % 22 %BS24 %BS24 %===== A3L line % Lat (N) Long (W) Station % Lat (N) Long (W) Lat (N) Long (W) Station % 66.1760 169.4793 66 7.1400 169 32.5750 %27 %AL3 66.1760 169.4223 66 10.5600 169 21.9250 %27 %AL3 66.1260 169.3085 66 12.8400 169 18.5100 %30 %AL6 66.2140 169.3085 66 12.8400 </td <td></td> <td>65.704</td> <td>168.521</td> <td>65 42</td> <td>.23</td> <td>168</td> <td>31.28</td> <td>%17</td> <td>%BS17</td> <td></td>		65.704	168.521	65 42	.23	168	31.28	%17	%BS17	
65.672 168.391 65 40.35 168 23.44 %19 %BS19 65.652 168.318 65 39.29 168 19.09 %20 %BS20 65.642 168.250 65 38.53 168 14.97 %21 %BS21 65.652 168.177 65 37.48 168 0.63 %22 %BS23 65.582 168.117 65 34.91 168 7.00 %24 %BS24 % ==== A3L line * - 24 station hume %		65.686	168.449	65 41	.18	168	26.94	%18	%BS18	
65.655 168.318 65 39.29 168 19.09 %20 %BS20 65.642 168.250 65 38.53 168 14.97 %21 %BS21 65.625 168.177 65 37.48 168 10.63 %22 %BS23 65.599 168.101 65 35.96 168 9.66 %23 %BS24 % = A3L 11ne % - 24 \$stations heading Southwest-northeast through mooring site A3 % Lat (N) Long (W) Lat (N) Long (W) Station % 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1570 169.4793 66 9.4200 169 25.750 %27 %AL3 66.1760 169.4223 66 10.5600 169 25.3400 %28 %AL4 66.2170 169.4223 66 12.8400 169 15.0950 %31 %AL7 66.2250 169.1378 66 12.8400 169		65.672	168.391	65 40	.35	168	23.44	%19	%BS19	
65.642 168.250 65 38.53 168 14.97 %21 %BS21 65.642 168.177 65 37.48 168 10.63 %22 %BS23 65.599 168.161 65 35.96 168 9.66 %23 %BS23 65.582 168.117 65 34.91 168 7.00 %24 %BS24 %===== A3L line deg min deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1190 169.5931 66 7.1400 169 32.1700 %26 %AL2 66.1570 169.4793 66 9.4200 169 28.7550 %27 %AL3 66.1760 169.4223 66 10.500 169 28.8AL4 66.2140 169.3085 66 12.8400 169 18.5100 %30 %AL5		65 655	168 318	65 39	29	168	19 09	\$20	%BS20	
65.625 168.177 65 37.48 168 10.63 %22 %BS22 65.599 168.161 65 35.96 168 9.66 %23 %BS23 65.582 168.117 65 34.91 168 7.00 %24 %BS24 % ===== A3L line % Kation % = 24 stations heading Southwest-northeast through mooring site A3 % Lat (N) Long (W) Lat (N) Long (W) Station % deg min deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1380 169.4223 66 10.5600 169 28.7550 %27 %AL3 66.1760 169.4223 66 10.5600 169 28.3400 %28 %AL4 66.2330 169.2516 66 13.9800 169 15.9500 %31 %AL7 66.2210 169.1947 66 15.1200		65.642	168.250	65 38	.53	168	14.97	\$21	%BS21	
65.599 168.161 65 35.96 168 9.66 %23 %BS23 65.582 168.117 65 34.91 168 7.00 %24 %BS24 % ===== A3L line % ==== A3L ine % Lat (N) Long (W) Lat (N) Long (W) Station % deg min deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1380 169.5931 66 7.1400 169 32.1700 %26 %AL2 66.1760 169.4793 66 9.4200 169 28.7550 %27 %AL3 66.1760 169.4223 66 10.5600 169 25.3400 %28 %AL4 66.1950 169.3085 66 12.8400 169 18.5100 %30 %AL6 66.22100 169.1947 66 15.1200 169 11.6800 %32 %AL8 66.2710 169.1947 66<		65.625	168.177	65 37	.48	168	10.63	822	%BS22	
		65.599	168.161	65 35	.96	168	9.66	823	%BS23	
<pre>% %===== A3L line % - 24 stations heading Southwest-northeast through mooring site A3 % Lat (N) Long (W) Lat (N) Long (W) Station %</pre>		65.582	168.117	65 34	.91	168	7.00	824	%BS24	
