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Analytic Theory of Tsunami Wave Scattering in the Open Ocean
with Application to the North Pacific

H.O. Mofjeld, V.V. Titov, F.I. González, and J.C. Newman

Abstract. A theory is developed to better understand the interaction of tsunami waves with
small-scale, submarine topography in the open North Pacific Ocean. The tsunamis are assumed to
be linear, long gravity waves at single frequencies. The topography is given simple forms from which
explicit formulas can be derived for transmitted, reflected, and scattered waves. This topography
includes linear features (escarpments and ridges) and circular seamounts. The theory shows that
the most important factor determining the intensity of scattering and reflection is the depth of a
feature compared with the depth of the surrounding region. A useful measure of this depth effect
is the scattering index S = 1 − Tmin, derived from the theory of lineal ridge scattering. Here
Tmin = 2ε/(1 + ε2), where ε ≡ √

H1/H0. For a regional depth of H0 = 5500 m, features with depth
shallower than H1 = 1500 m interact significantly with tsunamis and those shallower than 400 m
can have a major effect on these waves. The horizontal extent of a feature, compared with the
wavelength, and the angle of incidence also affect the amount of scattering and reflection. Based on
these criteria, the Emperor Seamount Chain, the Hawaiian Ridges, the Mid-Pacific Mountains, the
Aleutian/Komandorskiye and Kuril Island Arcs, and the Shatsky and Hess Rises scatter and reflect
transoceanic tsunamis. This interaction also increases the duration of these tsunamis. Simulating
these processes with numerical models requires sufficiently accurate topography and high enough
spatial resolution.

1. Introduction

The NOAA/PMEL Tsunami Research Program is carrying out a project to
improve the U.S. Tsunami Warning System and the capability of the Pacific
Disaster Center (González et al., 1999). The project includes both model-
ing and observational components. The modeling component will lead to a
database of simulated Pacific-wide tsunamis. Using the database, simulated
tsunamis can be tuned quickly to earthquake information and to open-ocean
tsunami observations. The tuned model tsunamis will then provide fore-
casts of tsunami wave heights for coastal communities in Alaska, Hawaii,
California, Washington, Oregon, and the Pacific Insular States. Presently,
the source regions for the model tsunamis are limited to the Alaska/Aleutian
Subduction Zone (AASZ). However, plans are in place to expand the source
region to include the entire Pacific Rim. The open-ocean observations will
be reported in real time by an array of Deep-ocean Assessment and Report-
ing of Tsunamis (DART) buoys in the North Pacific Ocean and a station
near the Equator.

A goal of this work is to provide this guidance to the NOAA Tsunami
Warning Centers and the Pacific Disaster Center within an hour following
a tsunamigenic earthquake in the Pacific Region. Having a rapid proce-
dure is required in order to give emergency managers as long a lead time
as possible before the tsunamis reach their regions of responsibility. It
is also intended that this guidance will lead to a reduction in the num-
ber of false tsunami warnings and unnecessary evacuations. Details of the
NOAA/PMEL Tsunami Program, the Method Of Splitting Tsunami (MOST)
numerical model database (Titov et al., 1999), and the DART buoy system
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are given at the Tsunami Program’s Web site (URL: http://www.pmel.
noaa.gov/tsunami/).

While doing MOST model simulations of tsunamis in the North Pacific,
a number of issues arose concerning the effects of fine-scale topography on
Pacific-wide tsunamis. A study was then carried out to investigate these
issues. There were four main goals for the study: (a) understand how fine-
scale topography affects tsunami wave propagation, (b) develop simple cri-
teria for identifying topographic features that reflect and scatter significant
tsunami energy, (c) interpret the tsunami wave-height patterns seen in the
MOST model simulations, and (d) determine how smoothing the topogra-
phy affects the model tsunamis. The preliminary results of the study were
presented at the IUGG 99 Tsunami Symposium by Mofjeld et al. (1999b).

In this technical memorandum, we present the analytic theory that was
developed to address the first two goals. It is an application of linear, long-
wave theory to the scattering of tsunami waves off idealized forms of topogra-
phy. The analytic theory is meant to provide tools to use when interpreting
the results of the MOST numerical model. No claim is made that the bulk of
the theory is either original or comprehensive. Indeed, the theory is meant
to be as limited and simple as possible. Even so, it is still extensive enough
to unduly burden a publication in the peer-reviewed literature. This techni-
cal memorandum was therefore written to describe the theory in sufficient
detail to act as a reference for publications describing the effects of realistic
topography on Pacific-wide tsunamis. For a general overview and bibliogra-
phy on tsunami prediction research, please see the recent review by Mofjeld
et al. (1999a). What is new in the theory is the concept of minimum trans-
missivity and a scattering index S. This index turns out to be very useful
in identifying major scattering features in the open ocean.

Although tsunami scattering is weak over low topographic features (Car-
rier, 1971), recent model studies show that a number of features in the North
Pacific do scatter substantial tsunami energy (Mofjeld et al., 1999b). Much
of the finer-scale topography in the North Pacific consists of lineal features
such as escarpments, ridges, and trenches. Many of these have cross-feature
scales of tens to hundreds of kilometers but extend in length over thousands
of kilometers. These are the cross-feature scales that are most relevant to
tsunami wave scattering in the open ocean. The large extent of these features
means that any tsunami propagating across the North Pacific will encounter
a number of these features. There are also extensive fields of seamounts in
the region.

The technical memorandum is organized as follows. After this introduc-
tion are four sections deriving the analytic theory: basic formulation, es-
carpments, ridges and trenches, and circular seamounts. These provide the
essential formulas and interpretative tools for the discussion section, which
identifies the major scattering features in the North Pacific. Concluding the
technical memorandum is a summary of results. Readers may find it efficient
to look over the next section on the basic formulation of the theory and then
go directly to the Discussion and Conclusions (Sections 6–7), referring back
to the detailed theoretical sections as needed.
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2. Basic Formulation

The analytic theory is based on long waves interacting with idealized topog-
raphy in the open ocean. In the theory, we neglect the relatively small effects
of non-linear processes, dispersion and friction in the open ocean, as well as
the Coriolis effect. It turns out that the amount of scattering often depends
on a feature’s spatial extent relative to the tsunami wavelength or, more pre-
cisely, the phase shift across the feature. To include this dependence in the
theory, each tsunami is assumed to occur at a given frequency. Hence, the
theory may be thought of as a frequency analysis of tsunami wave scattering.
The focus of the theory is on scattering at locations that are well away from
the source and impact regions. The incident tsunami waves can then be
approximated by plane waves. While the long wave equations and formulas
for plane waves are readily available in many references and textbooks, it is
convenient to repeat them here in order to define the notation.

The long waves satisfy linearized equations of motion in the surface ele-
vation η and the wave transport Q = H u, which is the product of the water
depth H and the horizontal water velocity u = (ux, uy)

∂ Q
∂ t

= − g H � η (1)

∂ η

∂ t
= − � ·Q (2)

where t is time and g is the acceleration of gravity.
For constant depth H, these equations have plane wave solutions of the

form [
η

Q

]
= A

[
1

c k̂

]
e i [k·x− ωt] (3)

where A is the complex amplitude, c =
√

gH is the long wave speed, k̂ is the
unit vector pointing in the same direction as the wavenumber k = (kx, ky),
x = (x, y) is the horizontal distance vector, and ω is the angular frequency.

Defining the incident angle φ relative to the x-axis, the unit direction
vector k̂ can be written

k̂ = (cosφ, sinφ) . (4)

In the following sections, analogous notation will be defined for reflected
waves scattered off lineal topography (rectangular coordinate system) and
for waves scattered off seamounts (cylindrical coordinate system).

