Studies of the Air-Sea CO₂ fluxes and Ocean Acidification Impacts in the Western Arctic: NOAA and the RUSALCA project

Nicholas R. Bates

Interim Director and Senior Scientist Bermuda Institute of Ocean Sciences (BIOS), Bermuda

BIOS BERMUDA INSTITUTE OF OCEAN SCIENCES

Thanks to: NOAA; RUSALCA colleagues Keven Neely, Becky Garley, Margaret Best, Monika Orchowska (BIOS) Terry Whitledge, Jeremy Mathis (UAF), Wei-Jun Cai, Kevin Arrigo and many others

Global Ocean CO₂ Sinks/Sources

Global ocean CO₂ sink of ~1.4 Pg C year⁻¹

Red Areas: Oceanic Source of CO_2 Blue Areas: Oceanic Sinks of CO_2

Takahashi et al., 2002; 2009

1850 1870 1890 1910 1930 1950 1970 1990 2010

Atmospheric CO₂ increase

Ocean Carbon Dioxide Uptake

Increase in ocean carbon dioxide (pCO_2) in the Sargasso Sea

Surface ocean pCO_2 increasing at same rate as the atmosphere

Location of BATS

Shipboard sampling

Bates, 2001, 2007; Bates et al., 2012; IPCC 5th Assessment 2013

Laboratory analyses

Arctic Ocean Changes

0.0 .00

Sea Ice loss in the Arctic

Present Arctic Ocean CO₂ Fluxes

50 40 20 10 0 10 20 30 GMT 2007 Aug 20 17:37:18

-110-100-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 Net Flux (grams C m⁻² year⁻¹)

Arctic is ~8-10% of global ocean CO₂ sink

Anderson *et al*. (1998) Fransson *et al.* (2003) Bates (2006) **RECCAP** (2012)

~24 Tg C yr⁻¹ CO₂ sink ~31 Tg C yr⁻¹ CO₂ sink ~66 Tg C yr⁻¹ CO₂ sink Bates and Mathis (2009) ~66-199 Tg C yr⁻¹ CO₂ sink

mean of \sim 130 +/-35 Tg C yr⁻¹ CO₂ sink

Bates and Mathis, 2009; Bates, 2009; Bates et al., 2011; Cai et al., 2012; RECCAP, 2012

Future Annual Arctic CO₂ Fluxes

Canada Basin surface waters

Rapidly changing Arctic CO₂ sink

Changing CO₂ sink in Canada Basin:1994-2010

Northward shift of sea-ice edge bloom

Since major sea-ice loss event in 2007, the Arctic CO_2 sink has reduced by 50-75%? 4-5% reduction in global CO_2 sink

Bates, Cai and Mathis, 2011; Cai et al., 2012

Intense blooms under sea-ice in the Arctic

Arrigo et al., 2012

Arctic Ocean Large Ocean CO₂ Sinks

During summertime sea-ice retreat away from the polar shelves in the Arctic

Transect *

pCO2 adjusted [microatm] @ sample=1

Lowest seawater pCO_2 (~50 µatm) observed in surface waters anywhere in the global ocean

Highest CO₂ uptake observed in surface waters and large CO₂ sink

Bates et al., 2011; Arrigo et al., 2012; Bates, Mathis, Garley, 2012

Arctic Ocean Melt Pond CO₂

Surface *p*CO₂ (2008 CHINARE)

Surface *p*CO₂ (2009 RUSALCA)

Surface *p*CO₂ (2010 ICESCAPE)

Chukchi Sea "Inflow Shelf"

Inflow Shelf (e.g., Chukchi and Barents Sea)

Chukchi Sea

Difference in annual production, 2006-2007 (g C m⁻² yr⁻¹)

Bates et al., 2011

Arrigo et al., 2008

Chukchi Sea "Inflow Shelf"

Inflow Shelf (e.g., Chukchi and Barents Sea)

Surface dissolved organic carbon (DOC)

Ocean Uptake of Anthropogenic CO₂

Large CO₂ uptake in the Sargasso Sea

Ocean Acidification

Decrease in ocean pH and saturation state of calcium carbonate minerals in the Sargasso Sea

Bates, 2001, 2007; Bates et al., 2012; IPCC 5th Assessment 2013

Impact on Bermuda

BEACON project

Surface and Nearest to Seafloor pCO₂

surface

Next to seafloor

Bates, Orchowska, Garley, Mathis et al., 2011

Surface and Nearest to Seafloor pH

surface

170°W

Bates, Orchowska, Garley, Mathis et al., 2011

2010 ICESCAPE Ocean Acidification

Surface pH distributions and water column aragonite saturation states

P.I.'s Nick Bates, Jeremy Mathis

Bates et al., 2009; Bates et al., 2011

Biological Mediated Seasonality of Aragonite Saturation States "PhyCASS"

"PhyCASS" hypothesis: Phytoplankton CaCO₃ saturation state interaction

Table 1. Averages and standard deviation of $\Omega_{aragonite}$ values for water masses located at Bering Strait, and on the Chukchi Sea shelf and slope (bottom depth of 500 m). $\Omega_{aragonite}$ values are binned into 50 m layers in the upper 200 m.

