DATA INTERCOMPARISON THEORY

IV. TERCILE TESTS FOR LOCATION, SPREAD AND PATTERN DIFFERENCES

Rudolph W. Preisendorfer
Curtis D. Mobley

Pacific Marine Environmental Laboratory
Seattle, Washington
December 1982
NOTICE

Mention of a commercial company or product does not constitute an endorsement by NOAA Environmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.
TABLE OF CONTENTS

1. Introduction ... 1
2. S-Synoptic Tests ... 3
3. T-Synoptic Tests ... 12
4. Application: Effects of Different Objective Analysis Schemes 14
5. Application: Self-Predictability of a Data Set 24
6. Application: A Principal-Component Selection Rule 34
7. References .. 37

Appendix A. Trinomial Stochaster 38
Abstract

Two data sets can be examined for closeness by considering them as field maps and pretending that one is trying to forecast the other. This is done by applying some recently devised forecast verification techniques to the pair of data sets. The technique we apply for the purpose is the tercile (or Trinomial Stochaster) technique wherein, over a given set of points in space, the two fields have their 0-class, 1-class and 2-class errors tallied, and examined for statistical significance. These class errors can be used to gauge the closeness of the three main attributes of the data sets: their locations (akin to averages), spreads (akin to variances), and (spatial or temporal) patterns. In illustration, the tercile technique is applied three times: to show how to gauge the effects of different objective analysis methods on the same raw data set; to examine the self-predictability (and hence noise or information content) of a data set; and to devise a new principal-component selection rule using the concept of self-predictability.
I. Introduction

The approaches to the problem of data intercomparison are manifold, as we have begun to see in the first three reports of the present series on Data Intercomparison Theory. In the present note we introduce still another approach to the data intercomparison problem, namely that based on the tercile classification of the range of values of a physical field. The present method draws out the thread of ideas that began to form in the closing section of DIT(III)*, wherein we developed the method of r-tile classification, and indicated its applications to intercomparing principal vectors (EOF's), principal components, and other objects derivable from the principal decomposition of data sets. In the present note we specifically set $r = 3$ and therefore work with one of the simplest r-tile classifications, namely terciles. Moreover, we shall work directly with observed field values rather than their principal parts. These two choices result in an easily interpreted set of tests for the differences in spatial or temporal aspects of location, spread, and pattern of two data sets. The reference distributions, by which we can decide on the significances of the differences of these various attributes between two data sets, can be generated under suitable conditions.

* A complete list of titles in the present series of reports is given in §7, below.
by any one of the five general procedures (IOP, EOP, APP, PPP, CIP) defined and illustrated in DIT(II).

We shall illustrate by means of three examples the use of the tercile method of data intercomparison, using a combination of IOP and CIP, i.e., a combination of the Ideal Observation Procedure and Classical Intercomparison Procedure. The first example shows how the method can be used to detect whether significant differences exist in the locations, spreads, and patterns of three equatorial temperature fields arising from three different objective analysis schemes applied to a common set of raw data. The second example applies the Tercile Method to the self-prediction property of one of the three equatorial temperature data sets in the first example. The self-prediction property is the one that gives a measure of the non randomness (or information content) of a data set. The self-prediction property is one facet in the solution of the general climate predictability problem. Finally, the Tercile Method will be used to suggest a new form of principal-component selection rule based on the self-prediction idea.

Acknowledgments

We are indebted to Dr. Cho-Teng Liu for making his data set available prior to publication, and also for doing some special runs needed in the applications of §§4, 5. The Liu data set computations and the work of Dr. Mobley were supported through grants from NOAA's Equatorial Pacific Ocean Climate Studies (EPOCS) program. Lai Lu typed the manuscript and Gini May drew the figures.
§2

2. **S-Synoptic Tests**

We shall consider two main developments of the Tercile Method. The present development takes place in the spatial-synoptic (or S-Synoptic) setting wherein we shall test whether two given data sets \(D' = \{d'(t,x) \} \) \(t = 1, \ldots, n; \ x = 1, \ldots, p \) and \(M' = \{m'(t,x) \} \) \(t = 1, \ldots, n; \ x = 1, \ldots, p \) have significant differences in spatial location, spatial spread and spatial pattern. In §3 we shall summarize the dual development for temporal differences, resulting in the T-Synoptic Tests.

A. Finding Tercile Boundaries

The first step in the S-Synoptic Tests is to compute the time averages of the \(d'(t,x) \) and \(m'(t,x) \). Thus we write, with \(x = 1, \ldots, p \),

\[
\begin{align*}
'd_o(x)' & \text{ for } n^{-1} \sum_{t=1}^{n} d'(t,x) \\
'm_o(x)' & \text{ for } n^{-1} \sum_{t=1}^{n} m'(t,x)
\end{align*}
\]

These averages, specifically for the \(D' \) matrix, are shown in Fig. 2.1, which gives an overview of both the S-Synoptic and T-Synoptic Analyses.

Next, form the anomalies, for \(t = 1, \ldots, n; \ x = 1, \ldots, p \),

\[
\begin{align*}
d(t,x) & \equiv d'(t,x) - d_o(x) \\
m(t,x) & \equiv m'(t,x) - m_o(x)
\end{align*}
\]

From these, at each \(x \), find the tercile class boundaries \(a_d(x), b_d(x) \) and \(a_m(x), b_m(x) \). These are shown schematically for the \(D' \) set in Fig. 2.1. Thus \(a_d(x), b_d(x) \) have the property that they split the \(n \) values \(d(t,x), \ t = 1, \ldots, n \).
Determining tercile class boundaries for S-Synoptic and T-Synoptic analyses

<table>
<thead>
<tr>
<th>time indexes</th>
<th>space indexes</th>
<th>space avgs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = 1</td>
<td>(d'(l, l)) ... (d'(l, x)) ... (d'(l, p)) (d_o(l))</td>
<td>(a_{d}(l)) (b_{d}(l))</td>
</tr>
<tr>
<td>t = n</td>
<td>(d'(n, l)) ... (d'(n, x)) ... (d'(n, p)) (d_o(n))</td>
<td>(a_{d}(n)) (b_{d}(n))</td>
</tr>
<tr>
<td>time avgs:</td>
<td>(d_o(l)) ... (d_o(x)) ... (d_o(p))</td>
<td>(a_{d}(l)) (a_{d}(x)) (a_{d}(p)) (b_{d}(l)) (b_{d}(x)) (b_{d}(p))</td>
</tr>
</tbody>
</table>

Temporal scatter of values at each \(x\) drawn for the case \(n=12\)

Fig. 2.1
at each x into three equally populous groups: the above-group (A), the normal-group (N), and the below-group (B). This may be done on the computer by ordering the n d(t,x) anomaly values at x in increasing size (and relabeling the t-values):

\[d(t_1, x) \leq d(t_2, x) \leq \cdots \leq d(t_n, x) \] (2.5)

and then partitioning these n values into three subsets:

\[d(t_1, x) \leq \cdots \leq d(t_b, x), \quad d(t_{b+1}, x) \leq \cdots \leq d(t_a, x), \]
\[d(t_{a+1}, x) \leq \cdots \leq d(t_n, x) \] (2.6)

At the subset boundaries we define:

\[a_d(x) = \frac{1}{2} [d(t_a, x) + d(t_{a+1}, x)] \] (2.7)
\[b_d(x) = \frac{1}{2} [d(t_b, x) + d(t_{b+1}, x)] \] (2.8)

The tercile boundaries a_m(x), b_m(x) for the model set M' are found in the same way*, and are given at each x by formulas analogous to (2.7), (2.8) (simply replace "d" by "m" in (2.5)-(2.8)).