<pre>%===== A3L line % - 24 stations heading Southwest-northeast through mooring site A3 % Lat (N) Long (W) Lat (N) Long (W) Station % deg min deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1380 169.5362 66 8.2800 169 32.1700 %26 %AL2 66.1570 169.4793 66 9.4200 169 28.7550 %27 %AL3 66.1760 169.4223 66 10.5600 169 25.3400 %28 %AL4 66.1950 169.3654 66 11.7000 169 21.9250 %29 %AL5 66.2140 169.3085 66 12.8400 169 18.5100 %30 %AL6 66.2300 169.2516 66 13.9800 169 15.0950 %31 %AL7 66.2520 169.1947 66 15.1200 169 11.6800 %32 %AL8 66.2710 169.1378 66 16.2600 169 8.2650 %33 %AL9 66.2900 169.0808 66 17.4000 169 4.8500 %34 %AL10 66.3280 168.9670 66 19.6800 168 58.0200 %36 %AL12 66.3398 168.8952 66 20.3867 168 53.7092 %37 %AL13 66.3516 168.8233 66 21.0933 168 49.3983 %38 %AL14 66.3633 168.7515 66 21.8000 168 45.0875 %39 %AL15 66.3751 168.6796 66 22.5067 168 40.7767 %40 %AL16 66.3869 168.6078 66 23.2133 168 49.3983 %38 %AL14 66.3639 168.6796 66 23.2133 168 49.3983 %38 %AL14 66.3987 168.5359 66 23.9200 168 22.1550 %42 %AL18 66.4104 168.4641 66 24.6267 168 27.8442 %43 %AL19 66.4222 168.3922 66 23.9200 168 27.8442 %43 %AL19 66.4222 168.3922 66 25.3333 168 23.5333 %44 %AL20 66.4340 168.3204 66 26.0400 168 19.2225 %45 %AL21 66.4340 168.3204 66 26.0400 168 19.2225 %45 %AL21 66.4458 168.2485 66 26.7467 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23</pre>	%									
 24 stations heading Southwest-northeast through mooring site A3 Lat (N) Long (W) Lat (N) Long (W) Station deg min deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1380 169.5362 66 8.2800 169 32.1700 %26 %AL2 66.1760 169.4793 66 9.4200 169 28.7550 %27 %AL3 66.1760 169.4223 66 10.5600 169 25.3400 %28 %AL4 66.1950 169.3654 66 11.7000 169 21.9250 %29 %AL5 66.2140 169.3085 66 12.8400 169 18.5100 %30 %AL6 66.2300 169.2516 66 13.9800 169 15.0950 %31 %AL7 66.2520 169.1947 66 15.1200 169 11.6800 %32 %AL8 66.2710 169.1378 66 16.2600 169 8.2650 %33 %AL9 66.3090 169.0239 66 18.5400 169 1.4350 %35 %AL11 66.3280 168.9670 66 19.6800 168 58.0200 %36 %AL12 66.3516 168.8233 66 21.0933 168 49.3983 %38 %AL14 66.3633 168.7515 66 21.8000 168 45.0875 %39 %AL15 66.3751 168.6796 66 23.2103 168 32.1550 %42 %AL8 66.369 168.6078 66 23.2133 168 36.4658 %41 %AL17 66.3987 168.5359 66 23.2200 168 32.1550 %42 %AL18 66.4104 168.4641 66 24.6267 168 27.8442 %43 %AL19 66.4222 168.3922 66 25.3333 168 23.5333 %44 %AL20 66.4340 168.3204 66 26.0400 168 19.2225 %45 %AL21 66.4458 168.2485 66 26.7467 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 	8:	==== A.	3L line							
Lat (N) Long (W) Lat (N) Long (W) Station % deg min deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1380 169.5362 66 8.2800 169 32.1700 %26 %AL2 66.1570 169.4793 66 9.4200 169 28.7550 %27 %AL3 66.1760 169.4793 66 10.5600 169 21.9250 %29 %AL4 66.1950 169.3654 66 11.7000 169 18.5100 %30 %AL6 66.2330 169.2516 66 13.9800 169 11.6800 %32 %AL8 66.2710 169.1378 66 16.2600 169 8.2650 %33 %AL9 66.2900 169.0808 66 17.4000 169 1.4350 %35 %AL11 66.3280 168.9670 66 19.6800	%	- 24 sta	ations head	ling So	uth	west-no	rtheast	t through	mooring	site A3
deg min deg min Num Name 66.1190 169.5931 66 7.1400 169 35.5850 %25 %AL1 66.1380 169.5362 66 8.2800 169 32.1700 %26 %AL2 66.1570 169.4793 66 9.4200 169 28.7550 %27 %AL3 66.1760 169.4223 66 10.5600 169 25.3400 %28 %AL4 66.1950 169.3654 66 11.7000 169 18.5100 %30 %AL6 66.2330 169.2516 66 13.9800 169 15.0950 %31 %AL7 66.2520 169.1947 66 15.1200 169 11.6800 %32 %AL8 66.2710 169.0808 66 17.4000 169 4.8500 %34 %AL10 66.3090 169.0239 66 18.5400 168 58.0200 %36 %AL12 66.3751 168.89670	%	Lat (N) Long (W)	L	at	(N)	Long	(W)	Stat	ion