A useful concept to apply to wave scattering problems is the conservation
of energy flux. This principle requires that without dissipation, a steady flux
into a region must be balanced by an equal flux out of the region. To apply
the principle to scattering and reflection of tsunami waves inside a region,
it is convenient to write the fluxes as integrals over the bounding surface
of the flux density. For a two-dimensional plane wave (3) the flux density,
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integrated over depth, is defined as the energy propagating per unit time
and per unit width

F = ρ g c k̂
|A|2
2

. (5)

It is a vector in the direction of the wavenumber k and is proportional to the
water density ρ, the acceleration of gravity g, the long wave speed c, and the
square of the wave amplitude’s magnitude |A|. Since this form (5) has been
integrated over depth, each integral around the bounding surface becomes a
line integral of the normal component of the energy flux density.

For lineal topographic features (such as escarpments, ridges, and trenches),
rectangular regions provide simple forms for the flux components at the
bounding surfaces if two sides are oriented parallel to the features. When an
incident wave is planar, the transmitted and reflected waves are also planar.
Conservation of energy flux then reduces to a simple balance between flux
densities. In vector form,

FI + FR = FT (6)

where the subscripts refer to incident (I), reflected (R), and transmitted (T )
waves.

In the case of scattering off an isolated circular features, a circular re-
gion centered on the seamount provides simple formulas for the fluxes. For
instance, Lamb (1932) uses the flux out of such a region to estimate the
amplitudes of scattered waves resulting from the interaction of plane waves
with circular islands.

2.1 Lineal Step Topography: Normal Incidence

The theory uses stepwise topography to approximate the real topography.
These steps consist of constant-depth segments, separated by vertical tran-
sitions in depth. For lineal topography (escarpments, ridges and trenches),
we orient the coordinate system so that the topography varies only in the
x-direction. In this subsection, we concentrate mainly on normal incidence
(φ = 0◦). Then within the j-th segment (xj , < x < xj + δxj), the water
depth Hj is constant and the phase velocity cj and incident x-wavenumber
kj component (dropping the subscript x) are

cj =
√

gHj and kj =
ω

cj
(7)

For normal incidence the incident wave has the form[
ηj

Qj

]
= Aj

[
1
cj

]
e i [θj(x)−ωt] (8)

where the cumulative phase θj(x) is given by

θj(x) = θ0 + kj(x − xj) +
j∑

j′=1

kj′−1(xj′ − xj′−1) . (9)
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Here, the last term is the sum of the individual contributions to the phase
that are made as the wave propagates across each topographic step leading
to the j-th step.

For the reflected wave, we use ξj to denote the surface elevation, Rj

the water transport, and Bj the complex amplitude. Since this wave is
propagating in the opposite direction (in the negative x-direction) from the
incident wave, we reverse the signs of the transport (cj → −cj) and the
phase (θj → −θj) in (8)[

ξj

Rj

]
= Bj

[
1

−cj

]
e i [−θj(x)−ωt] (10)

The location of the origin x = 0 and the phases of the complex ampli-
tudes A(0) and B(0) at x = 0 are chosen to be the most convenient for the
particular topographic feature or the method of solution.

Linear wave theory requires that two quantities be continuous at an
abrupt change in water depth: the total surface elevation and the component
of the total water transport that is perpendicular to the transition in depth.
In the case of normal incidence on lineal topography varying only in the
x-direction, these conditions for the depth transition at x = xj are

ηj−1 + ξj−1 = ηj + ξj (11)

Qj−1 + Rj−1 = Qj + Rj (12)

Substituting for the normal transports in terms of the surface elevations and
using (7),

cj−1 [ηj−1 − ξj−1] = cj [ηj − ξj] (13)

or

ηj−1 − ξj−1 = εj [ηj − ξj] (14)

where

εj ≡
[

Hj

Hj−1

] 1
2

. (15)

When the matching conditions are applied to all the transitions in the
region, the resulting matching equations lead to the formulas describing the
wave scattering by the full topographic feature. When the subscript j is
dropped, the depth parameter ε corresponds to the minimum depth of a
feature relative to the depth of the nearby region over which the incident
waves propagate to the feature. As we will see throughout the rest of this
memorandum, ε plays a fundamental role in the scattering theory.

2.2 Continously Varying Topography

The theory for continuously varying topography is based on the matching
equations (11–14) in which the segment widths are allowed to go to zero



6 Mofjeld et al.

(δxj → 0). The derivation given below is for normal incidence. It is conve-
nient to use the wave speeds cj in the analysis. Solving (11–14) for ηj and
ξj leads to symmetric equations for the two waves

ηj − ηj−1 = −δcj

2cj
[ηj−1 − ξj−1] (16)

ξj − ξj−1 = −δcj

2cj
[ξj−1 − ηj−1] (17)

where δcj ≡ cj − cj−1.
Writing the surface elevations ηj−1 and ξj−1, evaluated at the matching

location x = xj , as

ηj−1 = Aj−1 eiθj and ξj−1 = Bj−1 e−iθj (18)

and using the phase relation

θj = θj−1 + kj−1δxj (19)

where

kj−1 =
ω

cj−1
and δxj = xj − xj−1 (20)

leads to difference equations for the wave amplitudes

Aj − Aj−1 = −δcj

2cj

[
Aj−1 − Bj−1 e−2iθj

]
(21)

Bj − Bj−1 = −δcj

2cj

[
Bj−1 − Aj−1 e2iθj

]
. (22)

Dividing (21–22) by δxj and taking the limit δxj → 0 leads in turn to
the differential equations in the amplitudes A(x) and B(x)

dA

dx
= −βA + βB e−2iθ and

dB

dx
= −βB + βA e2iθ (23)

where

β ≡ 1
2c

dc

dx
(24)

and the phase θ(x) is given by the integral of wavenumber over x

θ(x) =
∫ x

0
k(x′) dx′ . (25)

The boundary conditions on the amplitude A of the incident wave is that
it is equal to a known value A0 at a location x = 0 that is well before the
wave reaches the topography of interest

A = A0 at x = 0 . (26)
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The condition on the amplitude B is that the back-scattered wave has no
source on the far side of the topographic feature. Hence,

B → 0 as x → ∞ . (27)

Equations (23) can be simplified by using modified amplitudes A′ and
B′ that incorporate Green’s 1

4th–law

A =
[

H

H0

]− 1
4

A′ and B =
[

H

H0

]− 1
4

B′ . (28)

The differential equations (23) then take the form

dA′

dx
= βB′ e−2iθ and

dB′

dx
= βA′ e2iθ (29)

which can be integrated to give

A′ = A′
0 +

∫ x

0
β(x′) B′ e−2iθ′ dx′ (30)

B′ = B′
0 +

∫ x

0
β(x′) A′ e2iθ′ dx′ (31)

where

θ′ =
∫ x′

0
k(x′′) dx′′ .

The phase terms in the integrands of (30–31) contain factors of two in the
exponents because the total phase shift is the sum of two terms: the phase
shift θ′ due to forward propagation of the incident wave to a scattering site
and another shift of θ′ for the propagation of the scattered wave returning
from that site.

In this memorandum, the scattering by continuously varying topography
is limited to low relief. In this case, the topographic scattering is weak
enough that the incident amplitude A0 can be substituted into the equation
(31) for A′. For an isolated topographic feature that is limited in extent
(β = 0 for |x| > some x1),

B′ .= B′
0 +

∫ x

0
β(x′) A′

0 e2iθ′ dx′ (32)

or

B′ .= B′
0 + A′

0

∫ x

0
β(x′) e2iθ′ dx′ . (33)

Using the boundary condition (27) on B leads to a first approximation for
amplitude of the scattered wave

0 .= B′
0 + A′

0

∫ ∞

0
β(x′) e2iθ′ dx′ . (34)
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Changing the origin (x = 0) so that it is centered on the topographic feature
and extending the lower limit (x → −∞) of the integer in (34), the amplitude
B0 of the scattered wave is given approximately by

B0
.= −A0

∫ ∞

−∞
β(x′) e2iθ′ dx′ . (35)

At the same order of approximation the incident wave is unaffected by
the small-slope topography (more precisely, topography where β/k0 	 1),
other than the Green’s law variations in amplitude and cumulative shifts in
phase away from k0x. This is the WKBJ approximation for the interaction
of a tsunami wave with topography

η(x) .= A0

[
H

H0

]− 1
4

eiθ , θ = θ0 +
∫ x

x0

k(x′) dx′ . (36)

A first correction to the amplitude of the transmitted wave, due to scattering,
can be made using the conservation of energy flux (5–6).