B. Pattern Test

The Pattern Test compares the spatial patterns of the maps d(t) and m(t) at each time t, where, for t = 1, \cdots, n,

* If n is not divisible by three, then decide how to place the odd data points. For example, place the first odd point in N and the second (if it exists) in A.
Thus, at each time t find what tercile cell (A, N, or B) $d(t,x)$ is in, and similarly for $m(t,x)$. See top panel, Fig. 2.2. In that figure, $d(t,x)$ is in B and $m(t,x)$ is in N. Therefore these values subtend at x a 1-class error. (If $m(t,x)$ happened to be in B or A, then $m(t,x)$ and $d(t,x)$ would subtend at x a 0-class or 2-class error, respectively.) We now go systematically through all points x and find the j-class errors $(j = 0, 1, 2)$ subtended by $m(t)$ and $d(t)$ at those points. Let $u(t)$, $v(t)$, and $w(t)$ be the total number of 0-, 1-, 2-class errors, respectively, subtended by $d(t)$ and $m(t)$. As a check we should have:

$$u(t) + v(t) + w(t) = p$$ \hspace{1cm} (2.11)

for each $t = 1, \cdots, n$.

The two maps, as spatial patterns, are close when $u(t)$ is large and the moment

$$m(t) = v(t) + 2w(t)$$ \hspace{1cm} (2.12)

is small. The two maps are identical at time t (as far as tercile classifications go) when

$$u(t) = p, \quad m(t) = 0.$$ \hspace{1cm} (2.13)

An impression of the statistical significance of a score $u(t), v(t), w(t)$ at time t is obtainable by comparing this score with that obtained by a
§2

S-SYNOPTIC TESTS FOR
LOCATION, SPREAD AND PATTERN

PATTERN TEST
Showing tercile cells A,N,B and a 1-class error between D', M' at point x

(D'-Base) LOCATION TEST
Showing tercile cells A,N,B and a 0-class error between D', M' at point x

(D'-Base) SPREAD TEST
Showing tercile cells A,N,B and a 2-class error between D', M' at point x

Fig. 2.2
process that selects maps like \(d(t) \), \(m(t) \) in a random fashion as follows. At each \(x \), and for given fixed \(t \), let \(d(t,x) \) be randomly placed in cell A, or N, or B with equal probability, namely \(1/3 \). Similarly at each \(x \), for the given fixed \(t \) let \(m(t,x) \) be placed with probability \(1/3 \) into one of the terciles. These placements of \(d(t,x) \) and \(m(t,x) \) at \(x \) are independent of the placements at every \(x' \) other than \(x \). From these two randomly selected maps, we can find the \(u,v,w \) values for them. Under these conditions, the joint probability \(p(u,v,w) \) of the three class-errors \(u,v,w \) is readily found (Appendix A, using the Trinomial Stochaster). Moreover, the probability distributions for the individual \(u,v,w \) error counts are also readily obtained. From these, for a given significance level, \(100\alpha\% \), \(0<\alpha<1 \), we can judge if \(u(t) \), \(v(t) \), \(w(t) \) are significantly large or small, as the case may be. The use of these randomly found \(u,v,w \) scores will be illustrated in §4.

The net result of the Pattern Test is a decision at each \(t \) whether or not the triple of scores \((u(t),v(t),w(t)) \) subtended by \(d(t) \) and \(m(t) \) is significant on some \(100\alpha\% \) level, \(0<\alpha<1 \). If, for example, \(u(t) \) is significantly large, then the spatial patterns of \(d(t) \), \(m(t) \) may be said to be significantly close as regards 0-class errors. Other significance measures, in addition to \(u(t) \), are supplied by significantly small values of \(v(t) \), \(w(t) \), or \(m(t) \).

C. Location Test

To carry out a (spatial) Location Test on the \(n \times p \) data sets \(D',M' \), first find the time averages \(d_o(x), m_o(x), x = 1,\ldots,p \), as in (2.1), (2.2). Then order the \(d_o(x) \) (after relabeling) in increasing size:

\[
d_o(x_1) \leq \cdots \leq d_o(x_p)
\] (2.14)
and find the tercile boundaries \(\ell_0 \), \(u_0 \), for these averages, analogously to (2.6):

\[
d_o(x_1) \leq \cdots \leq d_o(x_{\ell}) \leq d_o(x_{\ell+1}) \leq \cdots \leq d_o(x_u) \leq d_o(x_{u+1}) \leq \cdots \leq d_o(x_p) \quad (2.15)
\]

The class boundary values at \(x_{\ell} \), \(x_u \), are defined as:

\[
\ell_0 \equiv \frac{1}{3}[d_0(x_{\ell}) + d_0(x_{\ell+1})] \quad (2.16)
\]

\[
u_0 \equiv \frac{1}{3}[d_0(x_u) + d_0(x_{u+1})] \quad (2.17)
\]

Thus the integers \(\ell \) and \(u \) stand at or near the 1/3 marks of \(p \). If \(p \) were of the form \(p = 3q \), then \(\ell = q \) and \(u = 2q \). Otherwise, proceed as in the footnote below (2.7), (2.8).

The Location Test now follows along the lines summarized in the middle panel of Fig. 2.2. At each \(x \) see what tercile \(d_o(x) \) is in, and what tercile \(m_o(x) \) is in. For each of these decisions use \(\ell_0 \) and \(u_0 \) as defined in (2.16), (2.17). In Fig. 2.2, \(d_o(x) \) is in A and \(m_o(x) \) is in A, and so they sub tend a 0-class error. Repeat this \((d_o(x), m_o(x))\) class-error determination at each of the \(p \) places in physical space. Let \(u, v, \) and \(w \) be the resultant total member of 0-class, 1-class, and 2-class errors, so that, as in (2.11), these must sum to \(p \). The statistical significances of \(u, v, w \), individually or in common may now be determined exactly analogously as in the Pattern Test above, using the Trinomial Stochaster.

Observe that the present test has used the \(D' \) set as a basis of comparison (\(\ell_0, u_0 \) were derived from the \(d_o(x)'s \)). The dual test can be based on \(M' \). Generally the triple of scores: \(u, v, w \) resulting from this alternate test based on \(M' \) will not be the same as that based on \(D' \). Physical reasoning
§2

should decide which base is to be preferred; or otherwise, simply average the two u's, two v's, and two w's from each type of Location Test. Note that the Pattern Test was symmetric from the outset.

D. Spread Test

To perform the (spatial) Spread Test on the nXp data sets D', M' use the class boundaries \(a_d(x), b_d(x) \) and \(a_m(x), b_m(x) \) of the Pattern Test in par A to define, for \(x = 1, \cdots, p \),

\[
c_d(x) \equiv a_d(x) - b_d(x) \tag{2.18}
\]

\[
c_m(x) \equiv a_m(x) - b_m(x) \tag{2.19}
\]

Then order the p values of \(c_d(x) \), \(x = 1, \cdots, p \), in increasing size after the manner of (2.15):

\[
c_d(x_1) \leq \cdots \leq c_d(x_{L}) \leq c_d(x_{L+1}) \leq \cdots \leq c_d(x_u) \leq c_d(x_{u+1}) \leq \cdots \leq c_d(x_p) \tag{2.20}
\]

and define:

\[
l_1 \equiv \frac{1}{2}[c_d(x_L) + c_d(x_{L+1})] \tag{2.21}
\]

\[
u_1 \equiv \frac{1}{2}[c_d(x_u) + c_d(x_{u+1})] \tag{2.22}
\]

The Spread Test now follows along the lines summarized in the lower panel of Fig. 2.2. At each \(x \), determine in which tercile \(c_d(x), c_m(x) \) lie. In the Figure \(c_d(x) \) lies in B and \(c_m(x) \) lies in A, and so they subtend a 2-class error. Repeat this \((c_d(x), c_m(x)) \) class-error determination at each of the p places in physical space. Let \(u, v, w \) be the resultant total number of 0-, 1-, and 2-class errors. The statistical significances of \(u, v, w \) are deduced as
in the Pattern and Location tests. Observe that the Spread Test is based on D'; an alternate test may be based on M', and score-averages found, as in the Location Test.

