Microbiological and biogeochemical Explorations in Chukchi Sea (RV *Professor Khromov*, July – August 2004)

A. Savvichev, I. Rusanov, G. Pavlova, T. Prusakova, V. Erochin, A. Lein, M. Ivanov, K. Crane

Main aims

- 1. Methane distribution in the water column of the Chukchi Sea.
- 2. Quantitative measurements of intensity of microbial processes involved in methane cycle.
- 3. Influence of microbial processes on the balance of methane in the Chukchi Sea.
- 4. Quantitative measurements of intensity of methane cycle microbial processes in bottom sediments of Chukchi Sea

Materials and methods:

Methane concentration analysis

- For methane analysis, a headspace technique was applied [Bolshakov & Egorov, 1987].
- The water samples (5-cm³ section of wet sediments) were placed into a glass vial, 30 cm³ in volume.
- The sediment were flooded with distilled water, leaving 4 cm3 of the bottle volume free.
- For chromatographic analysis, 0.25 ml of the headspace gas was collected by a syringe running.
- Results were recalculated according to the volume of wet sediment using Henry's law
- The total relative error of the determinations was about 8% (by parallel definitions.

Estimation of the rates of microbial processes by means of radiotracer approach using ¹⁴C and ³⁵S compounds:

- Dark ${}^{14}CO_2$ -assimilation
- ¹⁴C-methane oxidation, both aerobic and anaerobic
- Methane generation, both autotrophic $({}^{14}\text{CO}_2)$ and acetoclastic $({}^{14}\text{C}\text{-acetate})$,
- ³⁵S-sulfate reduction
- Acetogenesis (from ${}^{14}\text{CO}_2$)
- Heterotrophic activity (¹⁴C-glucose)

Leg. 1 The water station of the Piip submarine volcano (Komandorsky Back-Arc Basin)

Methane concentration, the rate of microbial methane oxidation and isotope composition (δ^{13} C) organic carbon of particulate matter in water column near Piip Volcano (Bering Sea) 55° 25.06 167° 16.52

Sediment core from Piip volcano station

Methanotrophic bacteria are unique in their ability to utilize methane as a sole carbon and energy source.

Station 11 (water column)

Station 22 (water column)

Station 106 (water column)

Station 15 (water column)

Fluorescence value and isotopic composition (¹³C-C_{org.}, ‰) of particle organic carbon (average in water horizons), water column of Chukchi Sea

The Number of bacteria (x 10³ cell ml⁻¹) in water column of Chukchi Sea

(average date)

Sampling of surface bottom sediments

The content of ammonium (N-NH₄⁺, mg dm⁻³) in surface horizons (0-3 cm) of

sediments

The Rate of Microbial Sulphate Reduction (µg S dm⁻³ day⁻¹) in Surface Horizons (0-3 cm) of Sediments

The content of methane (CH₄, µl dm⁻³) in surface horizons (0-3 cm) of sediments

CH₄ μM dm⁻³ MG, nM dm⁻³day⁻¹ MO, nM dm⁻³day⁻¹ SR[,] μg S dm⁻³day⁻¹

The rate of methane generation and methane oxidation in sediments as well methane oxidation in water column (**µM m⁻² day⁻¹**)

Station, depth, m Sediment, depth, cm	Methane oxidation in water, µM m ⁻² day ⁻¹	Methane generation in sediment, µM m ⁻² day ⁻¹	Methane oxidation in sediment, µM m ⁻² day ⁻¹	MG sediment – MG sediment, µM m ⁻² day ⁻¹
11, 40 m 3 cm	2,27	0,58	0,049	0,53
15 , 45 m 65 cm	3,33	17,9	6,3	11,6
20 , 50 m 3 cm	1,92	0,58	0,29	0,29
22, 50 m 135 cm	2,38	12,9	5,13	7,77
106, 66 m 210 cm	9,24	37,5	32,0	5,5
85B, 101 m 117 cm	17,7	5,52	3,61	1,91

Balance of the microbial processes methane generation (MG) and methane oxidation (MO) under meter square at the sediments and water column ($\mu M \times m^{-2} \times day^{-1}$)