In the following sections, the theory for continuously varying topography
will be applied to two cases. The first case is an escarpment having an error
function profile in depth, and the second is a ridge having a Gaussian profile.
These cases provide a way of identifying those processes predicted with step
topography that are likely to occur when tsunami waves encounter more
realistic topography. They also identify three frequency regimes: where
the step-topography theory applies, a continuous theory is needed, and the
WKBJ approximation adequately describes the behavior of the waves.

3. Lineal Escarpments

This section on lineal (straight) escarpments focuses on scattering and re-
flection by single transitions in depth. The simplest case is a step transition
when the tsunami wave approaches at normal incidence (φ = 0◦). For this
case, the behavior of the wave is dependent only on the depth parameter ε
and is independent of the wave frequency ω. At other incident angles φ, the
behavior is similar to the case of normal incidence except when the tsunami
waves approach the escarpment from the shallow side. Then, the waves can
be perfectly reflected for φ > φcrit, which depends on frequency ω. The last
part of the section deals with a continuous depth transition in the form of
an error function profile. The extension to non-normal incidence is straight-
forward. This section also provides essential background for the following
one on scattering by ridges and trenches.

3.1 Vertical Step Escarpment: Normal Incidence

Letting H0 be the depth on the side of a step escarpment (Figure 1) with
the incident wave and letting H1 be the depth on the other side, the match-
ing equations (11 and 14) lead to the following relations between the wave
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Figure 1: Schematic diagram of a step escarpment having a vertical transition
between two constant-depth regions H0 and H1. View is edge-on.

amplitudes

AI + BR = AT (37)
AI − BR = εAT (38)

where AI is the amplitude of the incident wave, BR is the amplitude of the
reflected wave, AT is the amplitude of the transmitted wave, and x = 0
at the escarpment. Here, the subscript has been dropped from the depth
parameter ε ≡ ε1.

Note that the matching conditions (37–38) do not change as the wave
frequency ω is changed. Hence, the results for the step escarpment are
independent of ω when the tsunami waves approach the escarpment with
normal incidence.

Solving (37–38) for the amplitude ratios RT ≡ AT /AI and RR ≡ BR/AI ,

RT =
2

1 + ε
and RR =

1− ε

1 + ε
. (39)

Figure 2 shows how the amplitude ratios RT and RR vary with ε. When the
incident wave approaches from the deep side of the escarpment (ε < 1), the
amplitude AT is larger than AI ; and the amplitude BR of the reflected wave
is positive. As the depth parameter ε becomes smaller, the greater depth
contrast across the escarpment causes AT → 2× AI and BR → AI .

Conversely, there is negative reflection (BR < 0) when the incident wave
approaches from the shallow side (ε > 1 ). In this case, increasing depth con-
trast leads to smaller AT → 0 and BR → −1. Hence, large depth contrasts
(|ε| � 1) produce strong wave reflection (|RR| → 1) regardless of whether
the incident wave approaches the escarpment from the deep or the shallow
side.

The transition (Figure 2) between the two asymptotic regimes passes
through ε = 1 where there is perfect transmission (RT = 1) and no reflection
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Figure 2: Amplitudes of reflected and transmitted tsunami waves resulting from
the interaction of a normally incident wave (φ = 0◦) on a step escarpment, as a
function of the depth parameter ε =

√
H1/H0. The amplitudes are shown as ratios

relative to the amplitude A0 of the incident wave.

(RR = 0). The width of the transition can be measured by the end-values
of the range 1.9 ≥ T ≥ 0.1. Using this criterion, the transition scans 1/19 ≤
ε ≤ 19 . The maximum rate of change of RT and RR occurs when ε = 1

max
[

dRT

dε

]
= max

[
dRR

dε

]
= −2 . (40)

Using (5), the transmitted energy flux FT can then be written

FT =
4ε

(1 + ε)2
FI and FR = −(1− ε)2

(1 + ε)2
FI . (41)

As Figure 3 shows, the energy flux FT of the transmitted wave has a
maximum value of unity (perfect transmission) at ε = 1 and decreases toward
zero energy transmission as the depth contrast increases. This includes the
case in which the transmitted wave AT → 2 × AI in which the escarpment
shoals to a very shallow depth on the side opposite the incident wave. The
energy flux FT of the transmitted wave is zero at ε = 1 and increases with
the depth contrast in such a way that the total energy flux (6) is conserved.
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Figure 3: Energy flux components in the direction of wave propagation for the
reflected FR and transmitted FT tsunami waves resulting from the interaction of a
normally incident wave on a step escarpment, as a function of the depth parameter ε.
The fluxes are shown as ratios relative to the flux FI of the incident wave.

3.2 Vertical Escarpment: Non-Normal Incidence

When the incident wave (Figure 4) approaches a step escarpment from a
non-normal angle (φ0 �= 0◦), the incident, reflected, and transmitted waves
all satisfy the dispersion relation

kx,j = kj cosφj and ky,j = kj sinφj where kj ≡ ω

cj
. (42)

For the step escarpment, Snell’s law of refraction (derived from the con-
stancy of ky across the y-independent topography ky,1 = ky,0), determines
the direction φ1 of the transmitted wave in terms of the incident angle φ0

and the depth parameter ε

φ1 = arcsin(ε sinφ0) . (43)

As shown in Figure 4, refraction causes the transmitted wave to turn more
normal (φ1 < φ0) when the incident wave approaches from the deep side of
the escarpment (ε < 1).

Conversely, it is less normal (φ1 > φ0) when the incident wave approaches
from the shallow side (ε > 1). Unlike normal incidence, it is possible for the
incident wave to be perfectly reflected by the escarpment when the incident
wave approaches from the shallow side of the escarpment. That is, there
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Figure 4: Schematic diagram showing the angles of incident (φ0) and refracted (φ1)
waves as a tsunami wave propagates obliquely across a step escarpment. φ1 < φ0

indicates that the incident wave is approaching from the deep side of the escarpment.

is a critical incident angle [φ0]crit beyond which the transmitted wave is
evanscent (kx,1 imaginary). A formula for this angle can be derived from the
dispersion relation

(kx,j)2 =
ω2

c2
j

− (ky,j)2 (44)

by noting that ky,1 = ky,0 and setting kx,1 = 0

0 =
ω2

c2
1

− k2
y,0 . (45)

Using (42) leads to

[φ0]crit = arcsin
(
ε−1

)
, ε ≥ 1 . (46)

Figure 5 shows that the critical angle [φ0]crit decreases rapidly as ε in-
creases past ε = 1. Since tsunami waves are not likely to have exactly normal
incidence on an escarpment, the theory suggests that there is a strong ten-
dency for tsunami waves to be reflected at a sharp transition from very
shallow water to the deep ocean. This tendency is much less pronounced
for oceanic escarpments since rarely is ε > 1.1 for escarpments in the North
Pacific, except for the Mendocino Escarpment.

