NOAA OAR Special Report

PMEL Tsunami Forecast Series: Vol. 11 A Tsunami Forecast Model for Kihei, Hawaii

Edison Gica

NOAA Center for Tsunami Research (NCTR) Pacific Marine Environmental Laboratory **Front cover image:** Overview of NOAA tsunami forecast system. Top frame illustrates components of the tsunami forecast using the 11 March 2011 Tohoku tsunami as an example: DART systems (black triangles), precomputed tsunami source function database (unfilled black rectangles) and high-resolution forecast models in the Pacific, Atlantic, and Indian oceans (red squares). Colors show computed maximum tsunami amplitudes of the offshore forecast. Black contour lines indicate tsunami travel times in hours. Lower panels show the forecast process sequence left to right: tsunami detection with the DART system (third generation DART ETD is shown); model propagation forecast based on DART observations; coastal forecast with high-resolution tsunami inundation model.

PDF versions of the PMEL Tsunami Forecast Series reports are available at http://nctr.pmel.noaa.gov/forecast_reports NOAA OAR Special Report

PMEL Tsunami Forecast Series: Vol. 11 A Tsunami Forecast Model for Kihei, Hawaii

E. Gica^{1,2}

- 1 Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, WA
- 2 NOAA/Pacific Marine Environmental Laboratory (PMEL), Seattle, WA

April 2015

UNITED STATES DEPARTMENT OF COMMERCE

Penny Pritzker Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Kathy Sullivan Under Secretary for Oceans and Atmosphere/Administrator Office of Oceanic and Atmospheric Research

Craig McLean Assistant Administrator

NOTICE from NOAA

Mention of a commercial company or product does not constitute an endorsement by NOAA/ OAR. Use of information from this publication concerning proprietary products or the tests of such products for publicity or advertising purposes is not authorized. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration.

Contribution No. 3992 from NOAA/Pacific Marine Environmental Laboratory Contribution No. 2079 from Joint Institute for the Study of the Atmosphere and Ocean (JISAO)

> Also available from the National Technical Information Service (NTIS) (http://www.ntis.gov)

Contents

Fo	Foreword				
A	ostract	1			
1.	Background and Objectives	1			
2.	Forecast Methodology	3			
3.	Model Development	5			
	3.1 Forecast area	5			
	3.2 Historical events and data	6			
	3.3 Model setup	7			
3.	Results and Discussion	11			
	4.1 Model validation	11			
	4.2 Model stability and reliability	11			
	4.3 Results of tested events				
5.	Conclusions	17			
6.	Acknowledgments	18			
7.	References	19			
F]	IGURES	21			
$\mathbf{A}_{\mathbf{j}}$	opendix A.	65			
	A1. Reference model *.in file for Kihei, Hawaii	65			
	A2. Forecast model *.in file for Kihei, Hawaii	<u>6</u> 5			
$\mathbf{A}_{\mathbf{j}}$	opendix B. Propagation Database: Pacific Ocean Unit Sources	67			
$\mathbf{A}_{\mathbf{j}}$	opendix C. Synthetic Testing Report: Kihei, Hawaii	115			
	C1. Purpose	115			
	C2. Testing procedure	115			
	C3. Results	116			
G	lossary	125			

List of Figures

1	Google maps showing the location of Kihei, Hawaii.	
2	Plot of forecast model grids developed for Kihei, Hawaii. (a) A grid, (b) B grid, and (c) C grid.	
3	Plot of reference model grids developed for Kihei, Hawaii. (a) A grid, (b) B grid, and (c) C grid.	25
4	Plot of DEM for Kahului, Hawaii, which also covers the Kihei area.	
5	Location of historical and synthetic events (Mw 9.4, 7.5, and 6.2) in relation to Kihei, Hawaii.	
6	Forecast and reference model comparison of 1946 Unimak tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	28
7	Forecast and reference model comparison of 1957 Andreanof tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	30
8	Forecast and reference model comparison of 1960 Chile tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	32
9	Forecast and reference model comparison of 1994 East Kuril tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	
10	Forecast and reference model comparison of 2003 Rat Island tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	
11	Forecast and reference model comparison of 2006 Tonga tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	
12	Forecast and reference model comparison of 2006 Kuril tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	40