66.1190169.5931667.140016935.5850%25%AL166.1380169.5362668.280016932.1700%26%AL266.1570169.4793669.420016928.7550%27%AL366.1760169.42236610.560016925.3400%28%AL466.1950169.36546611.700016921.9250%29%AL566.2140169.30856612.840016918.5100%30%AL666.2330169.25166613.980016915.0950%31%AL766.2520169.19476615.120016911.6800%32%AL866.2710169.13786616.26001698.2650%33%AL966.2900169.08086617.40001691.4350%35%AL1166.3090169.02396618.540016858.0200%36%AL1266.3398168.89526621.093316849.3983%38%AL1466.3633168.75156621.800016845.0875%39%AL1566.3751168.67966622.506716840.7767%40%AL1666.3869168.60786623.920016832.1550%42%AL1866.4104168.46416624.626716827.8442%43%AL1966.4222168.39226625.333316823.5	%			deg		min	deg	min	Num	Name
66.1380 169.5362 66 8.2800 169 32.1700 $\$26$ $\$AL2$ 66.1570 169.4793 66 9.4200 169 28.7550 $\$27$ $\$AL3$ 66.1760 169.4223 66 10.5600 169 25.3400 $\$28$ $\$AL4$ 66.1950 169.3654 66 11.7000 169 21.9250 $\$29$ $\$AL5$ 66.2140 169.3085 66 12.8400 169 18.5100 $\$30$ $\$AL6$ 66.2330 169.2516 66 13.9800 169 15.0950 $\$31$ $\$AL7$ 66.2520 169.1947 66 15.1200 169 11.6800 $\$32$ $\$AL8$ 66.2710 169.1378 66 16.2600 169 8.2650 $\$33$ $\$AL9$ 66.2900 169.0808 66 17.4000 169 4.8500 $\$34$ $\$AL10$ 66.3090 169.0239 66 18.5400 168 58.0200 $\$36$ $\alephAL12$ 66.3398 168.9670 66 21.0933 168 49.3983 $\$38$ $\alephAL14$ 66.3516 168.8233 66 21.0933 168 49.3983 $\$38$ $\alephAL14$ 66.3633 168.7515 66 23.2133 168 40.7767 $\$40$ $\$AL16$ 66.4104 168.6078 66 23.2133 168 23.5333 $\$44$ $8AL17$ 66.4222 168.3924 66 24.6267 168 27.8442 <td></td> <td>66.1190</td> <td>0 169.5931</td> <td>L 66</td> <td></td> <td>7.1400</td> <td>169</td> <td>35.5850</td> <td>%25</td> <td>%AL1</td>		66.1190	0 169.5931	L 66		7.1400	169	35.5850	%25	%AL1
66.1570 169.4793 66 9.4200 169 28.7550 $$27$ $$AL3$ 66.1760 169.4223 66 10.5600 169 25.3400 $$28$ $$AL4$ 66.1950 169.3654 66 11.7000 169 21.9250 $$29$ $$AL5$ 66.2140 169.3085 66 12.8400 169 18.5100 $$30$ $$AL6$ 66.2330 169.2516 66 13.9800 169 15.0950 $$31$ $$AL7$ 66.2520 169.1947 66 15.1200 169 11.6800 $$32$ $$AL8$ 66.2710 169.1378 66 16.2600 169 8.2650 $$33$ $$AL9$ 66.2900 169.0808 66 17.4000 169 4.8500 $$34$ $$AL10$ 66.3090 169.0239 66 18.5400 169 1.4350 $$35$ $$AL11$ 66.3280 168.9670 66 19.6800 168 58.0200 $$36$ $$AL12$ 66.3398 168.8952 66 21.0933 168 49.3983 $$38$ $$AL14$ 66.3633 168.7515 66 21.0933 168 49.3983 $$38$ $$AL14$ 66.3669 168.6078 66 23.2133 168 40.7767 $$40$ $$AL15$ 66.3751 168.6078 66 23.9200 168 32.1550 $$42$ $$AL16$ 66.4104 168.4641 66 24.6267 168 27.8442 <td></td> <td>66.1380</td> <td>0 169.5362</td> <td>2 66</td> <td></td> <td>8.2800</td> <td>169</td> <td>32.1700</td> <td>%26</td> <td>%AL2</td>		66.1380	0 169.5362	2 66		8.2800	169	32.1700	%26	%AL2
66.1760 169.4223 66 10.5600 169 25.3400 $$28$ $$AL4$ 66.1950 169.3654 66 11.7000 169 21.9250 $$29$ $$AL5$ 66.2140 169.3085 66 12.8400 169 18.5100 $$30$ $$AL6$ 66.2330 169.2516 66 13.9800 169 15.0950 $$31$ $$AL7$ 66.2520 169.1947 66 15.1200 169 11.6800 $$32$ $$AL8$ 66.2710 169.1378 66 16.2600 169 8.2650 $$33$ $$AL9$ 66.2900 169.0808 66 17.4000 169 4.8500 $$34$ $$AL10$ 66.3090 169.0239 66 18.5400 169 1.4350 $$35$ $$AL11$ 66.3280 168.9670 66 19.6800 168 58.0200 $$36$ $$AL12$ 66.3398 168.8952 66 20.3867 168 53.7092 $$37$ $$AL13$ 66.3516 168.8233 66 21.0933 168 49.3983 $$38$ $$AL14$ 66.3633 168.7515 66 22.5067 168 40.7767 $$40$ $$AL16$ 66.3869 168.6078 66 23.2133 168 36.4658 $$41$ $$AL17$ 66.3987 168.3924 66 23.9200 168 32.1550 $$42$ $$AL18$ 66.4104 168.4641 66 24.6267 168 23.5333 <		66.1570	0 169.4793	3 66		9.4200	169	28.7550	827	%AL3