Formulas for the transmissivity and reflectivity can be derived for non-
normal incidence using modified versions of the matching conditions (37–
38). While the matching condition for surface elevation remains the same,
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Figure 5: Critical angle φcrit of incidence (above which waves are perfectly re-
flected) for a tsunami wave approaching a step escarpment from the shallow side,
as a function of the depth parameter ε.

the condition on water transport is on its x-component

AI + BR = AT (47)
cosφ0 [AI − BR] = ε cosφ1 AT . (48)

We define a modified form of the depth parameter as

ε′ = ε
cosφ1

cosφ0
(49)

where φ1 is given be (43).
Dividing (48) by cosφ0 and using (49), the matching conditions (47–

48) then have the same form (39) as those for normal incidence, with ε′

substituted for ε. The amplitude ratios for non-normal incidence can then
be written down immediately

R′
T =

2
1 + ε′

and R′
R =

1− ε′

1 + ε′
for ε < εcrit (50)

and, noting that perfect reflection occurs for larger values of ε,

R′
T = 2 and R′

R = 1 for ε ≥ εcrit . (51)

Figure 6 shows that R′
T and R′

R follow RT and RR closely when the
incident wave approaches the escarpment from the deep-water side (ε ≤ 1).
As ε increases, they continue to follow RT and RR until ε is near its cutoff
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Figure 6: Amplitudes of reflected B0 and transmitted A1 tsunami waves resulting
from the interaction of an obliquely incident wave with a step escarpment, as a
function of the depth parameter ε =

√
H1/H0. The amplitudes are shown as ratios

relative to the amplitude A0 of the incident wave, where the incident angle φ0 = 30◦.
ε > 1 when the incident waves approach the escarpment from the shallow side.

εcrit. In that neighborhood, both R′
T and R′

R increase rapidly toward the
values (51) expected for perfect reflection. They remain at these values for
ε > εcrit. As seen in Figure 5, the depth parameter ε need not be much
greater than unity before this condition of perfect reflection is reached.

3.3 Error Function Escarpment: Normal Incidence

In this subsection, we consider scattering off a low escarpment having an
error function profile in the x-direction. The first order theory we will use
is valid for topography in which only small changes in depth occur relative
to the total depth. We assume normal incidence for the waves. When the
depth profile across an escarpment has this profile, we can write the depth
H(x) as

H(x) = H0

[
1 +

ε2 − 1
σ
√

π

∫ x

−∞
e−

x2

σ2 dx

]
. (52)

As shown in Figure 7, H0 is asymptotic depth (x → −∞) on the same side
of the escarpment as the incident wave. If H1 denotes the asymptotic depth
(x → ∞) on the other side of the escarpment, the depth parameter ε we will
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Figure 7: Schematic diagram of an escarpment having an error-function shaped
transition in depth between two constant-depth regions H0 and H1.

use is the asymptotic value

ε ≡
[

H1

H0

] 1
2

. (53)

Since the fractional change in depth is small across the escarpment, it is
convenient to define δε as the deviation of ε from unity

δε ≡ ε − 1 . (54)

Here, δε < 0 when the incident wave approaches the escarpment from the
deep-water side and δε > 0 when it approaches from the shallow side.

To discuss first-order scattering off this escarpment, it is convenient to
focus on amplitude B0 (35) of the back-scattered wave relative to the am-
plitude A0 of the incident wave. For normal incidence (φ = 0◦) and to first
order in δε, the scattering source term β (24) for an escarpment with an
error function profile is

β
.=

δε

2σ
√

π
e−

x2

σ2 . (55)

Then the modified amplitude B′
0 (35) for the back-scattered wave is

B′
0

.= −A′
0

δε

2σ
√

π

∫ ∞

−∞
exp

[
2ik0 − x2

σ2

]
dx (56)

or

B0
.= A0

(−δε)
2

e−k2
0σ2

. (57)

Consistent with the step topography, this expression shows that the ampli-
tude of the back-scattered wave (Figure 8) is independent of frequency when
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Figure 8: Amplitudes B0 of reflected tsunami waves resulting from the interaction
of a normally incident wave (φ = 0◦) with a low error-function escarpment, as a
function of the width-scale k0σ, for various values of the deviation δε of the depth
parameter from constant depth (ε = 1). The amplitudes are given as ratios relative
to the amplitude A0 of the incident wave.

the transition in depth across the escarpment occurs over a short distance
compared with the tsunami wavelength

B0
.=
(−δε)
2

A0 for k0σ 	 1 . (58)

Conversely, the amplitude is negligible

B0
.= 0 when k0σ > 2.5 . (59)

In between, there is a range (0.2 < k0σ < 2) in which the amplitude B0

of the back-scattered wave changes rapidly with changes in the wavenumber
k0, and therefore changes in the wave frequency ω. Hence, there is a range
of frequencies in which the scattering properties are dispersive (frequency
dependent). This is even though it is often said tsunami waves are non-
dispersive in the open ocean, in the shallow-water wave limit.

4. Lineal Ridges and Trenches

This section considers lineal (straight) ridges and trenches surrounded by an
abyssal plain of constant depth. Like the previous section on escarpments, it
contains, first, an analysis of scattering off step topography (normal and non-
normal incidence) and then an analysis for continuously varying topography
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Figure 9: Schematic diagram of a rectangular ridge having a summit of constant
depth H1 and surrounded by a region of constant depth H0. The sides of the ridge
are vertical.

(Gaussian profile). The tsunami waves approach these features from the
abyssal plain, rather than propagating as trapped waves along ridges. For
a discussion of the latter, please see the recent paper by Koshimura et al.
(1999).

The analysis for rectangular ridges leads the concept of minimum trans-
missivity, which leads in turn to a scattering index that can be used to assess
the potential for finer-scale topography to scatter tsunami waves in the open
ocean.

4.1 Rectangular Ridge: Normal Incidence

Figure 9 shows a tsunami wave (3) that is normally incident (φ = 0◦) on a
rectangular ridge of width L and depth of H1. The ridge is surrounded by
an abyssal plain with the same depth (H0 = H2) on either side of the ridge.

The matching conditions (11 and 14) at the two depth transitions (x1 =
0 and x2 = L) can be written as conditions on the amplitudes (Aj ,Bj).
By assumption, B2 = 0 since this is the amplitude of a wave that would
be incident on the other side of the ridge. Four matching conditions then
determine the remaining four amplitudes in terms of the amplitude A0 of
the incident wave.

We take the segment width δx0 to be so small (δx0 → 0) that

η0 = A0 ξ0 = B0 at x = x1 . (60)

Letting the phase shift across the ridge θ and the depth parameter ε ≡ ε1 be
defined by

θ ≡ k1L and ε ≡
√

H1

H0
, (61)
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the four matching conditions are then

A0 + B0 = A1 + B1 (62)
A0 − B0 = ε [A1 − B1] (63)

A1eiθ + B1e−iθ = A2 (64)

ε
[
A1eiθ − B1e−iθ

]
= A2 . (65)

To solve (62–65) for the amplitudes in terms of the amplitude A0 of the
incident wave, it is convenient to first write B0, A1, and B1 in terms of the
amplitude A2 of the transmitted wave and then write A2 in terms of A0

B0 = −i

(
1− ε2

2ε

)
sin θ A2 (66)

A1 =
(
1 + ε

2ε

)
e−iθ A2 (67)

B1 = −
(
1− ε

2ε

)
e iθ A2 (68)

where

A2 =
[
cos θ − i

(
1 + ε2

2ε

)
sin θ

]−1

A0 . (69)

The amplitude B0 (66) of the reflected wave is zero when either the ridge
has the same depth as the surrounding region (ε = 1) or the width of the ridge
goes to zero (θ → 0◦). For a given value of ε, B0 is a maximum whenever
the phase shift θ across the ridge is a multiple of 90◦. Conversely, it is
zero whenever θ = 0◦, 180◦ . . . . These two extrema correspond to minimum
transmission and perfect transmission of wave energy, respectively.

When ε is close to unity, the amplitude A1 (67) is near A2 and B1 (68)
is small, so that the incident wave is relatively unchanged as it propagates
over the ridge. When the ridge is very shallow (ε 	 1), there is an apparent
tendency for the on-ridge waves to have large amplitudes. However, we will
see that the rectangular ridge produces artificial results in this parameter
range, especially with regard to wave resonances on the ridge.