E. Notes on Alternate Procedures for Generating Tercile Tests

(i) Implicit in the test descriptions above was the assumption that there were enough maps $d(t)$ and $m(t)$, $t = 1, \cdots, n$ to generate a workable tercile decomposition of the values $d(t, x)$, $m(t, x)$, $t = 1, \cdots, n$ at each x. Thus we have implicitly used on D' and M' themselves the Ideal Observation Procedure (IOP) defined in DIT(II). When the number of samples $d(t)$, $t = 1, \cdots, n$ is not adequate for this purpose, resort may be made to the Classical Intercomparison Procedure (CIP) using the suggestions made in DIT(II). Indeed, the u, v, w statistics defined above (and in Appendix A) are developed and applied in the CIP setting.

(ii) It may turn out that we have several $n \times p$ data sets D_i' $i = 1, \cdots, w$ available but individually the n maps $d(t)$, $t = 1, \cdots, n$ in each are not enough to form a workable tercile decomposition of the map values. (For example n in such a case would be 5.) It may be meaningful, however, to pool the nw maps from the given set of D_i' matrices, and therefore have a sufficient number to work with.

(iii) When there are enough maps $d(t)$, $m(t)$, $t = 1, \cdots, n$ for IOP within D' and within M', then it may be of interest to apply the APP (of DIT(II)), suitably modified, to D' and M' and the tercile-forming method. Thus, any partitioned D' could be used to generate tercile decompositions and intercomparisons. Thereby, we could form DD cdfs of v, or w. These DD cdfs would be compared, in the manner described in APP, to the DM cdfs of the respective statistics v, or w. (For u, one would use the left tail of the DD cdf to reject H_0.)
(iv) The PPP may also be applied to the task of generating reference
distributions of the $u, v,$ and w statistics. The idea here would be to see
where the $u, v,$ or $w,$ subtended by the given maps of D' and M', would fall in
the reference distributions $u, v,$ and $w,$ respectively, generated by the pool
and partition procedure. Significantly small u values, and significantly
large v, w values would be the bases for rejecting H_o.

The above alternate procedures for generating terciles and reference
distributions for $u, v,$ or w have not been studied for their practicality.
They are suggestions for further research.

3. T-Synoptic Tests

By means of Fig. 2.1 we see that there is a completely dual set of tests
to the S-Synoptic set of tests described in §2. Thus, instead of averaging
$d(t, x), m(t, x)$ over t at a fixed $x,$ we can average these quantities over x at
a fixed t. To save notation we use the same symbols for this dual arithmetic
activity. Thus $d_o(x)$ is now $d_o(t),$ and $a_d(x)$ becomes $a_d(t),$ and so on, where
t = 1, \ldots, n. It is desirable (but not necessary) that p be divisible by 9;
then all expected values of u, v, w and m for the Trinomial Stochaster are
integers. The critical values for the individual statistics $u, v, w,$ and m are
obtainable from the Binomial distribution with the appropriate elementary
probabilities (see Appendix A).

The interpretation of the results of a T-Synoptic Analysis is dual to
their S-synoptic counterparts. Thus, in a pattern analysis in the present
T-Synoptic case, the quantity $u(x)$ will count the number of times, out of a
sample of $n,$ that the M' and D' sets have the same anomaly. The diagrams
below will help visualize this case. A large x-set of high $u(x)$ values will
indicate that the temporal evolutions of the two sets are alike at most of the points x of the region of interest. This is dual to the S-Synoptic Analyses wherein a long t-string of high $u(t)$ values indicates that the spatial patterns of the two sets are alike at most of the times t of the period of interest.

Of course similar dual interpretations can be made for the remaining statistics v, w, and m.

Just as we can concentrate attention on a space subregion when doing S-Synoptic Analysis, so too can we concentrate attention on a time subperiod when doing T-Synoptic Analysis. The hypergeometric distribution can be used with equal facility in both types of analysis when we are seeking significant behavior in the appropriate subsets.
4. Application: Effects of Different Objective Analysis Schemes

A. In a recent study, Liu (1982) has produced an objectively analyzed sea surface temperature set consisting of semi-monthly averages of the SST over the tropical Pacific during the years 1975 to 1980, inclusive. Therefore there are 144 "snapshots" of the SST pattern over the region, (20°S, 20°N) and (80°W, 160°E) shown in Fig. 4.1. The objective analysis scheme was basically of the Cressman (1959) type, as modified by Levitus and Oort (1977), with additional smoothing operations, outlier cutoff, data weighting, and gradient-dependent features added by Liu. The four new features of Liu's scheme are summarized in the right column of Table 4.1. We were mainly interested in seeing how important the effect on the resulting data set was, as contributed by the gradient-dependent and data-weighting features of Liu's scheme. Accordingly, we asked Liu to remove these features from his scheme to obtain what we call (for historical reasons) the "modified Levitus-Oort" scheme. The resultant scheme is summarized in the middle column of Table 4.1. This scheme yielded a second data set to be compared with the Liu set. We also asked Liu to produce a third data set by completely removing the diffuser-smoother and curvature-corrector features of his program.* The scheme producing this third set is shown in the left column of Table 4.1. We designate this scheme as the "Original Levitus-Oort" scheme, since it incorporates only the essential features of Levitus and Oort (1977), namely grid-to-rack interpolator, an ordinary corrector-on-the-grid, an updater, and a Laplacian smoother.

* These various features of Liu's scheme will be developed in detail in DIT(V). They may also be discerned in Liu (1982). For our present purposes, the descriptions in Table 4.1 are adequate.
FOUR REGIONS (5° x 10°) FOR DATA INTERCOMPARISON (24 POINTS EACH)

1 = HIGH DATA DENSITY, LARGE SST GRADIENT
2 = HIGH DATA DENSITY, SMALL SST GRADIENT
3 = MODERATE DATA DENSITY, SMALL SST GRADIENT
4 = LOW DATA DENSITY, SMALL SST GRADIENT