66.1950 169.3654 66 11.7000 169 21.9250 $$29$ $$AL5$ 66.2140 169.3085 66 12.8400 169 18.5100 $$30$ $$AL6$ 66.2330 169.2516 66 13.9800 169 15.0950 $$31$ $$AL7$ 66.2520 169.1947 66 15.1200 169 11.6800 $$32$ $$AL8$ 66.2710 169.1378 66 16.2600 169 8.2650 $$33$ $$AL9$ 66.2900 169.0808 66 17.4000 169 4.8500 $$34$ $$AL10$ 66.3090 169.0239 66 18.5400 169 1.4350 $$34$ $$AL10$ 66.3280 168.9670 66 19.6800 168 58.0200 $$36$ $$AL12$ 66.3398 168.8952 66 20.3867 168 53.7092 $$37$ $$AL13$ 66.3516 168.8233 66 21.0933 168 49.3983 $$38$ $$AL14$ 66.3633 168.7515 66 21.8000 168 45.0875 $$39$ $$AL15$ 66.3751 168.6078 66 23.2133 168 36.4658 $$41$ $$AL17$ 66.3987 168.3026 66 23.9200 168 32.1550 $$42$ $$AL18$ 66.4104 168.3204 66 24.6267 168 23.5333 $$44$ $$AL20$ 66.4340 168.3204 66 26.0400 168 19.2225		66.1760	0 169.4223	8 66	1	0.5600	169	25.3400	828	%AL4
66.2140 169.3085 66 12.8400 169 18.5100 $\$30$ $\$AL6$ 66.2330 169.2516 66 13.9800 169 15.0950 $\$31$ $\$AL7$ 66.2520 169.1947 66 15.1200 169 11.6800 $\$32$ $\$AL8$ 66.2710 169.1378 66 16.2600 169 8.2650 $\$33$ $\$AL9$ 66.2900 169.0808 66 17.4000 169 4.8500 $\$34$ $\$AL10$ 66.3090 169.0239 66 18.5400 169 1.4350 $\$35$ $\$AL11$ 66.3280 168.9670 66 19.6800 168 58.0200 $\$36$ $\alephAL12$ 66.3398 168.8952 66 20.3867 168 53.7092 $\$37$ $\alephAL13$ 66.3516 168.8233 66 21.0933 168 49.3983 $\$38$ $\alephAL14$ 66.3633 168.7515 66 21.8000 168 45.0875 $\$39$ $\alephAL15$ 66.3751 168.6796 66 22.5067 168 40.7767 $\$40$ $\$AL16$ 66.3869 168.6078 66 23.2133 168 36.4658 $\$41$ $\$AL17$ 66.3987 168.5359 66 23.9200 168 32.1550 $\$42$ $\$AL18$ 66.4104 168.3204 66 26.0400 168 19.2225 $\$45$ $\$AL20$ 66.4458 168.2485 66 26.7467 168 14.9117		66.1950	0 169.3654	1 66	1	1.7000	169	21.9250	829	%AL5
66.2330169.25166613.980016915.0950%31%AL766.2520169.19476615.120016911.6800%32%AL866.2710169.13786616.26001698.2650%33%AL966.2900169.08086617.40001694.8500%34%AL1066.3090169.02396618.54001691.4350%35%AL1166.3280168.96706619.680016858.0200%36%AL1266.3398168.89526620.386716853.7092%37%AL1366.3516168.82336621.093316849.3983%38%AL1466.3633168.75156621.800016845.0875%39%AL1566.3751168.60786623.213316836.4658%41%AL1766.3987168.53596623.920016832.1550%42%AL1866.4104168.46416624.626716827.8442%43%AL1966.4222168.39226625.333316823.5333%44%AL2066.4340168.24856626.746716814.9117%46%AL2266.4458168.24856626.746716814.9117%46%AL2266.4576168.17676627.453316810.6008%47%AL2366.469316816486628.1600		66.2140	0 169.3085	5 66	1	2.8400	169	18.5100	830	%AL6
66.2520169.19476615.120016911.6800%32%AL866.2710169.13786616.26001698.2650%33%AL966.2900169.08086617.40001694.8500%34%AL1066.3090169.02396618.54001691.4350%35%AL1166.3280168.96706619.680016858.0200%36%AL1266.3398168.89526620.386716853.7092%37%AL1366.3516168.82336621.093316849.3983%38%AL1466.3633168.75156621.800016845.0875%39%AL1566.3751168.67966622.506716840.7767%40%AL1666.3869168.60786623.213316836.4658%41%AL1766.3987168.53596623.920016832.1550%42%AL1866.4104168.46416624.626716827.8442%43%AL1966.4222168.39226625.333316823.5333%44%AL2066.4458168.24856626.746716814.9117%46%AL2266.4576168.17676627.453316810.6008%47%AL2366469316810.486628160016862900%48		66.2330	0 169.2516	66	1	3.9800	169	15.0950	%31	%AL7