4.2 Rectangular Ridge: Transmissivity

Equation (69) leads to a formula for the magnitude of the ratio A2/A0 be-
tween the amplitudes of the transmitted and incident waves, which we will
call the transmissivity

T = Tmin

[
T 2

min cos
2 θ + sin2 θ

]− 1
2 (70)

where the minimum transmissivity Tmin is given by

Tmin =
2ε

1 + ε2
. (71)
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Figure 10: Transmissivity (T = |A2/A0|) for tsunami waves that are normally
incident (φ = 0◦) on a rectangular ridge, as a function of the cross-ridge phase shift
θ = k1L for various values of the depth parameter ε =

√
H1/H0.

In the interpretation of the transmissivity given below, it is convenient
to discuss it in terms of its percentage relative to perfect transmission (no
topographic scattering by the ridge). Figure 10 shows that the transmissivity
T (70) is a periodic function of the phase shift θ across the ridge. The
maximum value (T = 100%) occurs at θ = 0◦, 180◦ and integer multiples
of the latter; while the minima (T = Tmin) occur at θ = 90◦ and its odd
multiples. When the ridge has low relief so that ε is close to unity, T remains
close to 100%. This is regardless of the ridge width, as measured by the phase
shift θ, and hence the wave frequency. The minimum value of T (Figure 10)
decreases rapidly as ε increases over the range ε = 0.6 → 0.2, and the amount
of scattering therefore tends to be a sensitive function of both ε and θ in this
parameter range. At smaller values of ε (e.g., the ε = 0.1 curve in Figure 10),
the transmissivity is low over a broad range of the phase shift θ. To rise from
low values to T = 100% at θ = 0◦, 180◦ and its multiples, the transmissivity
T increases rapidly in the vicinity of these θ values. This increase is most
pronounced when the depth parameter ε is small, corresponding to high
ridges that reach close to the surface relative to the surrounding region.

The minimum transmissivity Tmin (71) is a very useful measure of the
potential that linear topographic features have to scatter tsunami waves in
the open ocean. One distinct advantage of using it is that it depends only on
the depth of the feature compared with the depth of the region immediately
surrounding the feature. As seen in Figure 11, Tmin forms a symmetric,
bell-shaped curve when plotted versus log(ε), with the peak of the curve at
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Figure 11: Minimum transmissivity Tmin for tsunami waves that are normally
incident (φ = 0◦) on a rectangular ridge, as a function of the depth parameter ε.

ε = 1. Besides the behavior of Tmin discussed in the previous paragraph, it
is worth noting that near ε = 1 the minimum transmissivity is a parabolic
function of the deviation δε ≡ ε − 1

Tmin
.= 1− 1

2
(δε)2 . (72)

For rectangular trenches (ε > 1), the minimum transmissivity Tmin (Fig-
ure 11) decreases to small values as ε increases. However, the subsection
3.2 on escarpments shows that only a modest deviation from normal inci-
dence is required to produce strong reflection, which corresponds to markedly
decreased transmission. Further, even with normal incidence on a trench,
increasing ε tends to decrease the phase shift across a trench and therefore
diminishes the effect of the trench width on scattering. We must there-
fore regard scattering off trenches to be distinctly different in behavior from
scattering off ridges, when ε deviates greatly from unity.

To understand how the transmissivity T varies with ε for fixed ridge
width L and wave frequency ω, we note that the cross-ridge phase shift θ
for normal incidence is given by

θ =
θ1

ε
(73)

where θ1 is the cross-ridge phase shift when ε = 1. Because of their inverse
relationship, θ increases as ε decreases and vice versa.

For θ1 = 47◦, Figure 12 shows that as ε decreases from unity, the trans-
missivity T is closely approximated by the minimum transmissivity Tmin for
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Figure 12: Transmissivity T for tsunami waves that are normally incident (φ = 0◦) on a rectangular ridge,
as a function of the depth parameter ε for fixed frequency ω and ridge width L when the cross-ridge phase
shift θε=1 = 47◦.

a considerable range of ε. As ε decreases further, the phase shift θ (73) ap-
proaches 90◦; the transmissivity then rises above Tmin and reaches T = 100%
when the ridge width is a quarter wavelength (θ = 90◦). The reflectivity
(R ≡ |B0|/|A0|) is also plotted in Figure 12 to show the reciprocal relation-
ship between T and R, in which T 2 + R2 = 1.

As ε decreases further, T oscillates rapidly between Tmin and 100% due
to on-ridge resonances. Subsection 4.4 below will show that the higher-order
resonances do not occur when the ridge has a Gaussian cross-section. Hence,
whether they exist or not depends on the details of the cross-ridge depth
profile; only the first case (θ = 90◦) is a robust feature of ridge scattering.

When ε > 1, the behavior of T (Figure 12) is very different from the ridge
regime. The T curve deviates almost immediately from Tmin as ε increases
from ε = 1, decreasing smoothly toward a relatively high asymptotic value

Tε→∞
.=

[
1 +

1
4

θ2
1

]− 1
2

(74)

where θ1 < π
2 is in radians. The transmissivity T (Figure 12) decreases

monotonically toward Tε→∞ and there are therefore no passages of θ (73)
through 90◦ as ε increases. For wide trenches, T may rise at least once to
perfect transmission T = 100% before decreasing to Tε→∞. However, T still
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has the general properties of deviating quickly from unity and remains much
higher than Tmin as ε increases further.

In conclusion, the analysis and examples given in this subsection show
that when tsunami waves are normally incident on rectangular ridges, the
transmissivity T (70) is closely approximated by Tmin (71) over substantial
ranges of the depth parameter ε and the width of the ridges, as measured by
the cross-ridge phase shift θ. Hence, the minimum transmissivity Tmin is a
useful quantity for identifying those ridge-like features in the open ocean that
are likely to cause significant scattering of tsunami waves and, conversely,
the ones that allow the waves to pass without affecting the transmitted
amplitude.

In contrast, T deviates quickly from Tmin as ε increases over ε = 1 and
remains high, implying that rectangular trenches produce only weak scatter-
ing. This result is specific to normal incidence. The analysis of non-normal
incidence on step escarpment (Section 3.2), in which the wave approaches
obliquing from the shallow side (analogous to incidence on a wide trench),
shows that there is a marked tendency for strong reflection and hence T 	 1.

4.3 Rectangular Ridge: Oblique Incidence

The purpose of this subsection is to show that the transmissivities T (70)
and Tmin (71) are reasonable approximations for ridges over a substantial
range of incident angles, even though they were derived for normal incidence.

We assume that the lineal ridge is still aligned with the y-coordinate.
Then, letting φj be the angle in the jth segment that the wavenumber vec-
tor *kj makes with the x-axis, the x- and y-components of the wavenumber
are

kx,j = kj cosφj and ky,j = kj sinφj , (75)

where

kj =
ω

cj
.

For a rectangular ridge, refraction decreases the incident angle φ0 (Fig-
ure 13) to φ1. Since H2 = H0, φ2 = φ0. The matching conditions then
take the same form as (62–65) except that the depth parameter ε and the
cross-ridge phase shift θ1 are replaced by

ε′ = ε
cosφ1

cosφ0
(76)

and

θ′1 = θ1 secφ1 . (77)

Since the forms of the matching conditions are the same, it follows that
the transmissivities for non-normal incidence have the same form as T (70)
and Tmin (71), when ε′ and θ′1 are substituted for ε and θ1

T ′ = T ′
min

[
T ′ 2

min cos
2 θ′1 + sin2 θ′1

]− 1
2 (78)

T ′
min =

2ε′

1 + ε′ 2
. (79)
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Figure 13: Schematic diagram showing the angles of incident φ0, on-ridge φ1, and
transmitted φ2 = φ0 waves when an obliquely incident tsunami wave interacts with
a rectangular ridge.