99-POINT DATA SET FOR PREDICTABILITY
Table 4.1
OBJECTIVE ANALYSIS SCHEMES

<table>
<thead>
<tr>
<th>BASIC OPERATIONS ON ORIG. DATA</th>
<th>ORIG. LEV-ORT</th>
<th>MODF. LEV-ORT</th>
<th>LIU</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID TO RACK INTERPOLATOR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CORRECTOR ON GRID</td>
<td>SST GRADIENT INDEPEND NO OUTLIER CUTOFF NO DATA WGT</td>
<td>SST GRADIENT INDEPEND OUTLIER CUTOFF NO DATA WGT</td>
<td>SST GRADIENT DEPEND OUTLIER CUTOFF DATA WGT</td>
</tr>
<tr>
<td>DIFFUSER-SMOOTHER</td>
<td>NONE</td>
<td>SST GRADIENT INDEPEND</td>
<td>SST GRADIENT DEPEND</td>
</tr>
<tr>
<td>UPDATER</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CURVATURE-CORRECTOR</td>
<td>NONE</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LAPLACIAN-SMOOTHER</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
B. We selected four regions in the Pacific area over which the three different data sets were to be examined for the 18 month period from January 1975 to June 1976. The regions were selected on the basis of spatial data density and SST gradient, and are shown in Fig. 4.1. Each region is 5°×10° in extent and has p = 24 points. Over the 18 month period, for a given region, we have two "snapshots" or maps per month; hence in the theory above, n = 36. Region 1 lies off the Coast of Mexico, and has high data density with large SST gradients. We selected the second region around Hawaii for its high data density but low SST gradient. Region 3 on the equator below Hawaii has moderate data density and small SST gradient. Finally, region 4 has low data density and small SST gradient. We anticipated considerably different resultant data sets as regards location, spread, and pattern, because of the different ways the sets were produced through modification of Liu's objective analysis scheme. The results of applying the S-Synoptic tests for pattern, location, and spread to these data sets are shown in Figures 4.2, 4.3, 4.4. In these figures the averages of u,v over the 36 semi-monthly periods are shown. (A primer in reading these diagrams is given in Appendix A. The horizontal and vertical lines in the figures give 5% significance levels for v and u, respectively.)

In Fig. 4.2, we intercompare the 36×24 set of Liu (=D') with the original 36×24 set of Lev-Ort (=M'). See the open squares. Also Liu (=D') was compared with modified Lev-Ort (=M'). See the solid circles. We can see by these dots, being crowded near the vertex, that data density and SST gradients play a small role in the objective analysis effects on spatial patterns. In other words, the gradient-dependent features of Liu's scheme are not important additions to the Cressman and Levitus-Oort techniques, as regards pattern changes. That is, by dropping these features from Liu's scheme we produced a
TERCILE PATTERN TESTS
JAN 75-JUN 76
36 1/2 MONTH AVGS

Fig. 4.2
TERCILE LOCATION TESTS
JAN 75-JUN 76
36 1/2 MONTH AVGS

Fig. 4.3

- LIU vs. MODF LEV-ORT (REGION X)
- LIU vs ORIG LEV-ORT (REGION X)
TERCILE SCALE TESTS
JAN 75–JUN 76
36 1/2 MONTH AVGS

Fig. 4.4
set that is still significantly close to Liu's original set on the 5% level, in the sense of u, v, and m. Looking at Fig. 4.3 we see that the gradient-dependent features of Liu's scheme are not important to the location (overall average) of the data sets because the solid circular points once again crowd around the "perfect match" vertex of the diagram. In Fig. 4.4, where we examine the resultant spread or scale (variance) of the processed data sets, we see that there is a strong density and gradient effect on the spread of the sets. In region 1 where density and SST gradient are high, the Liu and modified Lev-Ort sets are close in the sense of spread (variance) (meaning the removal of SST-gradient features of Liu's scheme did not matter). However, in region 4 they differ in spread to the extent that any two randomly chosen 36×24 data sets would differ.

Notice that in each of the three diagrams of Figs. 4.2, 4.3, 4.4, the set of points for intercomparing Liu and modified Lev-Ort is closer to the "greatest fit" or "perfect match" vertex than the set of Liu vs. original Lev-Ort points. Also, the differences in effect between Liu's scheme and the original Levitus-Ort scheme on pattern and spread (or variance) of a data set are more pronounced than the differences in effect, between Liu vs. original Lev-Ort on location.

In sum, our conclusions concerning the gradient-dependent smoothing operation of Liu's objective analysis scheme, reached via the Trinity statistics SITES and SPRED in §5 of DIT(II), are corroborated by the present Tercile Method of intercomparing data sets. As the reader may verify, these two intercomparison techniques (Trinity and Tercile) are quite different in character. Therefore, the conclusions they agree on in this example may have some basis in reality. A final, detailed look at Liu's objective analysis scheme, and its effects on a raw data set, is made in DIT(V).
C. Recall that Figures 4.2, 4.3, 4.4 plot time averages of the u and v statistics. It is sometimes instructive to look at the individual time behaviors of v(t), v(t), and w(t). As an example, consider region 1, over which we intercompare the spatial patterns of Liu vs. original Lev-Ort. The results are displayed in Table 4.2. The average values of the u and v are respectively 16.4 and 7.2. These are the coordinates of open square 1 in Fig. 4.2. A "period" in Table 4.2 is a \(\frac{1}{2} \) month period and is denoted e.g. by symbols of the form "1/2/75", meaning the second half of January 1975. Note that the standard deviations of the u(t) and v(t) are quite large, indicating considerable variation in pattern differences over the 18 month period. In the present case, however, we see that only twice (3/1/75, 7/1/75) did u fall below its 5% significance level 11.5, indicating that, as far as u (0-class error count) goes, the SST patterns of Liu's set and the SST patterns of the original Levitus-Oort set are significantly close 34 out of 36 times over the 18 month period in region 1 of the Pacific. Once again this attests to the non essentiality of the SST-gradient-sensitive and other features in Liu's scheme, regarding spatial patterns.
Table 4.2
Time dependence of u,v,w scores over Region 1 while intercomparing
Liu and original Lev-Ort SST Patterns

<table>
<thead>
<tr>
<th>Period</th>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/1/75</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1/2/75</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>2/1/75</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>2/2/75</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3/1/75</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>3/2/75</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>4/1/75</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>4/2/75</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>5/1/75</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>5/2/75</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>6/1/75</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>6/2/75</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>7/1/75</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>7/2/75</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>8/1/75</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>8/2/75</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>9/1/75</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>9/2/75</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>10/1/75</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>10/2/75</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>11/1/75</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>22</td>
<td>11/2/75</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>12/1/75</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>12/2/75</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>1/1/76</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>1/2/76</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>2/1/76</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>28</td>
<td>2/2/76</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>3/1/76</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>3/2/76</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>31</td>
<td>4/1/76</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>32</td>
<td>4/2/76</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>33</td>
<td>5/1/76</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>34</td>
<td>5/2/76</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>35</td>
<td>6/1/76</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>36</td>
<td>6/2/76</td>
<td>15</td>
<td>9</td>
</tr>
</tbody>
</table>

AVERAGE 16.4 7.2 .4
STD DEV 3.3 3.2 .6
5. Application: Self-predictability of a Data Set

The purpose of this discussion is two-fold. First, we wish to show how the concept of data pattern intercomparison, by the Tercile Method, may be used to generate and score a wide variety of possible long-term forecasts of oceanographic variables. Secondly, we introduce the notion of self-predictability as a possible measure of the information content of a data set. For we anticipate that the self-predictability of a data set varies inversely with the noise content of the set, as seen through the "eyes" of a given forecaster. By "self-predictability" of a data set we mean here the tercile score \(u \) (via the Pattern Test, above) between a data set's actual pattern at time \(t+\ell \) and its predicted pattern at \(t+\ell \) based on a pattern at an earlier time \(t \) (using some means of forecasting), over some fixed spatial domain, where \(\ell \) is the lead between the later and earlier times. Before proceeding, the reader may wish to look over the definitions, given in Appendix A, of the various benchmark and empirical forecasters used in the self-prediction exercises described below.

