Climatological mean and decadal change in surface ocean pCO₂, and net sea-air CO₂ flux over the global oceans Takahashi et al., DSR II, 56: 554-577, 2009

Bering Strait appears undersaturated with respect to atmospheric pCO₂

	Site	Lat	Lon	S psu	т °С	TAlkalinity umol/kg	TCO2 umol/kg	pCO2 matm	
	BS23	65.5842	-168,1650	28.8	9.4	2441.5	2269.3	394.2	(atm aquil)
	BS21	65.6458	-168.2538	28.8	9.0	2457.6	2314.5	472.2	≥390 (atm equil)
Ւ	BS19	65.6730	-168.3863	31.0	5.3	2396.6	2206.2	301.5	
\geq	BS17	65.7053	-168.5210	31.2	4.4	2397.3	2204.3	286.8	1
	BS13	65.7725	-168.7925	31.6	5.4	2419.0	2165.6	221.8	< atm equil
	BS11	65.8060	-168.9323	31.6	5.4	2442.6	2186.4	222.7	1
	A3-11	66.3282	-168.9607	31.7	5.8	2450.1	2196.1	230.7	

Implies: sink for CO₂. Cause? H_0 - primary production / export

Measured: pCO₂ & TCO₂ Estimated: TAlk

- ≥100 µatm undersaturation of CO2 observed at all but BS23 & BS21 (two easternmost sites)
- need to confirm TAlk work in progress

 $\Omega > 1$ – supersaturated

- both aragonite and calcite are thermodynamically stable in waters from all sites
- transect sites closest to Alaska are most susceptible to increased ocean acidification

In July 2011, deployed a set of sensors at ~48m water depth on the A3 mooring for a one-year period. The set included: 1) **SAMI-pCO2**; 2) **SAMI-pH**; 3) **seapHox**; and 4) **SBE-37**.

Limnol. Oceanogr., 40(5), 1995, 969–975 © 1995, by the American Society of Limnology and Oceanography, Inc.

In situ measurements of seawater pCO₂ M. D. DeGrandpre, T. R. Hammar, S. P. Smith, and F. L. Sayles

Anal. Chem. 2003, 75, 1844-1850

A Submersible Autonomous Sensor for Spectrophotometric pH Measurements of Natural

Waters Todd R. Martz, Jeffrey J. Carr, Craig R. French, and Michael D. DeGrandpre*

SeaFET Ocean pH Sensor (Todd Martz and Ken Johnson) The SeaFET Ocean pH sensor is an ion selective field effect transitor type sensor for accurate long-term pH measurements in both fresh and salt water. Request a Quote - SAtlantic

Sensors were deployment within a cylindrical metal cage (~30" x 34" dia.). seapHox included on package as an independent check on pH measurements by the SAMI-pH sensor. SAMI-pCO2 was included as a measure of dissolved carbon dioxide (pCO2). The pH and pCO2 measurements, combined with temperature (T) and salinity (S) measurements obtained by the SBE-37, will allow unique definition of time variability in the speciation of the inorganic carbon chemistry system in the Bering Strait water at the A3 site.

Vol. 329: 13-21, 2007

Published January 11

Improving estimations of phytoplankton class abundances using CHEMTAX

Mikel Latasa*

ABSTRACT: CHEMTAX is a computer program that allows researchers to allocate chl a, a proxy for phytoplankton biomass, into different algal groups defined by a suite of pigment markers. The pro-

Accommodate sampling needs of Laurie Juranek - Assistant Professor, CEOAS - OSU

Use of dissolved gas tracers to study biological production/export: US. West Coast

Observations from a NOAA coastal cruise in 2007

ΔO₂/Ar reflects production/respiration balance (normalization to Ar removes sensitivity to warming/cooling/bubbles, leaves only biologically—induced changes in O₂ saturation) Net metabolism rate can be determined if effects of mixing, air-sea exchange constrained

¹⁷Δ reflects balance of gross photosynthesis and air-sea O₂ exchange (higher values: more photosyn. relative to atm. O₂ input); **gross productivity** rate can be determined if mixing biases are constrained

Using dissolved gas tracers to study a chemical/biological front in the N. Pacific

4 cruises of opportunity between Hawaii and Alaska

Net community metabolism

Upper ocean $^{17}\Delta$ and $\Delta O_{2}/Ar$ tracer distributions

Spring: well-ventilated , thermocline similar to surface, signal of respiration at depth **Summer**: stratified, seasonal thermocline shows productivity ingrowth

Dissolved gas sampling

Sample is ~100 ml, requires ~0.5L for flushing and "water lock"

Although pre-flushing with CO_2 is a good idea, it is not absolutely necessary

Each sample takes ~3 minutes to collect

Youtube sampling demonstration: http://www.youtube.com/watch?v= aweHBIc2Olg&feature=related

- 1. pre-flush neck with CO_2 (if using)
- 2. Insert water flow from niskin, tap to remove bubbles
- 3. Create water lock in sidearm and attached tygon tube; expel all bubbles!
- 4. Slowly open vacuum valve, allow flask to fill half-way while maintaining water-lock.