From Snell’s law of refraction (derived from the condition ky,0 = ky,1),

φ1 = arcsin (ε sinφ0) , (80)
or

φ1 � ε φ0 (81)
for | ε| . 1 and |φ0| . 30◦ .

The decrease in the angle φ1 over the ridge, as compared with the incident
angle φ0, acts to decrease the effect of oblique incidence on the transmissivi-
ties. We can see this explicitly by studying an approximate formula for T ′

min

as a function of ε1 and φ0. Noting that

ε′ � ε
cos ( εφ0 )
cos (φ0)

(82)

or ε′ � ε + ε
(
1− ε2

)2 φ2
0

2
, φ0 in radians, (83)

the minimum transmissivity T ′
min is approximately (within 10%)

T ′
min = Tmin + δT ′

min, δT ′
min � λ (ε) φ2

0 (84)

where

λ (ε) ≡ ε

(
1− ε2

)2

( 1 + ε2 )2
. (85)
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Figure 14: Transmissivity factor λ, as a function of the depth parameter ε.

As shown in Figure 14, the factor λ (85) is small over the full range of
ε that is applicable to ridges (0 ≤ ε < 1). Its maximum value λmax = 0.214
occurs at ε = 0.351.

The shapes of the deviations δT ′
min (Figure 15) follow that of λ (ε). How-

ever, they are scaled by an angular dependence φ2
0 that reduces the deviation

δT ′
min considerably (for φ0 ≤ 30◦). For instance, the maximum deviation

δT ′
min = 0.059 for φ0 = 30◦. This corresponds to <11% of typical values

for the normal-incidence Tmin. Hence, the formula (71), derived for nor-
mal incidence (φ0 = 0◦), is a reasonable approximation to the minimum
transmissivity over a substantial range of incidence angles φ0.

4.4 Gaussian Ridge: Normal Incidence

The first-order scattering theory for a low ridge having a Gaussian profile
(Figure 16) provides a useful contrast to scattering off the rectangular ridge.
The depth profile has the form

H(x) = H0

[
1 + (ε2 − 1) e−

x2

σ2

]
(86)

where we define the depth parameter ε in terms of the minimum depth H1

over the crest of the ridge and the depth H0 of the surrounding region,

ε ≡
[

H1

H0

] 1
2

. (87)
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Figure 15: Deviation δT
′
min of the minimum transmissivity from unity, as a func-

tion of the depth parameter ε for various values of the incident angle φ0.

Figure 16: Schematic diagram of a ridge having a Gaussian cross-section with
minimum depth H1, surrounded by a region of constant depth H0.
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Following the same procedure (Section 3.3) that was used to develop scat-
tering formulas for the error function escarpment, the β–factor for normal
incidence (φ0 = 0) on a low Gaussian ridge is

β
.=

δε x

σ2
e−

x2

σ2 (88)

where δε ≡ ε − 1.
Substituting this form into equation (35) leads to the integral relation

for the amplitude B0 of the reflected wave

B0
.= −A0

δε

σ2

∫ ∞

−∞
x exp

[
2ik0 − x2

σ2

]
dx . (89)

Integration by parts then leads to the explicit formula

B0
.= iA0 (−δε)

√
π k0σ e−k2

0σ2
. (90)

The factor of i =
√−1 in (90) causes the reflected wave to lag the incident

wave in time by an additional 90◦. This phase shift is due to the offset in
space between the contributions that the up-slope and down-slope halves of
the Gaussian ridge (Figure 16) make to the scattering process.

To illustrate how the amplitude of the reflected wave depends on the
height of the Gaussian ridge and the wavelength, it is convenient to plot the
ratio B0 / iA0, as a function of k0σ for various values of δε. As Figure 17
shows, the amplitude ratio is small for both low and high values of k0σ,
with a single maximum (−δε)

√
π/2e that occurs between these regimes at

k0σ = 1/
√
2. The domain in which the ratio is a significant fraction of the

maximum is roughly 0.05 < k0σ < 2. At low frequencies and therefore low
wavenumbers, the ratio is proportional to k0σ. At the high frequencies, the
cutoff is exponentially sharp.

The interpretation of the low-frequency regime is that the up-slope and
down-slope contributions to scattering nearly cancel. The net scattering
that does occur is due to the slight offset of these slope areas relative to
the wavelength. This spatial offset increases linearly with the product k0σ.
In the high-frequency regime (k0σ > 2), the bottom slopes are too gentle
to produce significant scattering. The wave behavior is then in the WKBJ
regime.

To understand why the optimal scattering occurs at k0σ = 1/
√
2, we note

that the effective phase shift across the Gaussian ridge is about θ = 2k0σ.
For the rectangular ridge, the lowest frequency resonance in scattering occurs
when θ = 90◦, or θ = π / 2 radians. Then, k0σ = 0.785 which is within 12% of
1/
√
2 = 0.707. Hence, the optimal scattering for the Gaussian ridge occurs

when the centers of the up-slope and down-slope regions are separated in
distance by a quarter of a wavelength, which is the same condition that
is needed for the lowest-frequency scattering resonance associated with the
rectangular ridge.

Since the lowest-frequency scattering resonance is very similar for the
Gaussian and rectangular ridges, this resonance appears to be a robust fea-
ture of the scattering process. Unlike the rectangular shape, however, the
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Figure 17: Amplitude B0 of the reflected wave resulting from the interaction of a
normally incident tsunami wave (φ0 = 0◦) with a low Gaussian ridge, as a function
of the ridge-width scale (k0σ) for various values of the deviation δε of the depth pa-
rameter ε =

√
H1/H0 from unity. The amplitudes are shown as the ratio B0/(iA0),

where A0 is the amplitude of the incident wave.

Gaussian shape does not lead to any higher-frequency resonances. Hence,
the existence of the higher resonances depends on the detailed shapes of the
topographic features.

The dependence (Figure 17) of the ratio B0 / iA0 on δε is linear for low
Gaussian ridges, in which the positive values of the ratio correspond to ridges
(δε < 0) and negative values correspond to Gaussian trenches (δε > 0). As
with low escarpments, an estimate of the amplitude of the transmitted wave
can be made by invoking conservation of energy flux (6).

5. Circular Seamounts

This section revisits a standard topic in wave scattering theory, the scat-
tering of plane waves off circularly symmetric seamounts and islands (e.g.,
Lamb, 1932; Meyer, 1995). The derivation generally follows those for lineal
features, except that it is done in polar coordinates and involves sums of
Bessel function solutions to the equations of motion.

Of particular interest are the conditions under which radially symmet-
ric resonant scattering is likely to occur. This interest is prompted by
model simulations showing concentric scattering features that occur when
tsunami waves pass by the southern end of the Emperor Seamount Chain
and the Mid-Pacific Mountains. The analysis is limited to seamounts hav-
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Figure 18: Schematic diagram of a circular seamount of radius r0, having a summit
of constant depth H1 and surrounded by a region of constant depth H0. The sides
of the seamount are vertical.

ing constant-depth summits and vertical side-walls. For such seamounts,
Meyer (1995) provides a detailed analysis of multiple resonances that are
theoretically possible with this topography.