13	Forecast and reference model comparison of 2007 Kuril tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	42
14	Forecast and reference model comparison of 2007 Solomon tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	44
15	Forecast and reference model comparison of 2007 Peru tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	46
16	Forecast and reference model comparison of 2009 Samoa tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	48
17	Forecast and reference model comparison of 2010 Chile tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	
18	Forecast and reference model comparison of 2011 Tohoku tsunami: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	52
19	Representative plot of extreme inundation. Forecast and reference model comparison for synthetic case EPSZ 9–18: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	
20	Representative plot of non-extreme but significant inundation. Forecast and reference model comparison for synthetic case EPSZ 9–18: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	56
21	Representative plot of minimal to no inundation. Forecast and reference model comparison for synthetic case EPSZ 9–18: (a) maximum tsunami wave amplitude distribution, (b) tsunami time series at the warning point, (c) maximum current speed distribution, and (d) current speed and directionality at the warning point.	
22	Location of Kihei, Hawaii, relative to simulated synthetic mega- tsunami events that generate low coastal impact.	60

23	Location of Kihei, Hawaii, relative to simulated synthetic mega- tsunami events that generate extreme coastal impact.	
24	Tsunami time series for Kihei, Hawaii, forecast and reference models simulated from synthetic mega-tsunami events.	62
B1	Aleutian–Alaska–Cascadia Subduction Zone unit sources.	
B2	Central and South America Subduction Zone unit sources.	
B3	Eastern Philippines Subduction Zone unit sources.	87
B4	Kamchatka–Bering Subduction Zone unit sources.	
B5	Kamchatka–Kuril–Japan–Izu–Mariana–Yap Subduction Zone unit sources.	
B6	Manus–Oceanic Convergent Boundary Subduction Zone unit sources.	
B7	New Guinea Subduction Zone unit sources.	101
B8	New Zealand–Kermadec–Tonga Subduction Zone unit sources	103
B9	New Britain–Solomons–Vanuatu Subduction Zone unit sources.	107
B10	New Zealand–Puysegur Subduction Zone unit sources	111
B11	Ryukyu–Kyushu–Nankai Subduction Zone unit sources.	113
C1	Response of the Kihei, Hawaii, forecast model to synthetic scenario KISZ 22–31 (α =30). Maximum sea surface elevation for A, B, and C grids; sea surface elevation time series at the C-grid warning point.	119
C2	Response of the Kihei, Hawaii, forecast model to synthetic scenario ACSZ 56–65 (α =30). Maximum sea surface elevation for A, B, and C grids; sea surface elevation time series at the C-grid warning point.	120
C3	Response of the Kihei, Hawaii, forecast model to synthetic scenario CSSZ 91–100 (α =30). Maximum sea surface elevation for A, B, and C grids; sea surface elevation time series at the C-grid warning point.	121
C4	Response of the Kihei, Hawaii, forecast model to synthetic scenario NTSZ 30–39 (α =30). Maximum sea surface elevation for A, B, and C grids; sea surface elevation time series at the C-grid warning point.	122
C5	Response of the Kihei, Hawaii, forecast model to the 2011 Tohoku tsunami. Maximum sea surface elevation for A, B, and C grids; sea surface elevation time series at the C-grid warning point.	123