66.2710169.13786616.26001698.2650\$33\$AL966.2900169.08086617.40001694.8500\$34\$AL1066.3090169.02396618.54001691.4350\$35\$AL1166.3280168.96706619.680016858.0200\$36\$AL1266.3398168.89526620.386716853.7092\$37\$AL1366.3516168.82336621.093316849.3983\$38\$AL1466.3633168.75156621.800016845.0875\$39\$AL1566.3751168.67966622.506716840.7767\$40\$AL1666.3869168.60786623.213316836.4658\$41\$AL1766.3987168.53596623.920016832.1550\$42\$AL1866.4104168.46416624.626716827.8442\$43\$AL1966.4222168.39226625.333316823.5333\$44\$AL2066.4458168.24856626.746716814.9117\$46\$AL2266.4576168.17676627.453316810.6008\$47\$AL2366469316810.486628.160016862900\$48\$AL24		66.2520	0 169.194	/ 66	1	5.1200	169	11.6800	%32	%AL8
66.2900169.08086617.40001694.8500%34%AL1066.3090169.02396618.54001691.4350%35%AL1166.3280168.96706619.680016858.0200%36%AL1266.3398168.89526620.386716853.7092%37%AL1366.3516168.82336621.093316849.3983%38%AL1466.3633168.75156621.800016845.0875%39%AL1566.3751168.67966622.506716840.7767%40%AL1666.3869168.60786623.213316836.4658%41%AL1766.3987168.53596623.920016832.1550%42%AL1866.4104168.46416624.626716827.8442%43%AL2066.4340168.32046626.040016819.2225%45%AL2166.4458168.17676627.453316810.6008%47%AL2366.4576168.17676627.453316810.6008%47%AL2366.469316810.486628160016862900%48%AL24		66.2710	0 169.1378	3 66	1	6.2600	169	8.2650	\$33	%AL9
66.3090169.02396618.54001691.4350%35%AL1166.3280168.96706619.680016858.0200%36%AL1266.3398168.89526620.386716853.7092%37%AL1366.3516168.82336621.093316849.3983%38%AL1466.3633168.75156621.800016845.0875%39%AL1566.3751168.67966622.506716840.7767%40%AL1666.3869168.60786623.213316836.4658%41%AL1766.3987168.53596623.920016832.1550%42%AL1866.4104168.46416624.626716827.8442%43%AL1966.4222168.39226625.333316823.5333%44%AL2066.4458168.24856626.746716814.9117%46%AL2266.4576168.17676627.453316810.6008%47%AL2366469316810.486628.160016862900%48%AL24		66.2900	0 169.0808	3 66	1	7.4000	169	4.8500	%34	%AL10
66.3280 168.9670 66 19.6800 168 58.0200 \$36 \$AL12 66.3398 168.8952 66 20.3867 168 53.7092 \$37 \$AL13 66.3516 168.8233 66 21.0933 168 49.3983 \$38 \$AL14 66.3633 168.7515 66 21.8000 168 45.0875 \$39 \$AL15 66.3751 168.6796 66 22.5067 168 40.7767 \$40 \$AL16 66.3869 168.6078 66 23.2133 168 36.4658 \$41 \$AL17 66.3987 168.5359 66 23.9200 168 32.1550 \$42 \$AL18 66.4104 168.4641 66 24.6267 168 27.8442 \$43 \$AL19 66.4222 168.3922 66 25.3333 168 23.5333 \$44 \$AL20 66.4340 168.3204 66 26.0400 168 19.2225 \$45 \$AL21 66.4458 168.1767 66 27.4533 168 10.6008		66.3090	0 169.0239	66	1	8.5400	169	1.4350	\$35	%AL11
66.3398 168.8952 66 20.3867 168 53.7092 %37 %AL13 66.3516 168.8233 66 21.0933 168 49.3983 %38 %AL14 66.3633 168.7515 66 21.8000 168 45.0875 %39 %AL15 66.3751 168.6796 66 22.5067 168 40.7767 %40 %AL16 66.3869 168.6078 66 23.2133 168 36.4658 %41 %AL17 66.3987 168.5359 66 23.9200 168 32.1550 %42 %AL18 66.4104 168.4641 66 24.6267 168 27.8442 %43 %AL19 66.4222 168.3922 66 25.3333 168 23.5333 %44 %AL20 66.4340 168.3204 66 26.0400 168 19.2225 %45 %AL21 66.4458 168.2485 66 26.7467 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 10.6008		66.3280	168.9670) 66	1	9.6800	168	58.0200	\$36	%AL12
66.3516 168.8233 66 21.0933 168 49.3983 %38 %AL14 66.3633 168.7515 66 21.8000 168 45.0875 %39 %AL15 66.3751 168.6796 66 22.5067 168 40.7767 %40 %AL16 66.3869 168.6078 66 23.2133 168 36.4658 %41 %AL17 66.3987 168.5359 66 23.9200 168 32.1550 %42 %AL18 66.4104 168.4641 66 24.6267 168 27.8442 %43 %AL19 66.4222 168.3922 66 25.3333 168 23.5333 %44 %AL20 66.4340 168.3204 66 26.0400 168 19.2225 %45 %AL21 66.4458 168.2485 66 26.7467 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 66.4693 168 1048 66 28 1600 168 <td></td> <td>66.3398</td> <td>8 168.8952</td> <td>2 66</td> <td>2</td> <td>0.3867</td> <td>168</td> <td>53.7092</td> <td>\$37</td> <td>%AL13</td>		66.3398	8 168.8952	2 66	2	0.3867	168	53.7092	\$37	%AL13