As shown in Figure 18, we use a polar coordinate system (r,φ) in which
the origin is at the center of the seamount and the φ = 0◦ axis is in the
direction that the incident wave is propagating. The seamount has a depth
of H1 and is surrounded by an abyssal plain having a constant depth H0.
The radius of the seamount is r0. In terms of the incident wave η, the
amplitudes of the scattered wave ξ and the wave ζ over the seamount are
determined by matching the surface elevation and the radial components of
water transport at the edge of the seamount r = r0

η + ξ = ζ (91)

Qr + Rr = Sr

or

c0

[
dη

dr
+

dξ

dr

]
= c1

dζ

dr
. (92)

Using the standard method of solution for 2-D scattering of plane waves
off cylindrical objects, each wave is expanded into sums of products in which
the angular dependences are cosine functions cosnφ. Letting n denote the
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index of the sums

η = AI

∞∑
n=0

anJn(k0r) cosnφ (93)

ξ = AI

∞∑
n=0

hnH(1)
n (k0r) cosnφ (94)

ζ = AI

∞∑
n=0

bnJn(k1r) cosnφ (95)

where Jn is the nth order Bessel function of the first kind and H
(1)
n is the

nth order Hankel function of the first kind, corresponding to outward prop-
agation away from the seamount.

The coefficients an for a plane wave are

an =

{
1 for n = 0

2 i n for n ≥ 1
. (96)

Since the angular functions cosnφ are linearly independent, the matching
conditions (91–92) reduce to equations in the coefficients

anJn(θ0) + hnHn(θ0) = bnJn(θ1) (97)

anJ
′
n(θ0) + hnH

′
n(θ0) = ε bnJ

′
n(θ1) (98)

where θ0 = k0r0 and θ1 = ε−1θ0. Here, the primes denote differentiation and
it is understood that Hn is a Hankel function of the first kind.

Solving (97–98) for bn and hn

bn = an

[
J

′
n(θ0)Hn(θ0)− Jn(θ0)H

′
n(θ0)

]
/ D (99)

hn = an

[
J

′
n(θ0)Jn(θ1)− ε Jn(θ0)J

′
n(θ1)

]
/ D (100)

where

D ≡ ε J
′
n(θ1)Hn(θ0)− Jn(θ1)H

′
n(θ0) . (101)

The angular dependence and intensity of scattering that occurs as a
function of the depth parameter ε can be seen by plotting the ratio |hn|/|an|.
Figure 19 shows that over a considerable range (ε > 0.15), dipole scattering
(n = 1) is most important. The intensity of scattering in this regime is small
(|hn|/|an| < 0.08).

In contrast (Figure 19), the intensity of the monopole scattering (n=0)
increases rapidly as ε decreases and dominates the scattering process around
the values of ε and θ0 = k0r0 corresponding to the lowest-frequency resonance
over the seamount, where J0(θ1)

.= 0. This, and other resonances, can also
be seen in the plots (Figure 20) of on-seamount bn magnitudes. As with the
rectangular ridge, the presence (or absence) of higher resonances is likely to
depend very critically on the details of the topography. However, the lowest
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Figure 19: Magnitudes of the off-seamount coefficients hn for scattered wave com-
ponents, as a function of the depth parameter ε =

√
H1/H0 for the non-dimensional

radius θ0 = 0.2. The magnitudes are shown as ratios relative to corresponding co-
efficient an for the incident plane wave.

Figure 20: Same as Figure 19 but for the on-seamount coefficients bn.
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resonance is likely to be a robust feature that is insensitive to the details of
the topography.

From the analysis of scattering from circular seamounts with constant-
depth summits and vertical side-walls, we see that the scattering tends to
be weak and dominated by dipole (n = 1) scattering. The exception is when
the wave frequency, seamount radius, and relative depth allow a monopole
(n = 0) resonance to occur over the seamount. In this case a strong, radially
symmetric pattern will be seen radiating from the seamount as a tsunami
wave passes.

6. Discussion

In this section, we use the analytic theory to address several important issues
concerning tsunami wave scattering in the North Pacific. The first issue is
how shallow must a topographic feature be to scatter significant tsunami
energy and, further, how shallow must it be before it will almost certainly
interact strongly with tsunami waves. Since the minimum transmissivity
Tmin (71) is large when the interaction of tsunami waves with topography is
small and small when the interaction is large, it is useful to define a scattering
index

S = 1 − Tmin . (102)

This index has the convenient property that it is small when the scattering
is small, and large when it is large. Since Tmin is bounded between zero
and unity, so is S. Based on the theory presented in this memorandum, this
index provides an effective tool for identifying those topographic features in
the ocean that are likely to scatter or reflect significant tsunami wave energy.

As shown in Figure 21 and Table 1, a feature needs to be shallower than
3000 m in order to produce even a small amount of scattering (S ≥ 0.01)
for the regional depths (H0 = 4000–6000 m) that occur in the open North
Pacific. It needs to be <1500 m to produce substantial scattering (S ≥ 0.2)
and will almost certainly have a major effect on tsunami waves (S ≥ 0.5) if
it is shallower than 400 m.

Hence, tsunami wave scattering between the Alaska-Aleutian Subduction
Zone and Hawaii (Figure 22) is small because of the large depths of topo-
graphic features in this region. Titov et al. (1999) verify this result by show-

Table 1: Feature depth H1 (m), as a function of depth H0 (m) of
the surrounding region and the scattering index S.

H0 S : 0.01 0.05 0.10 0.20 0.50

4000 3011 2096 1571 1000 287
4500 3387 2358 1768 1125 323
5000 3764 2620 1964 1250 359
5500 4140 2883 2161 1375 395
6000 4516 3145 2357 1500 431
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Figure 21: Depth H1 of topography features as a function of the scattering index
S, for different values of the depth H0 of the surrounding region. Based on normally
incident tsunami waves interacting with rectangular ridges.

ing that tsunamis propagating southward from the AASZ are sensitive only
to the regional variations in topography. This is based on a one-dimensional
numerical model (single-frequency tsunamis propagating southward along
157◦W) and MOST model simulations for tsunamis generated in the AASZ.

There are, however, high features farther west and south that interact
strongly with tsunami waves. These are the Emperor Seamount Chain, the
Hess and Shatsky Rises, the Mid–Pacific Mountains, the Musician Seamounts,
and the Hawaiian Ridges themselves. In addition, the Aleutian–Komandor-
skiye and Kuril Island Arcs are major barriers to tsunamis. There are also
likely to be significant topographic interactions in the continental margin off
the U.S. West Coast, British Columbia, and Southeastern Alaska, due to the
complex topography associated with the Alaskan Seamounts, the Endeav-
our and Juan de Fuca Ridges, the Gorda Fracture Zone, and the Mendocino
Escarpment.

The geographic extent of a topographic feature is also important in terms
of how strongly it interacts with tsunami waves. A useful measure of this
extent is the width of a feature corresponding to its lowest frequency reso-
nance. These resonances are the most likely to occur and the least sensitive
to the details of the topography. Also, many ridges and large seamounts
have flat tops due to erosion that occurred when these features extended
very close to the sea surface.
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Smith/Sandwell Topography 6.2

140oE 150oE 160oE 170oE 180o 170oW 160oW 150oW 140oW 130oW 120oW

140oE 150oE 160oE 170oE 180o 170oW 160oW 150oW 140oW 130oW 120oW

0o  0o

5oN  5oN

10oN  10oN

15oN  15oN

20oN  20oN

25oN  25oN

30oN  30oN

35oN  35oN

40oN  40oN

45oN  45oN

50oN  50oN

55oN  55oN

Emperor Seamount Chain

Hawaiian Ridges

Mid-Pacific Mountains

Aleutian/Komandorskye Islands

Kuril Islands

Shatsky Rise Hess Rise
Mendocino Escarpment

depth [meters]
-7000 -6500 -6000 -5500 -5000 -4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0

Figure 22: Smith-Sandwell topography for the North Pacific Ocean. Features in the open ocean with depths
<1500 m are likely to scatter a significant amount of tsunami wave energy, while features with depths <400 m
are likely to have a major impact on passing tsunami waves.
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6.1 Ridges and Seamounts

For tsunami waves that have normal incidence φ = 0◦ on rectangular ridges
(Section 4.1), this resonance occurs when the cross-ridge width is a quarter-
wavelength (k1L 1

4
= 90◦) as computed from the wave period τ and the ridge

depth H1

L 1
4
=

τ

4

√
gH1 (103)

For circular seamounts having flat tops, the corresponding resonance occurs
very near the first zero of the zero-order Bessel function [J0 (k1r0) = 2.405].
The diameter of the seamount at this resonance is then

D0 =
2.405

π
τ

√
g H1 (104)

Over the range of tsunami wave periods τ = 5–50 min, there is a wide
range of the possible widths and diameters (Table 2) that allow the low-
est frequency resonances to occur. However, the most tsunami energy will
be scattered by the shallower (H1 ≤ 400 m) seamounts. In this case, the
horizontal scales range from <10 km to 160 km. Here, the shorter scales
correspond to short-period tsunamis incident on shallow features, and the
longer scales to long-period tsunamis incident on deep features. The signa-
tures of these resonances in observed tsunamis and numerical simulations
are strong reflections by ridges and strong circular patterns eminating from
seamounts.