A. The setting for the first example is the 99 point set in the tropical Pacific as depicted in Fig. 4.1. The points are numbered starting with the first in the southwest corner, and ending with the 99th off the coast of Mexico in the northeast corner. Fig. 5.1 depicts the self-predictability of Liu's data set produced using his full objective analysis scheme as summarized in Table 4.1. We apply to this set the forecasting techniques of three empirical forecasters: the (Most) Probable Markover, the Pure Analoger and the Persistence Analoger. The remaining two forecasters are the so-called benchmark forecasters: the Stochaster and the Persister. The average number of 0-class errors of the Stochaster on the 99 point set is 33, and is shown
5° × 10° 99-POINT GRID, OVER 20°N-20°S, 160°E-80°W
SELF-PREDICTABILITY OF LIU SST ANOMALIES
1975-1980

LEAD (1/2 MONTH - 1 UNIT)

PROB MARKOVER
5% SIGNIF LEVEL
PURE ANALOGER
STOCHASTER
PERS ANALOGER
PERSISTER
as a horizontal line in the figure. The Stochaster's 5% significance level is shown as a horizontal line at \(u = 41 \). Hence pure-chance forecasts will average around \(u = 33 \), and only 5% of the time will they produce \(u \) values of 41 or more.

We shall describe how a typical forecast went for the Persister. We started with a full sequence of 144 maps of SST over the 99 point set from January 1975, to December 1980. Each map was a \(\frac{1}{3} \) month average of SST over the 99 point set. We then applied the Pattern Test of the S-Synoptic method to the first and second maps of the sequence, found and then recorded the associated 0-class error count \(u \). We then went to the second and third maps of the sequence, found and then recorded the associated \(u \); and so on for all 143 possible \(\frac{1}{3} \)-month-separated maps. We averaged the \(u \) scores, and found \(u = 49 \), and this became the ordinate of the Persister curve at \(\frac{1}{3} \) month lead time. This process was repeated with the Persister for various other lead times out to 50 \(\frac{1}{3} \)-months, and the Pattern Test \(u \) scores averaged and plotted. For the other forecasters we applied their definitions in turn to each of the 144 maps, according as their definitions allowed, and plotted the average \(u \) scores for each lead out to 50 \(\frac{1}{3} \)-months. We shall now describe some of the results.

The Persister begins with a very skillful forecast at a lead of \(\frac{1}{3} \) month, earning 49 0-class errors out of a possible 99. At the end of 10 \(\frac{1}{3} \)-month leads, i.e., 5 months, the Persister's forecast is just below the 5% significance level relative to the Stochaster. The Persistence Analoger starts at \(\frac{1}{3} \) month lead with an excellent \(u = 57 \) out of a possible 99, and drops to the 5% level in about 6 months. Standing back and considering these two performances, we are somewhat surprised at the high skill of these self-forecasts, especially in view of our experience with season-ahead forecasts over 99-point sets of the U.S. Mainland. (This will be illustrated
later in Fig. 5.5.) For the moment we continue to look at these unexpectedly high self-predictions of the tropical sea surface temperature set, particularly through the "eyes" of the Pure Analoger and the (Most) Probable Markover. We see from Fig. 5.1 that the Pure Analoger has significant forecasts out to about a year, while the skill of the Probable Markover never falls below the 5% level for the duration of this particular set of forecasts (25 months).

B. The settings of the second example, shown in Fig. 5.2, are five parallels of latitude: $20^\circ S$, $10^\circ S$, equator, $10^\circ N$, $20^\circ N$. For each of these parallels, from $160^\circ E$ to $80^\circ W$, we chose 99 points on or near each of these parallels and made a series of forecasts for $\frac{1}{2}$ month leads. For example we applied the Pure Analoger to the task of forecasting $\frac{1}{2}$ month ahead the SST along the 99 points of $20^\circ S$. The total record consisted of 144 such $\frac{1}{2}$ month averaged SST snapshots from January 1975 to December 1980. Therefore the Pure Analoger made 143 forecasts of $\frac{1}{2}$ month lead time at $20^\circ S$. The average u-score was 40.8--just below significance at the 5% level. However, at $10^\circ S$ the average forecast score of the Pure Analoger soared to $u = 49$ and dropped to 45 at the equator. It reached a comparable low at $10^\circ N$ to that at $20^\circ S$, and then rose again to about $u = 47$ at $20^\circ N$. The performances of the remaining forecasters are as shown in Fig. 5.2. They all (except for the Best Analoger, who is in a class by himself) exhibit the maximum self-predictability at $10^\circ S$ and a local minimum at $10^\circ N$. While we will not conjecture here about the physical mechanisms behind these similarities in latitudinal behavior of self-predictability (and hence noise or information content of the SST field in the tropical Pacific), it is clear that the N-shaped curves in Fig. 5.2 are strongly influenced by the equatorial current and its counter currents.
SELF-PREDICTABILITY OF LIU SST ANOMALIES,
JAN 75-DEC 80
144 1/2 MONTH AVGS
1/2 MONTH LEAD, ON 99-POINT GRIDS ALONG LATITUDES
SHOWN, FROM 160°E TO 80°W

Fig. 5.2
C. In the third example, shown in Fig. 5.3, we return to the setting of Fig. 5.2, in particular the 99 point grids along latitude parallels 10°N and 20°N. We were interested in the self-predictability of the SST set along these parallels as a function of lead time. Recall that the curves of Fig. 5.2 were based on a fixed 1/4 month lead time. Hence the curves in Figs. 5.2, 5.3 at lead time 1/4 month should match. The u scores were found analogously to those in Fig. 5.1. Then, as we step off along the lead-time axis, the u scores begin to drop. The main thing we were interested in was the relative occurrence of forecast lead times at which the curves fall below the Stochaster's 5% u-significance level. On the basis of Fig. 5.2, we anticipated that these lead times would be greater at 20°N than at 10°N. This is generally the case. Thus the Persister's forecasts along 20°N drop below the 5% level at 5 months lead time, while along 10°N they drop below at 4 months. The Pure Analoger's forecast curve becomes non significant along 20°N at 8 months, while along 10°N it is never quite significant. The Probable Markover, apparently extracting maximal information from the data set, manages to stay significant out to 25 months. The slight rise in his curve is quite interesting and, at this writing, we have not tested this behavior for plausibility.

D. In the fourth example, shown in Fig. 5.4, we return to the 99 point region of Figs. 5.1 and 4.1 and examine the effect on forecasts of averaging the data sets over time periods larger than 1/4 month. We selected for study averaging-time-periods of 1, 2, and 3 months. Other than this variable averaging time, the forecasts were made generally as those in Fig. 5.1. We therefore expect the curves to match at the 1/4 month lead time. Two extra forecasters were included in the experiment, namely the Climater and the Best...
99-POINT LINEAR GRID ALONG 20°N, 160°E-80°W
1975-1980

SELF-PREDICTABILITY OF SST ANOMALIES
IN LIU DATA SET VIA FOUR EMPIRICAL
FORECASTERS

Fig. 5.3
§5

Analogor. We were particularly interested in the forecast skills at the three month (1 season) lead time.

It is noteworthy that in no case did the forecast skill diminish as we went from \(\frac{1}{4} \) month to 3 months lead time. Indeed, the Persistence Analogor, Probable Markover, Persister, and Pure Analogor end up with somewhat higher forecast skill scores at the season-ahead lead time than at the \(\frac{1}{4} \) month lead time. There are definite questions for further research that these results and those of the preceding three examples raise, questions that have implications for the season-ahead climate forecasts over the U.S. Mainland and other regions of the planet.