List of Tables

1	MOST setup parameters of the reference and forecast models for Kihei, Hawaii.	
2	Historical events with recorded runup at Kihei, Hawaii.	
3	Historical events used for model validation of Kihei, Hawaii.	
4	Synthetic mega-tsunami (Mw 9.4) events tested for Kihei, Hawaii	12
5	Synthetic Mw 7.5 tsunami cases tested for Kihei, Hawaii. One case (highlighted) was also tested as a micro-tsunami (Mw 6.2) scenario	13
B1	Earthquake parameters for Aleutian–Alaska–Cascadia Subduction Zone unit sources.	
B2	Earthquake parameters for Central and South America Subduction Zone unit sources.	76
B3	Earthquake parameters for Eastern Philippines Subduction Zone unit sources.	
B4	Earthquake parameters for Kamchatka-Bering Subduction Zone unit sources.	
B5	Earthquake parameters for Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zone unit sources.	92
B6	Earthquake parameters for Manus–Oceanic Convergent Boundary Subduction Zone unit sources.	100
B7	Earthquake parameters for New Guinea Subduction Zone unit sources.	102
B8	Earthquake parameters for New Zealand–Kermadec–Tonga Subduction Zone unit sources.	104
B9	Earthquake parameters for New Britain–Solomons–Vanuatu Subduction Zone unit sources.	108
B10	Earthquake parameters for New Zealand–Puysegur Subduction Zone unit sources.	112
B11	Earthquake parameters for Ryukyu–Kyushu–Nankai Subduction Zone unit sources.	114
C1	Maximum and minimum amplitudes (cm) at the Kihei, Hawaii, warning point for synthetic and historical events tested using SIFT 3.2 and obtained during development.	

Foreword

Several PACIFIC OCEAN BASIN tsunamis have been recognized as a potential hazard to United States coastal communities since the mid-twentieth century, when multiple destructive tsunamis caused damage to the states of Hawaii, Alaska, California, Oregon, and Washington. In response to these events, the United States, under the auspices of the National Oceanic and Atmospheric Administration (NOAA), established the Pacific and National Tsunami Warning Centers, dedicated to protecting United States interests from the threat posed by tsunamis. NOAA also created a tsunami research program at the Pacific Marine Environmental Laboratory (PMEL) to develop improved warning products.

The scale of destruction and unprecedented loss of life following the December 2004 Sumatra tsunami served as the catalyst to refocus efforts in the United States on reducing tsunami vulnerability of coastal communities, and on 20 December 2006, the United States Congress passed the "Tsunami Warning and Education Act" under which education and warning activities were thereafter specified and mandated. A "tsunami forecasting capability based on models and measurements, including tsunami inundation models and maps" is a central component for the protection of United States coastlines from the threat posed by tsunamis. The forecasting capability for each community described in the PMEL Tsunami Forecast Series is the result of collaboration between NOAA's office of Oceanic and Atmospheric Research, National Weather Service, National Ocean Service, National Environmental Satellite, Data, and Information Service, the University of Washington's Joint Institute for the Study of the Atmosphere and Ocean, the National Science Foundation, and the United States Geological Survey.

NOAA Center for Tsunami Research

PMEL Tsunami Forecast Series: Vol. 11 A Tsunami Forecast Model for Kihei, Hawaii

E. Gica^{1,2}

Abstract. The National Oceanic and Atmospheric Administration (NOAA) has developed a tsunami forecast model for Kihei, Hawaii, as part of an effort to provide tsunami forecasts for U.S. coastal communities. Development, validation, and stability testing of the tsunami forecast model has been conducted to ensure that it is stable and robust. The Kihei tsunami forecast model employs the Method of Splitting Tsunami (MOST) numerical code and has been validated with three historical tsunamis. A total of 13 historical events and 62 synthetic (Mw 9.4, 7.5, and 6.2) events from different source regions were also used to test the model's stability and reliability. The Kihei forecast model remains stable for 24 hours, and has been developed to simulate 4 hours of tsunami wave characteristics in approximately 13.22 minutes of CPU time.

1. Background and Objectives

The National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami Research (NCTR) at the Pacific Marine Environmental Laboratory (PMEL) has developed a tsunami forecasting capability for operational use by NOAA's two Tsunami Warning Centers located in Hawaii and Alaska (Titov *et al.*, 2005). The system is designed to provide, in an efficient manner, a quick and accurate basin-wide warning of approaching tsunami waves. The system, termed Short-term Inundation Forecast of Tsunamis (SIFT), combines real-time tsunami event data with numerical models to produce estimates of tsunami wave arrival times and amplitudes at coastal communities of interest. The SIFT system integrates several key components: deep-ocean observations of tsunamis in real time, a basin-wide precomputed propagation database of water level and flow velocities based on potential seismic unit sources (Gica *et al.*, 2008), an inversion algorithm to refine the tsunami source based on deep-ocean observations during an event (Percival *et al.*, 2011), and high-resolution tsunami forecast models.