Further application of the theory to ridges and seamounts in the North
Pacific is made difficult by the complex nature of these features. For in-
stance, the Emperor Seamount Chain (Figure 22) has numerous short ridge
segments that are topped by seamounts and separated by deep passes. Such
irregular topography over a wide range of scales is also seen along the Aleu-
tian/Komandorskiye and Kuril Island Arcs and the Hawaiian Ridges. The
other major features (Hess and Shatsky Rises, Mid-Pacific Mountains, Musi-
cian Seamounts and the eastern continental margin off the U.S. West Coast,
British Columbia, and Southeastern Alaska) has complicated topography as
well.

6.2 Escarpments and Trenches

Escarpments can cause strong reflections when the tsunami waves approach
these features obliquely from the shallow side. This is provided the depth
contrasts are large enough across the escarpments. Given the criteria de-
veloped in Section 3, the only escarpment in the North Pacific (Figure 22)
that has a large enough depth contrast to strongly reflect tsunami waves
is the eastern segment of the Mendocino Escarpment, near the U.S. West
Coast. The effect of the escarpment is enhanced by a ridge that runs west-
ward along its crest from the coast to 129◦W. These tsunami waves need
to approach from the northern side at non-normal incidence. Hence, there
is a tendency for tsunamis generated in the AASZ and Kamchatka regions
to be partially reflected toward the north when they reach the easternmost
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Table 2: Ridge width (103) and seamount diameter (104) cor-
responding to the lowest frequency resonances, as functions of
tsunami wave period and depth of the feature. The diameters are
3.06 times the widths, for the same period and depth.

Ridge Seamount Ridge Seamount
Period Depth Width Diameter Period Depth Width Diameter
(min) (m) (km) (km) (min) (m) (km) (km)

5 100 2 7 30 100 14 43
500 5 16 500 32 96

1000 7 23 1000 45 136
1500 9 28 1500 55 167

10 100 5 14 40 100 19 58
500 11 32 500 42 129

1000 15 46 1000 59 182
1500 18 56 1500 73 223

20 100 9 29 50 100 23 72
500 21 64 500 53 161

1000 30 91 1000 74 227
1500 36 111 1500 91 278

segment of the Mendocino Escarpment. It will also produce some reflection
of tsunami waves generated in the Cascadia Subduction Zone, which lies
immediately north of the escarpment.

While the North Pacific (Figure 22) is bounded along its northern and
western margins by deep trenches, the theory presented in Section 4 indi-
cates that these features produce very little scattering for a relatively wide
range of incident angles. However, they do contribute to wave trapping of
tsunamis on the adjacent continental shelves and tsunami propagation along
the shelves and continental slopes. They do this by decreasing the incident
angle necessary for trapping (evanescent off-shelf wave). The Emperor and
Chinook Trenches, located east of the Emperor Seamount Chain, do not
scatter significant tsunami wave energy because the surrounding region is so
deep.

6.3 Transient Tsunamis

Real tsunamis are transient events that can be thought of as the sum of
single-frequency components, where the dominant components of a real
tsunami tend to occur within a relatively narrow frequency band. Hence, the
general results of the single-band theory can be applied to these tsunamis.

Scattering and reflections extend the duration of real tsunamis in the
North Pacific. Since these processes depend on the wavelength of the tsunamis
relative to the horizontal scales of the topography, this topography also
causes dispersion in the tsunami waves. This is even when they satisfy
the long-wave equations, which are non-dispersive for constant depth. They
also contribute to the random appearance of tsunami time series observed
at tide gages as various decaying wave components interfere with each other
(Mofjeld et al., 1999a).
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The theory has focused on tsunami wave scattering from isolated topo-
graphic features. However, the pattern from even a small number of scatter-
ers located near each other is very difficult to interpret. Numerical models
(e.g., Mofjeld et al., 1999b; Titov et al., 1999) are then the appropriate tools
to study the combined effects of realistic topography. Numerical simulations
also go beyond a frequency analysis to an analysis of tsunami wave scatter-
ing when these waves have realistic tsunami patterns in time. The analytic
theory provides essential tools for interpreting the model simulations.

7. Conclusions

Based on the analytic theory presented in Sections 3–7, we are led to the
conclusions shown in Table 3.

The theory also leads to quantities, based on the water depth, that can
be used to assess whether topographic features are likely to cause significant
scattering and/or wave reflection. Of particular value is the scattering index
S. The application of this index to the North Pacific Ocean is given in the
Discussion Section.

Numerical tsunami models of the North Pacific that do not resolve these
features adequately, either by lacking spatial resolution or using smoothed
topography, will not properly simulate the interaction between these features
and tsunamis. The theory presented in this memorandum provides simple,
yet powerful, tools for interpreting these interactions.
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Table 3: Conclusions

Feature Type Depth Profile Incident Angle Conclusions

Basic Formulation
(lineal features)

Step Normal Scattering and reflection depend on the depth of a feature,
relative to the depth of the surrounding region, and on
wave frequency.

Oblique Wave direction becomes more normal when the feature is
shallower than its surroundings and more oblique when
propagating into deeper water (sometimes reflecting the
waves).

Continuous Normal Local scattering strength is proportional to the logarith-
mic gradient of the depth. Otherwise, wave amplitudes
are controlled by Green’s 1

4
th–law and phases by the spa-

tial integral of the local phase gradient.

Escarpments Step Normal Reflection off an abrupt escarpment is independent of
wave frequency and is strongest at large depth contrasts.

Oblique Perfect reflection can occur as waves attempt to propagate
into deeper water (when incident angle is large enough).

Error
Function

Normal Narrow-width escarpments behave like the step escarp-
ment; the behavior is a sensitive function of frequency
when the product of wavelength times width scale is order
unity; gently sloping features produce negligible scatter-
ing.

Ridges Rectangular Normal The scattering index, based on minimum transmissivity,
is a useful tool for identifying important scattering fea-
tures. Strongest reflections (lowest transmission) occur
when the cross-ridge phase shift is an odd multiple of 90◦,
and weakest for a multiple of 180◦. Narrow ridges produce
only weak reflections, unless they are very high.

Oblique Refraction causes behavior to be much like the normal-
incidence case, over a substantial range of incident angles.
(Ridge-trapped waves are not considered in the theory.)

Gaussian Normal The minimum transmission matches closely the first min-
imum for the rectangular ridge, but the other (higher fre-
quency) minima are missing; hence the first minimum is
a robust feature of ridge topography, but the others are
not. Smooth, broad ridges produce only weak reflections
(high transmissivity).

Trenches Rectangular Normal Trenches produce little reflection at normal incidence,
even when they are deep.

Oblique Trenches can enhance shelf/slope trapping of tsunami
waves near subduction zones.

Circular Flat-Top (Plane
waves)

The scattering by seamounts is weak and forms a dipole
pattern, except for the lowest-frequency monopole (radi-
ally symmetric) resonance. In this case, the amplitude on
the seamount is substantially larger than the amplitude
in the surrounding region.
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