D. We conclude these examples of the use of the Tercile Method of data intercomparison by plotting in Fig. 5.5 the uv coordinates of the five principal forecasters of Fig. 5.4 (those above the 5% significance level). We also added the performance of the Empirical Markover. These plotted points are shown as solid circles in Fig. 5.5. It so happened that in a time interval (1974-1982) containing this same period, 1975-1980, we had verified the average season-ahead forecasts, over the U.S. Mainland, of these same empirical forecasters.* In this earlier study, the U.S. Mainland was also laid-over with a 99-point grid; hence both sets of forecasts are comparable. In Fig. 5.5, the horizontal lines are of constant \(v \), and the lines† with slope -2 are lines of constant moment \(m = v+2w \). The results are remarkable: we see that, on the whole, the forecast skills of the empirical forecasters, (in

* See Preisendorfer and Mobley (1982) §15.

† The equations of the constant-\(m \) lines are of the form \(v = -2u + (2p-m) \). In Fig. 5.5 we have \(p = 99 \).
5° x 10° 99-POINT GRID, OVER 20°N-20°S, 160°E-80°W

SELF-PREDICTABILITY OF LIU SST ANOMALIES 1975-1980

AVGING TIME PERIOD, MONTHS
LEAD TIME = AVG TIME PERIOD

Fig. 5.4
RELATIVE FORECAST SKILLS OF
EMPirical FORECASTERS ON 5° x 10°
99-POINT SUBSET OF CHO-TeNG LIU
SST DATA SET
20°N-20°S, 160°E-80°W
1975-80
SEASONAL AVERAGES

U.S. mainland average scores,
all seasons, 1974-1982 for
temperature
these two separate sets of forecasts), are almost co-extensive over the uv diagram. The empirical forecasters on the whole are nearly as skillful at season-ahead forecasts over the U.S. Mainland as they are at season-ahead forecasts over the present Tropical Pacific domain, a region about five times the area of the U.S. Mainland. On closer examination of the diagram, forecaster by forecaster, we may be led to expect the skills of the empirical forecasters over the tropical Pacific to be slightly superior to their temperature forecast skills on the U.S. Mainland. Future studies of this matter may be of interest to season-ahead forecast efforts.

6. Application: A Principal-Component Selection Rule

Adopting the assumption that a relatively high-u self-predictability index of an n×p data set D' is associated in some way to a relatively low noise content of the data set, we can explore the possibility of a principal component selection rule inherent in this assumption. As shown in Appendix B of DIT(III), we can represent the space-centered values d(t,x) of D' in principal component form:

\[d(t,x) = \sum_{j=1}^{p} a_j(t)e_j(x) \]

\[= \sum_{j=1}^{p} b_j(t,x) \quad (6.1) \]

where we have written, for j = 1, ..., p,
If we explicitly display the associated eigenvalues, we can write

\[b_j(t,x) = \sum_{j} \lambda_j \phi_j(t) e_j(x) \]

\[(6.3) \]

For each fixed \(j \), we now may consider \(B_j = \{ b_j(t,x) : t = 1, \ldots, n; x = 1, \ldots, p \} \), \(j = 1, \ldots, p \), as a data set in its own right and subject it to an S-Synoptic Tercile Pattern Test to determine (in the manner of §5) its self-predictability. Thus, we would use \(B_j \) to determine the class boundaries \(a_d(x), b_d(x) \) as in (2.7), (2.8). Then we would select a fixed lead time \(\ell \) of interest (say one season) and find for \(b_j(t) = [b_j(t,1), \ldots, b_j(t,p)]^T \) and \(b_j(t+\ell) \) the associated values \(u_j(t), v_j(t), w_j(t) \) and \(m_j(t) \), \(t = 1, \ldots, n \). To keep matters simple we would at first work only with the time averages of \(u_j(t), v_j(t) \) and plot the results \((u_j,v_j) \), \(j = 1, \ldots, p \) in a uv diagram, after the manner of Fig. 5.5. The result would be a set of \(p \) points in the uv diagram. These points can be partially ordered, as were the points on Fig. 5.5 (see (A3.4) or Preisendorfer and Mobley, 1982, §7). The simplest form of selection rule would be: choose those points \((u_j,v_j) \) of maximal forecast skill and that lie in the 5% u-significance region of the uv diagram. If the \(j \) indexes of \((u_j,v_j) \), so selected, comprise the integer set \(J \), then the reduced form of (6.1) becomes

\[\hat{d}(t,x) = \sum_{j \in J} b_j(t,x) \]

\[= \sum_{j \in J} a_j(t)e_j(x) \]

\[(6.4) \]
Presumably the $d(t,x)$ would make up a new data set of enhanced self-predictability and therefore of reduced noise content.

Now that the idea has been broached, several alternative selection rules come to mind. Suppose (for some fixed lead time i) that instead of evaluating the self-predictive skill of the individual maps, $b_j(t)$, $t = 1, \cdots, n$, we would evaluate the skill of various additive combinations

$$b(K|t,x) = \sum_{j \in K} b_j(t,x), \quad t = 1, \cdots, n; \quad x = 1, \cdots, p \quad (6.5)$$

of the $b_j(t)$, where K is any non empty subset of $\{1, \cdots, p\}$. Thus $B(K) = \{b(K|t,x): t = 1, \cdots, n; \quad x = 1, \cdots, p\}$ is an $n \times p$ data set in its own right and, just as B_j above, it can be examined for self-predictive skill. The number of non empty subsets K of $\{1, \cdots, p\}$ is $2^p - 1$ and therefore, for the usual range of p (10 to 100), very large. Efficient ways of examining these collections of the $B(K)$ are called for. A random search for the K's may be the basis for their selection. It may simplify the search if it is limited to those subsets of indexes j in (6.5) for which the sum of the ℓ_j is (say) at least

$$80\% \text{ of the total sum } \sum_{j=1}^{p} \ell_j.$$

The class of selection rules that is forming, especially with the latter considerations of including the ℓ_j's in the decision process, is quite different from the dominant-variance and time-history rules developed in Preisendorfer, Zwiers and Barnett (1981). The present rules attempt to link the dimensional reduction of the given $n \times p$ data set D' to a self-predictability property of the set rather than to the purely variance or correlational properties of the principal components $a_j(t)$, $j = 1, \cdots, p$; $t = 1, \cdots, n$. We shall leave this matter here for possible future study.
7. References

Works in this series on Data Intercomparison Theory (NOAA Technical Memorandums, ERL-PMEL):

DIT(I): Minimal Spanning Tree Tests for Location and Scale Differences.
DIT(II): Trinity Statistics for Location, Spread and Pattern Differences.
DIT(III): S-Phase and T-Phase Tests for Spatial Pattern and Temporal Evolution Differences.
DIT(IV): Tercile Tests for Location, Spread and Pattern Differences.
DIT(V): Case Study: Effects of Objective Analysis on a Tropical Pacific Sea Surface Temperature Set.

APPENDIX A

Trinomial Stochaster

1. Introduction

The applications of the Tercile Method, in §4 of the main text, draw on the theory of the Trinomial Stochaster, which we will briefly review here. In §2 below we shall outline the Stochaster's theory and in §3 we will list and define the empirical forecasters. The reader wishing more detail on the Stochaster and empirical forecasters may consult Preisendorfer (1977) and Preisendorfer and Mobley (1982).

2. Trinomial Stochaster

Consider \(p \) points in space and three terciles of values of some field at each point \(x \). Thus, at each point \(x \) a range of \(n \) possible values of a given field has been divided into three equally populous cells \(A, N, \) and \(B \), as in §2A of the main text. It is immaterial to the Stochaster defined below how these terciles at each point were constructed; just that they exist.