The town of Kihei is located on the southern coast (southwest of Haaleakalā) of Maui, Hawaii (**Figure 1**). Kihei has an average of 276 sunny days per year and temperatures ranging from 53°F (January) to 74°F (July). Historically, with less than 33 cm of rain each year, Hawaiians referred to it as "Kama'ole," meaning barren. In 2010, Kihei was ranked as Hawaii's tenth most populous census county division; the town's population increased over the last decade from 16,749 to 20,881 (Census, 2000, 2010). With a census designation land area of 9.28 sq mi, this places its current population density over 2250 people per square mile. With lots of affordable condominiums, hotels, and cottages, Kihei has become a popular destination

¹ Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, WA

² NOAA/Pacific Marine Environmental Laboratory (PMEL), Seattle, WA

for tourists (GoHawaii, 2014). Beyond tourism-based businesses, Kihei has built a presence in the technology sector, with the US Department of Defense's supercomputing resource center, The Maui High Performance Computing Center (MHPCC; http://www.mhpcc.hpc.mil/) and one of two Incubation Centers for High Technology Development Corporation (http://www.htdc.org).

This report details the development of a tsunami forecast model for Kihei, Hawaii. Development includes construction of a digital elevation model (DEM) based on available bathymetric and topographic data, model validation with historic events, and stability tests of the model with a suite of synthetic megatsunami events originating from subduction zones in the Pacific Ocean.

2. Forecast Methodology

A high-resolution inundation model, or "reference" model, is used as the basis for the development of a tsunami forecast model for Kihei, Hawaii. The main objective of a forecast model is to provide an operational estimate of wave arrival time, wave height, and inundation in the minutes immediately following a tsunami event, and to maximize the amount of time that the community at risk has to react to a tsunami threat by providing accurate information quickly to emergency managers and other officials responsible for the community and infrastructure. The Kihei tsunami forecast model was designed and tested to perform operationally under stringent time constraints, given that time is generally the single limiting factor in saving lives and property.

The tsunami forecast model, based on the Method of Splitting Tsunami (MOST; Titov and González, 1997; Titov and Synolakis, 1998), is used in the tsunami inundation and forecasting system to provide real-time tsunami forecasts for at-risk populous coastal communities in the Pacific and Atlantic oceans. MOST is a suite of numerical codes capable of simulating three processes of tsunami evolution: tsunami source generation, transoceanic propagation, and inundation of dry land. The MOST model has been extensively tested against a number of laboratory experiments and benchmarks (Synolakis *et al.*, 2008), and it has been successfully used for simulations of many historical tsunami events. Titov and González (1997) describe the technical aspects of forecast model development, stability, testing, and robustness, and Tang *et al.* (2009) provide detailed forecast methodology.

All tsunami forecast models are run in real time while a tsunami is propagating across the open ocean. The model runs in minutes while employing a highresolution DEM constructed by the National Geophysical Data Center (NGDC) and NCTR³. From the DEM, three high-resolution "reference" elevation grids are constructed for the development of a high-resolution reference model, from which an "optimized" model is constructed to run in a specified period of time. This model is referred to as the optimized tsunami forecast model, or forecast model for brevity.

Accurate forecasting of tsunami impact on a coastal community largely relies on the accuracies of bathymetry, topography, and the numerical computation. The high spatial and temporal grid resolution necessary for modeling accuracy poses a challenge in the run-time requirement for real-time forecasts. Forecast models are optimized from the high-resolution grids using the most recent bathymetry and topography available to reproduce the correct wave dynamics during the inundation computation.

Previous and present development of forecast models in the Pacific (Titov *et al.*, 2005; Titov, 2009; Tang *et al.*, 2009; Wei *et al.*, 2008) have validated the accuracy and efficiency of each forecast model currently implemented in the real-time tsunami forecast system. Models are tested when the opportunity arises and are used for scientific research.

³ As new DEMs become available, forecast models will be updated and report updates will be posted at nctr.pmel.noaa.gov/forecast_reports/.

