Historical Climate Data Resources in the North Pacific – Arctic Region

Kevin R. Wood and James E. Overland

with contributions from

Trausti Jónsson, Icelandic Meteorological Office Brian V. Smoliak, University of Washington

&

Igor Smolyar, NOAA/Nat'l. Oceanographic Data Center

Detecting change is an historical problem

What is different today compared to yesterday, the 1950s, or the 19th century?

Are there large-scale or low-frequency patterns that aid (or confound) understanding?

We search the past for clues

Historical resources

• Instrumental time series & fragments

MS met. records

Published records

Descriptive records (written & visual)

Revenue steamer Corwin at Nome, June 1st 1901

Climate proxies (ice cores...)

Constraints

• Quality, homogeneity, metadata

Minimum thermometers (1881). Photo: Deborah J. Warner NMAH

Russian instrument shelter, 1868

Met. station at *Taimir's* winter quarters, 1914 (Russian Hydrographical Expedition to the Arctic, 1910-15)

Other noise issues...

An example: Air temperature variations on the Atlantic – Arctic boundary since 1802

What we see

Irregular pattern of SAT fluctuations

ETCW event is the most striking historical example

No obvious AMO cycle

Wood, Overland, Jónsson & Smoliak (2010), Geophysical Research Letters

Independent data are consistent

Teleconnection with mid-latitude SST' is seen

Hadley ISST

NCEP-NCAR Reanalysis

Contours: Mean SST' (16-22° C)

High correlation is robust across data sets

Detrended and filtered (0.1 cpy)

Also: sub-daily barometric pressure from 1847 awaits digitization

First Bering Strait transect by Dall for U.S. Coast Survey, Sept. 5, 1880.

Schooner Yukon

On the 3d of September we sailed from Chamisso Harbor for Bering Strait, arriving off East Cape of Asia about 6 A. M. of the 5th. Broken ice intervened between us and the shore, and the bight southward from the cape was packed full of ice. We could not approach nearer to the shore than four miles.

U.S. Hydrographic Office Report, 1890.

August-September ice edge for 1879, 1885, 1886, 1887, 1888, 1889

Biogeography of bowhead whale fishery

Map 4.—Total documented daily ship locations and bowhead captures, 1849–1914. The yellow dots represent all documented ship locations, which were recorded daily in the logbooks and journals. More than one ship could, of course, visit the same location, and the same ship could remain at, or revisit, a location. The red dots represent the total documented bowhead captures. This map does not indicate the intensity (number of times) that ships visited a location.

Bockstoce (2005) Marine Fisheries Review

Transehe (1925) Geographical Review

ГИЦРОПОГИЧЕСКИЕ НАБПЮДЕИЯ МОРСКИХ ЗКСПЕДИЦИЙ 2-ГО МРГ, 1932-33 Г.

Ice map from the Soviet Aug. 10 – Sep. 23, 1932

A. Sibiryakov under jury-rigged sails after loss of propeller shaft near North Cape

Hydrological Observations of the Second IPY Sea Expeditions, 1932–33 (multiple ships).

Hydrocasts in the RUSALCA region 1930-1940 (including Russian IPY-2 sea expeditions) in NODC-WOD09

Objectives for the coming year:

Find and collate a wide range of historical data

Construct continuous regional time series and indexes where possible

Case study approach (compare 1930s with data obtained during RUSALCA?)

Contribution for Climate Data Modernization Program (CDMP), Int'l Env. Data Rescue Program (IEDRO) & extended reanalysis (NCEP & ACRE)

Develop Int'l and interdisciplinary collaboration

Supplemental Slides

Regionally distinct SAT curves

Winter (DJFM) SAT anomalies from land-based stations north of 60° N in the Atlantic sector (90°W – 45°E) and Pacific sector (135°E – 90°W)

Systematic influence

The consistency of correlation coefficients as *y*-intercepts shift is an indicator of systematic forcing in the system.

F. Litke