66.3633 168.7515 66 21.8000 168 45.0875 %39 %AL15 66.3751 168.6796 66 22.5067 168 40.7767 %40 %AL16 66.3869 168.6078 66 23.2133 168 36.4658 %41 %AL17 66.3987 168.5359 66 23.9200 168 32.1550 %42 %AL18 66.4104 168.4641 66 24.6267 168 27.8442 %43 %AL19 66.4222 168.3922 66 25.3333 168 23.5333 %44 %AL20 66.4340 168.3204 66 26.0400 168 19.2225 %45 %AL12 66.4458 168.2485 66 26.7467 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 66 4693 168 1048 66 28.1600 168 6 2900 %48 %AL24		66.3510	6 168.8233	3 66	2	1.0933	168	49.3983	%38	%AL14
66.3751 168.6796 66 22.5067 168 40.7767 %40 %AL16 66.3869 168.6078 66 23.2133 168 36.4658 %41 %AL17 66.3987 168.5359 66 23.9200 168 32.1550 %42 %AL18 66.4104 168.4641 66 24.6267 168 27.8442 %43 %AL19 66.4222 168.3922 66 25.3333 168 23.5333 %44 %AL20 66.4340 168.3204 66 26.0400 168 19.2225 %45 %AL21 66.4458 168.2485 66 26.7467 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 66 4693 168 1048 66 28 1600 168 6 2900 %48 %AL24		66.363	3 168.7515	5 66	2	1.8000	168	45.0875	\$39	%AL15
66.3869 168.6078 66 23.2133 168 36.4658 \$41 \$AL17 66.3987 168.5359 66 23.9200 168 32.1550 \$42 \$AL18 66.4104 168.4641 66 24.6267 168 27.8442 \$43 \$AL19 66.4222 168.3922 66 25.3333 168 23.5333 \$44 \$AL20 66.4340 168.3204 66 26.0400 168 19.2225 \$45 \$AL21 66.4458 168.2485 66 26.7467 168 14.9117 \$46 \$AL22 66.4576 168.1767 66 27.4533 168 10.6008 \$47 \$AL23 66 4693 168 1048 66 28 1600 168 6 2900 \$48 \$AL24		66.375	1 168.6796	b 66	2	2.5067	168	40.7767	840	%AL16
66.3987 168.5359 66 23.9200 168 32.1550 %42 %AL18 66.4104 168.4641 66 24.6267 168 27.8442 %43 %AL19 66.4222 168.3922 66 25.3333 168 23.5333 %44 %AL20 66.4340 168.3204 66 26.0400 168 19.2225 %45 %AL21 66.4458 168.2485 66 26.7467 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 66 4693 168 1048 66 28 1600 168 6 2900 %48 %AL24		66.3869	9 168.6078	5 66	2	3.2133	168 160	30.4658	₹4⊥ ° 40	%AL17
66.4104 168.4641 66 24.6267 168 27.8442 \$43 \$AL19 66.4222 168.3922 66 25.3333 168 23.5333 \$44 \$AL20 66.4340 168.3204 66 26.0400 168 19.2225 \$45 \$AL21 66.4458 168.2485 66 26.7467 168 14.9117 \$46 \$AL22 66.4576 168.1767 66 27.4533 168 10.6008 \$47 \$AL23 66 4693 168 1048 66 28 1600 168 6 2900 \$48 \$AL24		66.398	/ 168.5359	66	2	3.9200	168 160	32.1550	₹42 ¢42	%ALl8
60.4222 108.3922 60 25.3333 168 23.5333 %44 %AL20 66.4340 168.3204 66 26.0400 168 19.2225 %45 %AL21 66.4458 168.2485 66 26.7467 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 66 4693 168 1048 66 28 1600 168 6 2900 %48 %AL24		66.4104	4 168.464	L 66	2	4.6267	168	27.8442	₹43 °.44	%AL19 ®⊅t 20
60.4340 108.3204 60 20.0400 168 19.2225 %45 %AL21 66.4458 168.2485 66 26.7467 168 14.9117 %46 %AL22 66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 66 4693 168 1048 66 28 1600 168 6 2900 %48 %AL23		66 4222	4 168.3922	4 66 1 66	2	5.3333	160	23.5333 10 2225	₹44 ≪⊿г	KALZU ©at 01
66.4576 168.1767 66 27.4533 168 10.6008 %47 %AL23 66 4693 168 1048 66 28 1600 168 6 2900 %48 %AL24		66 11-0	U 160.3204	± 00	2	0.0400 6 7/67	160 160	17.2225	640 916	⊚AL⊿⊥ ©⊼⊺ ЭЭ
66 4693 168 1048 66 28 1600 168 6 2900 \$48 \$AL23		66 157	5 160 1765		⊿ 2	0./40/ 7 /E22	160	10 6000	540 917	ъдыдд Дат оо
		66 4697	3 168 1049	, 00 3 66	∠ 2	8 1600	168	6 2900	∿±/ %48	∿л⊔∠э %дт.24