	0-50 m	50-100 m	100-150 m	150 m-200 m	Bering Strait
a. 2002 Spring Summer	1.54 <u>+</u> 0.28 1.92 <u>+</u> 0.71	1.53 <u>+</u> 0.22 1.31 <u>+</u> 0.24	1.43 <u>+</u> 0.21 1.09 <u>+</u> 0.11	1.43 <u>+</u> 0.25 1.16 <u>+</u> 0.14	1.49 <u>+</u> 0.13 2.70 <u>+</u> 0.56
b. 2004 Spring Summer	1.68 <u>+</u>0.40 1.95 <u>+</u> 0.55	1.46 <u>+</u> 0.31 1.41 <u>+</u> 0.41	1.43 <u>+</u> 0.31 1.32 <u>+</u> 0.26	1.30 <u>+</u> 0.12 1.30 <u>+</u> 0.22	2.08 <u>+</u> 0.26 2.16 <u>+</u> 0.41

Seasonal increase in Ω

Seasonal decrease in Ω

Note: no Ω undersaturation in pre-industrial times ~40 µmoles kg⁻¹ anthropogenic CO₂ = 0.3 Ω decrease

Bates et al. 2009; Mathis et al., 2010; Bates et al., 2011: Cai et al., 2012

Chukchi Sea "Inflow Shelf"

Inflow Shelf (e.g., Chukchi and Barents Sea)

Surface and Nearest to Seafloor aragonite saturation state

Surface

Bates, Orchowska, Garley, Mathis et al., 2011

Chukchi and Bering Sea seafloor benthos

Figure 6.7. Distribution of a) benthic O_2 consumption rates, and b) benthic biomass in the Bering and Chukchi shelves. High export productivity and shallow water columns result in tight coupling between surface waters and benthos. From Grebmeier et al. (2006a).

Grebmeier et al., 2008

Surface and Nearest to Seafloor calcite saturation state

Surface

650

170°E

180°E

14000

150°W

160°W

170°W

Bates, Orchowska, Garley, Mathis et al., 2011

Alyatki to Cape Lisburne

Herald Valley

Central Channel

170° W to Point Narrow

Bates, Orchowska, Garley, Mathis et al., 2011

Ocean Acidification vulnerability

Arctic Ocean CO₂ sinks and sources: RUSALCA and ICESCAPE

RUSALCA: Russian-American Long-term Census of the Arctic Nicholas Bates, BIOS; Bates and Mathis, 2009; Bates et al., 2011

Surface and Nearest to Seafloor Temperature

Surface

Next to seafloor

Bates, Orchowska, Garley, Mathis et al., 2011

Arctic Ocean Productivity

Changes in Arctic Productivity

- Annual primary production increased by 140 Tg C yr⁻¹ between 1998 and 2008 (statistically significant trend)
- A 40% increase over the last decade
- Unexpected given
 presumed nutrient
 imitation
- Largest increases on continental shelf

Chukchi Sea

Difference in annual production, 2006-2007 (g C m⁻² yr⁻¹)

Arrigo et al., 2018; 2012

Present and recent research projects

North Atlantic Ocean

- BATS, Hydrostation S
- BEACON (Bermuda)
- CLIMODE, VOS CO₂

Arctic Ocean

- SBI, ICESCAPE
- RUSALCA
- BEST (Bering Sea)

Southern Ocean

• COPAS 08, Great Belt -

Current projects Synthesis, reviews and models

North Atlantic CO₂ Uptake

Less uptake of CO₂ into Sargasso Sea and North Atlantic in the 2000's

2120

2100

2060

2040

2020

1001

0000

0001

<u>ප</u>²⁰⁸⁰

Subtropical mode water (STMW) influenced by the state of the NAO

1000

1001

0040

~~~~

~~~

-200

Bates, 2012; Levine et al., 2011

Western Arctic and Arctic Ocean Context

Figure 1. <u>Left Panel</u>. Schematic of the Arctic Ocean, central basin (Canada and Eurasian Basins) and Arctic continental shelves (with approximate boundaries for each Arctic Ocean coastal sea), major rivers draining into the region (Macdonald *et al.*, 2009) and adjoining seas that have significant exchanges of water with the Arctic. <u>Right panel</u>. The three generic types of continental shelves are shown (Carmack and Wassman, 2006). This includes: "inflow" shelves such as the Chukchi and Barents Seas, "interior" shelves such as the Siberian and Beaufort Seas, and; "outflow" shelves (i.e., Canadian Archipelago).

Bering Sea Ocean Acidification

"PhyCASS" and water column aragonite saturation states

Ocean acidification already impacts seafloor benthos of the Bering Sea

Note: Magenta areas denote aragonite undersaturation

Bates et al., 2009; Mathis et al., 2011

Southern Ocean: COPAS and Great Belt

Testing the "CO₂-coccolithophore feedback"

COPAS 2008

Coccolithophore blooms add CO_2 back to atmosphere

Great Belt 2010-2012

Bates et al., 2011; Poulton et al, 2011

Surface *p*CO₂ (2011 ICESCAPE)

Bates, Orchowska, Garley, Mathis et al., 2011

Composite of RUSALCA and ICESCAPE

Bates, Orchowska, Garley, Mathis et al., 2011