The Trinomial Stochaster generates a random field over the \(p \) points, as follows. At point \(x = 1 \), he randomly flips an unbiased cube with opposite faces marked with "A", "N", and "B". Thus with equal probability, namely \(1/3 \), an \(A, N, \) or \(B \) shows up. He notes the outcome and assigns it to point \(x = 1 \). In general, at the \(x^{th} \) point, he assigns an \(A, N, \) or \(B \) with probability \(1/3 \), and in this way produces a random field in tercile form. He then passes over the \(p \) points once again and generates a second random field, statistically independent of the first. Next, a tally is made of the number \(u \) of 0-class errors (matches) between the values of the two fields. At the same time the \(v \)
APPENDIX A

1-class and w 2-class errors are also tallied over the p values (recall Fig. 2.2). Clearly, for these u,v,w scores, we must have

\[u + v + w = p \] \hspace{1cm} (A2.1)

Moreover, since the fields were independently produced, the probability of a match (i.e., a 0-class error) occurring in any A or N or B cell at a given \(x \) is \((1/3)^2 = 1/9\). The schematic diagram below shows more generally that 1/9 is the probability of any one of the nine types of occurrence of the two fields at each \(x \):

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>N</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>N</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>B</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
</tbody>
</table>

Thus the three possible types of match for the first and second fields are AA, NN, BB – down the main diagonal, and each is of probability 1/9. Therefore the probability \(a_0 \) of a 0-class error at any \(x \) is the sum of these probabilities, namely 1/3. Moreover, the probability \(a_1 \) of a 1-class error is obtained by summing all four of the 1/9 fractions occurring just off the main diagonal of the above diagram. Thus \(a_1 = 4/9 \). Finally, the probability \(a_2 \) of a 2-class error between two randomly produced fields at \(x \) is obtained by summing up the two \(1/9^{th} \)s at the AB, BA boxes: \(a_2 = 2/9 \).
Having determined the elementary probabilities \(a_0, a_1, a_2 \) of occurrences of 0-, 1-, and 2-class errors at each \(x \), we can now compute the probabilities of \(u, v, w \) 0-, 1-, 2-class errors individually or jointly as subtended by two randomly produced fields with terciled values on a set of \(p \) points. The probability \(p_0(u) \) of \(u \) matches of two fields out of a possible \(p \) matches is

\[
p_0(u) = \binom{p}{u} a_0^u (1-a_0)^{p-u}, \quad a_0 = 1/3 \tag{A2.2}
\]

where

\[
\binom{p}{u} = \frac{p!}{u!(p-u)!}
\]

In a similar manner we have the probability of \(v \) 1-class errors between the two random fields as

\[
p_1(v) = \binom{p}{v} a_1^v (1-a_1)^{p-v}, \quad a_1 = 4/9 \tag{A2.3}
\]

and for 2-class errors:

\[
p_2(w) = \binom{p}{w} a_2^w (1-a_2)^{p-w}, \quad a_2 = 2/9 \tag{A2.4}
\]

The joint probability of \(u, v, w \) 0-, 1-, 2-class errors between the two randomly produced fields is:

\[
p(u, v, w) = \frac{p!}{u!v!w!} a_0^u a_1^v a_2^w \tag{A2.5}
\]

where

\[
a_0 + a_1 + a_2 = 1, \quad u + v + w = p
\]

By summing \(p(u, v, w) \) over all possible values of \(v \) and \(w \), for example, we return to \(p_0(u) \) of (A2.2).
3. Display of Scores: The uv Diagram

The tercile intercomparison of two maps in p-space results in a triple of scores u, v, w. Since any two of these are independent (cf A2.1) we may pick, say, u and v and plot a point with these coordinates in the uv plane. Since u, v are each bounded by 0 and p, and since (A2.1) holds, the region of possible (u, v) points is a triangle as shown in Figs. 4.2, 4.3, 4.4. The diagrams are drawn for the case $p = 24$. The average score of the Stochaster is at $(u, v) = (8, 10.7) = (a_{0p}, a_{1p})$, and is denoted by "random fit" in the figures. From (A2.2), (A2.3), (A2.4), we can find the 5% significance levels for u, v, w and these are, respectively, 11.5, 6.1, 1.6. The 11.5 was found, e.g.*, by summing $p_0(u)$ from $u = 0$ up to the u which gave a sum of 0.95, or just above. The u, v, 5% significance levels are included in Figs. 4.2, 4.3, 4.4, and help in discerning significantly close fits between fields. The first indication of a significantly close fit is given by a u score exceeding 11.5; the second is given by a v score being less than 6.1; and finally by a w score being less than 1.6. Having all three scores significant produces a joint significance level which can be calculated if desired,† from (A2.5).

Another useful measure of significantly close fit is given by the moment

$$m = v + 2w \quad \text{(A3.1)}$$

* The 5% significance level 41 for u in the case $p = 99$ (as used e.g. in §5 of the main text) is found in exactly the same way. The Stochaster's average u for $p = 99$, is $a_{0p} = 99/3 = 33$.

† See, e.g., Preisendorfer (1977) for an example of Extensive tables (cf Table A there) that can be compiled, and which can be used to find the probability content of any subset of the uv diagram.
Under moderately large p values the m of the Stochaster is distributed nearly normally. The average value \bar{m} and variance σ^2_m of m are given rigorously by

$$\bar{m} = p(a_1 + 2a_2) = 24 \cdot (2/9) = 21.33 \quad (A3.1)$$

$$\sigma^2_m = p [(a_1+4a_2) - (a_1+2a_2)^2] = (24) \cdot (0.5432) = 13.03 \quad (A3.2)$$

The 5% critical level for m is therefore approximately* (with $\sigma_m = 3.610$):

$$m_c = \bar{m} - 1.64 \sigma_m = 15.41 \quad (A3.31)$$

The smaller m is, the better the fit between the two fields. For m values below 15.41, we have significance on the 5% level. The line $m = 15.41$ is drawn in the Figures and labeled "5%m" for the case $p = 24$.

One may see the systematic use of m, in scoring and ranking intercomparisons, by consulting the references in the Introduction to this Appendix. In fact, in ranking fits, we tend to favor the use of v and m.

Thus if $f_1 = (u_1, v_1, w_1)$ and $f_2 = (u_2, v_2, w_2)$ are the tercile scores of two data fits and $m_1 = v_1+2w_1$, $m_2 = v_2+2w_2$, we would write

$$f_2 \preceq f_1 \quad (A3.4)$$

if and only if $m_1 \preceq m_2$ and $v_1 \preceq v_2$. We would read (A3.4) as saying: "data fit f_1 is greater than or equal to data fit f_2". This ordering definition satisfies the postulates of a partial order (reflexivity, symmetry, transitivity).

* when $p = 99$, $m_c = 76$, see Fig. 5.5.
4. The Benchmark and Empirical Forecasters

We introduce the present forecasters with the idea in mind of using them for data intercomparison purposes. Thus, as shown in the main text above, these forecasters can have their roles extended to become also intercomparators. We shall, however, retain their "forecaster" name for simplicity.

The benchmark forecasters are defined as follows:

- **Climater**: always predicts normal
- **Persister**: always predicts present
- **Stochaster**: always predicts randomly

The Stochaster was defined in §2 of this Appendix. In the context of tercile representations of data fields, the other two benchmark forecasters may be further described this way:

The Climater never makes a calculated try at forecasting, and therefore never tries to predict above or below normal. Verification uv scoring diagrams for the Climater show the characteristic tell-tale pattern of his forecasts: all his verification points have $w = 0$.

The Persister is the lazy cousin of the Climater. Whatever pattern now exists over the map, the Persister says that will be the pattern of the next period, e.g. the next season.