RUSALCA 2009 LEG 1 SCHEMATICS OF MOORING RECOVERIES

= in the eastern channel of the Bering Strait

= in the western channel of the Bering Strait

= at the climate site, ~ 60km north of the Strait

RUSALCA 2009 LEG 1 SCHEMATICS OF MOORING DEPLOYMENTS

= in the eastern channel of the Bering Strait

RUSALCA 2009 LEG 1 RECOVERY PHOTOS

Woodgate 2009 RUSALCA Leg 1 Khromov Mooring report

RUSALCA 2009 LEG 1 RECOVERY PHOTOS (continued)

RUSALCA 2009 LEG 1 RECOVERY PHOTOS (continued)

Woodgate 2009 RUSALCA Leg 1 Khromov Mooring report

RUSALCA 2009 LEG 1 RECOVERY PHOTOS (continued)

RUSALCA 2009 PRELIMINARY ADCP RESULTS

RUSALCA 2009 PRELIMINARY SEACAT RESULTS

(A11-08, A12-08, A13-08 data not included.)

RUSALCA 2009 PRELIMINARY SEACAT RESULTS (continued)

Bering Strait 2008-2009 SBE A3(blue) A2(red) A4R(magenta)A4(yellow) A2W(cyan) Prelim (WoodgateC

(A11-08, A12-08, A13-08 data not included.)

RUSALCA 2009 PRELIMINARY ISCAT RESULTS

(A11-08 data not included.)

RUSALCA 2009 PRELIMINARY ISCAT RESULTS (continued)

All recovered Microcat (within the top iscat float) data

(A11-08 data not included.)

(A11-08 data not included.)

RUSALCA 2009 LEG 1 RUSSIAN DOCUMENTS FOR TRANSFER OF 2008-2009 BERING STRAIT MOORING DATA (from A11-08, A12-08 and A13-08), AND FOR 2009 MOORING DEPLOYMENTS (A11-09, A12-09 and A13-09)

АКТ

передачи первичных данных измерений с приборов, установленных на американских автономных буйковых станциях А1-1-08, А1-2-08, А1-3-08 в территориальном море Российской Федерации в Беринговом проливе в период с 9 октября 2008 г. по 25 августа 2009 г.

«29» августа 2009 г.

Берингов пролив

В Соответствии с Разрешением Федерального агентства по науке и инновациям от 26 июня 2009 года № 72 заявителем морских научных исследований – ОАО «ГНИНГИ» – на борту НИС «Профессор Хромов» был произведен съем информации на CD с иностранных приборов как указано ниже:

АБС А1-1-08

1) Акустический доплеровский профилограф течений ADCP «Sentinel», модель WHS300-I, с/н 3302BT.

2) Датчик проводимости и температуры SBE-37SM MicroCAT (с/н 4600).

3) Устройство записи данных ISCAT Logger (с/н 22).

АБС А1-2-08

1) Датчик нитратов Satlantic's ISUS, с/н 124 – датчик неисправен с момента постановки, данные не получены.

2) СТД-зонд SBE-16plus, с/н 4973 с комбинированным датчиком ECO Combination Meter, с/н FLNTUS-489.

4) Акустический измеритель течения RCM9 MKII, с/н 108.

АБС A1-3-08

1) Датчик проводимости-температуры SBE-37SMP MicroCAT, с/н 1429.

2) Акустический измеритель течения RCM9 MKII (с/н 107).

Файлы данных скопированы на носители информации ОАО «ГНИНГИ»:

1). A1108_3302.000

2). A1108_3302post.txt

3). A1108_simlogger22.dat

4). A1108_4600.asc

5). A1208_RCM108.asc

6). A1208_4973.hex

7). A1208_4973.pre.cnv

8). RCM9 LW SN 108.pdf

9). A1308_1429.asc

10). A1308_RCM107.asc

11). RCM9 LW SN 107.pdf

Данные скопированы в пяти экземплярах. После копирования информации первичные данные удалены из модулей памяти приборов и с компьютеров, использованных для съема и передачи данных.

Начальник экспедиции	P P-	
	Aparany	В.Бахмутов
NOAA oversight	JUL Dec	
	Kathlen Name	K.Crane
Представитель компани	и «Групия Альянс»	
	Alcupateni	А.Островский
RUSALCA Coordinator	212220	
	- angen and a	T.Whitledge
Chief Scientist		
	All A Write.	R.Woodgate
Представитель ААНИИ	- 1	
	Dour-	Е Бондарева

АКТ

постановки автономной буйковой станции АБС-1 (А1-1-09)

«<u>29</u>» августа 2009 г.

Берингов пролив

В Соответствии с Разрешением Федерального агентства по науке и инновациям от 26 июня 2009 года № 72, заявитель морских научных исследований – ОАО «ГНИНГИ» – с борта НИС «Профессор Хромов» установил автономную буйковую станцию АБС-1 (А1-1-09) в следующей комплектации:

1) Акустический доплеровский профилограф течений ADCP «Sentinel» модель WHS300-I, серийный номер 11698;

2) Датчик проводимости-температуры «SBE-37SM MicroCAT» (серийный номер 5361);

3) Система измерений проводимости, температуры, давления с возможностью уклонения от воздействия льда ISCAT, в которую входят датчик измерения проводимости-температуры SBE 37-IM (серийный номер 7110), индуктивное соединительное устройство SBE Inductive Cable Coupler, модем SBE ICC и записывающее устройство ISCAT Logger (серийный номер 05);

4) Гидроакустический ответчик-размыкатель модель 8242XS (серийный номер 31400).

Дата постановки (МСК): 28 августа 2009 года.

Время постановки (МСК): 02.23.

Координаты постановки: 65°54,002' N 169°25,984' W (WGS-84 - корма) 65°53,996' N 169°26,075' W (СК-42 - мостик)

Глубина постановки: 53 м.

Высота станции над поверхностью дна: 35 м.

Приложение: схема постановки на 01 листе

Начальник экспедиции	Runnel	
	Hp unelign the	В.Бахмутов
NOAA oversight	1 this 7	
	Four Clance	K.Crane
Представитель компании	«Группа Альянс»	
	Allematicen	А.Островский
RUSALCA Coordinator	A ANI	
2	long Klitting 2	T.Whitledge
Chief Scientist		
CHARTEOPONOCHH HAM	John A Will	R.Woodgate
Капитан судна		
	Mann	А.Дьяченко
Staff (Tpodecup) Star		
1 Co Martin + and State		

Woodgate 2009 RUSALCA Leg 1 Khromov Mooring report

Page 24:28

АКТ

постановки автономной буйковой станции АБС-2 (А1-2-09)

«29» августа 2009 г.

Берингов пролив

В Соответствии с Разрешением Федерального агентства по науке и инновациям от 26 июня 2009 года № 72, заявитель морских научных исследований – ОАО «ГНИНГИ» – с борта НИС «Профессор Хромов» установил автономную буйковую станцию АБС-2 (А1-2-09) в следующей комплектации:

1) Датчик нитратов Satlantic's ISUS (серийный номер 088);

2) CTD зонд SBE-16plus (серийный номер 4639);

3) Акустический измеритель течения RCM9 LW (серийный номер 636);

4) Гидроакустический ответчик-размыкатель модель 8242XS (серийный номер 31416).

Дата постановки (МСК): 28 августа 2009 года.

Время постановки (МСК): 03.40.

Координаты постановки: 65°55,993' N 169°37,005' W (WGS-84 - корма) 65°56,020' N 169°37,008' W (СК-42 - мостик)

Глубина постановки: 51 м.

Высота станции над поверхностью дна: 18 м.

Приложение: схема постановки на 01 листе

Начальник экспедиции	P D	
	Apanewy	В.Бахмутов
NOAA oversight	DII TO	
-	Kathlein Mane	K.Crane
Представитель компани	и «Групра Альянс»	
	Allempotencei	_ А.Островский
RUSALCA Coordinator	+ 2 11	
	- with Ruthye	T.Whitledge
Chief Scientist		
AND EOPONOTAN IN	feler A Wall	R.Woodgate
Капитан судна		
No Val	In la annel	А.Дьяченко
「日本語』、「podescop) 第一名	i got	_ , ,
	/	
Content + State	2	
1000 × 1000		

АКТ

постановки автономной буйковой станции АБС-3 (А1-3-09)

« 29» августа 2009 г.

Берингов пролив

В Соответствии с Разрешением Федерального агентства по науке и инновациям от 26 июня 2009 года № 72, заявитель морских научных исследований – ОАО «ГНИНГИ» – с борта НИС «Профессор Хромов» установил автономную буйковую станцию АБС-3 (А1-3-09) в следующей комплектации:

1) Измеритель течений «Вектор-2» (серийный номер 50);

 Датчик проводимости-температуры «SBE-37SM MicroCAT» (серийный номер 4835);

3) Акустический измеритель течения RCM9 (серийный номер 1173);

4) Гидроакустический ответчик-размыкатель модель 8242XS (серийный номер 31417).

Дата постановки (МСК): 28 августа 2009 года.

Время постановки (МСК): 00.00.

Координаты постановки: 65°52,006' N 169°16,987' W (WGS-84 - корма) 65°51,982' N 169°17,038' W (СК-42 - мостик)

Глубина постановки: 50,5 м.

Высота станции над поверхностью дна: 21 м.

Приложение: схема постановки на 01 листе

Начальник экспедиции	thanwork -	PENNETOP
NOAA oversight	WI AR	B.Baxmy10B
Представитель компани	и «Группа Альянс»	K.Crane
	N Deupateau	А.Островский
RUSALCA Coordinator	- pomp. Hallelyc	T.Whitledge
Chief Scientist	plycan A windel	R.Woodgate
Капитан судна		
- Contracting Cont	Many	А.Дьяченко
Thomes and the second		
2703D3:0 × 19		

RUSALCA 2009 MAP OF STATIONS FROM LEG 1 AND LEG 2 (from Kathy Crane)

RUSALCA 2009 stations, bathymetry in meters

K. Crane NOAA

REFERENCES

- Jakobsson, M., C.Norman, J.Woodward, R. MacNab, and B.Coakley (2000), New grid of Arctic bathymetry aids scientists and map makers, *Eos Trans.*, *81*, 89, 93, 96.
- Woodgate, R. A., and K. Aagaard (2005), Revising the Bering Strait freshwater flux into the Arctic Ocean, *Geophys. Res. Lett.*, 32, L02602, doi:10.1029/2004GL021747.
- Woodgate, R. A., K. Aagaard, and T. J. Weingartner (2005), Monthly temperature, salinity, and transport variability of the Bering Strait throughflow, *Geophys. Res. Lett.*, *32*, L04601, doi:10.1029/2004GL021880.
- Woodgate, R. A., K. Aagaard, and T. J. Weingartner (2006), Interannual Changes in the Bering Strait Fluxes of Volume, Heat and Freshwater between 1991 and 2004, *Geophys. Res. Lett.*, 33, L15609, doi:10.1029/2006GL026931.
- Woodgate, R. A., K. Aagaard, and T. J. Weingartner (2007), First steps in calibrating the Bering Strait throughflow: Preliminary study of how measurements at a proposed climate site (A3) compare to measurements within the two channels of the strait (A1 and A2). 20 pp, University of Washington.