The empirical forecasters are defined here in the context of tercile representations of data fields.

In the definitions below, it will be helpful to think of the data maps laid out on a table, in a straight line, from earliest on the left to the latest on the right. In each definition, one of these maps will be singled out as the present or current season map, and the forecast will be for the successor just to its right, i.e., the next season map. Here, of course
"season" is used simply to fix ideas. In Table 4.2 of the main text, e.g., we work with periods of time \(\frac{1}{4} \) month long. Therefore, the following definitions are quite generally applicable.

Pure Analoger: Go through the entire record and find that map of the record which has the smallest \(m \)-value \((m = v + 2w) \) with respect to the current season's map. This is the analog of the current season's map. The forecast for the next season is the seasonal map succeeding the analog's map.

Persistence Analoger: Proceed, as in the case of the Pure Analoger, to find the current season's analog. The forecast for the next season is the map of the analog.

Best Analoger (non operable): Single out an arbitrary map of the record, and designate it as the current season map. Then go to the next season map. (This is where the procedure in practice becomes non-operable.) Find the analog of the next season's map, i.e., that map of the record which is closest to the next season map in the sense of the \(m \)-metric. The forecast for the next season map is this analog of the next season map. This produces the best possible pure or persistence analog forecast that can be made for the next season map, as contained in the record, and using the \(m \)-metric.

Empirical Markover: Fix attention on any one of the \(p \) points on some arbitrary current map. Go through the record and build the \(3 \times 3 \) table, at the point, consisting of relative frequencies of transition from any
given one of the 3 states A, N, B, in the current season, to any other
given one of these states in the next season. (The rows of the matrices
are thus probabilities, adding up to 1.) Repeat this at each of the p
points, resulting in p, 3×3 transition probability matrices. To forecast
the next season's map, use the present season's A, N, or B state and the
3×3 matrix at each point. Draw a random number in a suitable manner to
determine which final state the initial A, N, or B state will go to, in
accordance with the transition probability. Repeat this at each of the p
points. The result is a map which is a realization of a random variable.

(Most) Probable Markover: Establish the 3×3 matrices as above. At a
given point, currently in state A, N, or B, find the maximum entry in the
associated row of the transition matrix. This maximum entry gives the
most probable final state. Use this most probable final state to
forecast next season's anomaly state from the present season's observed
anomaly state at the given point. Repeat this at each of the p points.
The result is a deterministic map. (In the event of a tie, i.e., two or
more maximal row elements, at a point, make a prediction using the
Climater.

In the experiments summarized in §5 of the main text the empirical
forecasters were allowed to range over the entire record of 144 maps in order
to produce their analogs or their 3×3 transition probability tables, as the
case may be.
NOAA ERL technical reports, technical memoranda, and data reports published by authors at Pacific Marine Environmental Laboratory in Seattle, Washington, are listed below. Microfiche copies are available from the USDOC, National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, Virginia 22161 (703-487-4650). Hard copies of some of these publications are available from the ERL Library in Boulder, Colorado (303-497-3271). Hard copies of some of the technical reports are sold by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (202-275-9251).

NOAA Data Report Series

ERL PMEL-5 Taft, B.A., P. Kovala, and A. Cantor-Piguerola (1982) Vertical sections of temperature, salinity, thermosteric anomaly and zonal geostrophic velocity from NORPAX Shuttle Experiment--Part 2, 94 pp. NTIS:

| ERL PHEL-1 | Sokolowski, T. J. and G. R. Miller (1968)
Deep sea release mechanism, Joint Tsunami Research Effort, pre-NTIS. |
| ERL PHEL-2 | Halpern, David (1972)
STD observations in the southeast Pacific near 47°W, 128°W (August/September 1971). |
| ERL PHEL-3 | Reynolds, R. Michael and Bernard Walter, Jr. (1975)
| ERL PHEL-4 | Tracy, Nan K. (1975)
STD and current meter observations in the north San Juan Islands, October 1973. |
| ERL PHEL-5 | Holbrook, James R. (1975)
STD measurements off Washington and Vancouver Island during September 1973. |
| ERL PHEL-6 | Charnell, R. L. and G. A. Krancus (1976)
A processing system for Aanderaa current meter data, 53 pp. |
| ERL PHEL-7 | Hofield, Harold O. and Dennis Nayer (1976)
Formulas used to analyze wind-driven currents of first-order autoregressive processes, 22 pp. |
| ERL PHEL-8 | Reed, R. K. (1976)
An evaluation of cloud factors for estimating isolation over the ocean, 23 pp. |
| ERL PHEL-9 | Nakamura, A. I. and R. R. Harvey (1977)
Versatile release timer for free vehicle instrumentation over the ocean, 22 pp. |
| ERL PHEL-10 | Holbrook, James R. and David Halpern (1977)
| ERL PHEL-11 | Nakamura, A. I. and R. R. Harvey (1978)
Conversion from film to magnetic cassette recording for the Geodyne 102 current meter, 17 pp. |
| ERL PHEL-12 | Hayes, S. P., J. Glenn, N. Soreide (1978)
| ERL PHEL-13 | Schumacher, J. D., R. K. Reed, M. Griggsby, D. Draves (1979)
Circulation and hydrography near Kodiak Island, September to November 1977, 52 pp. |
| ERL PHEL-14 | Pashinski, D. J., and R. L. Charnell (1979)
| ERL PHEL-15 | Han, Y.-J. and J. A. Galt (1979)
A numerical investigation of the Bering Sea circulation using a linear homogeneous model, 60 pp. |
| ERL PHEL-16 | Loomis, Harold G. (1979)
A primer on tsunamis written for boaters in Hawaii, 10 pp. |
| ERL PHEL-17 | Maench, R. D., and J. D. Schumacher (1980)
(Charnell, Lajerlof, and Pearson, contributors)
Some observations of physical oceanographic conditions on the northwest Gulf of Alaska continental shelf, 90 pp. |
Ocean remote sensing using lasers, 205 pp. |
| ERL PHEL-19 | Cardone, V. J. (1980)
Case studies of four severe Gulf of Alaska storms, 58 pp. |
| ERL PHEL-20 | Overland, J. E., R. A. Brown, and C. E. Mobley (1980)
MTRLIB--A program library for calculating and plotting marine boundary layer wind fields, 52 pp. |
A numerical investigation of the Bering Sea circulation using a jet crossing over a submarine ridge: A study using a simple numerical model, 38 pp. |
| ERL PHEL-23 | Katz, C. N. and J. D. Cline (1980)
Distribution and elemental composition of suspended matter in Alaskan coastal waters, 119 pp. |
| ERL PHEL-26 | McHugh, R. D., J. D. Schumacher, and C. A. Pearson (1980)
Circulation in the lower Cook Inlet, Alaska, 26 pp. |
Observations of South Alaskan coastal winds, 49 pp. |
Circulation in the lower Cook Inlet, Alaska, 26 pp. |
Circulation in the lower Cook Inlet, Alaska, 26 pp. |
| ERL PHEL-31 | Hamilton, S. E., and J. D. Cline (1981)
Distribution and elemental composition of suspended matter in Alaskan coastal waters, 119 pp. |
| ERL PHEL-33 | Ikeda, Motoyoshi (1982)
Eddies detached from a jet crossing over a submarine ridge: A study using a simple numerical model, 38 pp. |
Tropical Pacific sea surface temperature measured by SSAGU microwave radiometer and by ships, 160 pp. |
Parasomal and upper-air observations in the eastern Bering Sea, 90 pp. |