3. Model Development

The general methodology for modeling at-risk coastal communities is to develop a set of three nested grids (A, B, and C), each of which is successively finer in resolution, telescoping down with increasing spatial and temporal resolution to the population and economic center of the community of interest. The offshore area is covered by the largest and lowest-resolution A grid, while the nearshore details are resolved within the finest-scale C grid to capture the tsunami wave transformations in shallow waters.

The model development process begins with large spatial extent merged bathymetric-topographic grids at high resolution. Characteristics of tsunami waves are sensitive to nearshore bathymetry, and subaerial topography plays a factor in the inundation extent of tsunami waves. Therefore, a prerequisite for credible tsunami modeling is the availability of accurate gridded bathymetry and topographic datasets, or DEMs. The high-resolution DEM serving as the basis for these grids uses all available bathymetric, topographic, and shoreline data to reproduce the wave dynamics during the inundation computation for an at-risk community. The data are compiled from NOAA Coastal Services Center Interferometric Synthetic Aperture Radar (ifSAR), Navy SHOALS (Scanning Hydrographic Operation Airborne LIDAR Survey), National Ocean Service (NOS) digital echo sounder, and U.S. Geological Survey (USGS) multibeam seafloor mapping. The grids are then optimized by sub-sampling to coarsen the resolution and reduce the overall grid dimensions, to achieve a 4 to 10 hr simulation of modeled tsunami waves within 10 min of wall-clock time. All bathymetric data were converted from Mean Lower Low (MLL) datum to Mean High Water (MHW). The final DEM is referenced to MHW in the vertical and to the World Geodetic System 1984 (WGS84) in the horizontal (Chamberlin, 2007). The use of MHW as the "zero level" for forecast results is standard. The MOST model does not include tidal fluctuations, and, since a tsunami may arrive at any stage of the tide, it is best to employ a "worst-case" approach by assuming high tide when forecasting inundation.

Figure 1 shows the spatial extent merged bathymetric-topographic grids used in the development of the tsunami forecast model for Kihei, Hawaii. The author considers this to be an adequate representation of the local topography/bathymetry. **Table 1** provides specific details of both reference and forecast model grids, including extents, and complete input parameter information for the model runs is provided in Appendix A.

3.1 Forecast area

The town of Kihei, located on the southern coast of Maui, southwest of Haaleakalā, faces the Pacific Ocean and the neighboring islands of Lanai and Kahoolawe (**Figure 1**). South Kihei Road and Highway 31 (Piilani Highway) are the two main roads that run roughly parallel to the coastline. South Kihei Road runs along the coast and cuts through the town, while Highway 31 is farther east.

		Refei	rence Model			Forecast Model			
Grid	Region	Coverage Lat [°N] Lon [°E]	Cell Size ["]	nx × ny	Time Step [sec]	Coverage Lat [°N] Lon [°E]	Cell Size ["]	nx × ny	Time Step [sec]
Α	Hawaiian Islands	$\begin{array}{r} 18.0083 - 22.9983 \\ 199.0000 - 205.9799 \end{array}$	36	699×500	3.6	18.0317–22.9983 199.0000–205.9667	120	210×150	10.0
В	Maui	$\begin{array}{c} 20.4000 {-} 21.3933 \\ 202.5717 {-} 204.0983 \end{array}$	6	917×597	0.6	$\begin{array}{c} 20.4017 – 21.2550 \\ 202.8967 – 204.0967 \end{array}$	12	361×257	1.0
С	Kihei	$\begin{array}{c} 20.7167 - 20.7907 \\ 203.5275 - 203.5638 \end{array}$	1/3	393×800	0.3	$\begin{array}{c} 20.7168 {-} 20.7907 \\ 203.5278 {-} 203.5636 \end{array}$	1	131×267	1.0
Minimum offshore depth [m]			1.0				1.0		
Water depth for dry land [m]			0.1				0.1		
Friction	on coefficier	nt (n ²)	0.0009				0.0009		
CPU t	time for a 4	hr simulation	$22.68~\mathrm{hr}$				$13.22 \min$		

Table 1: MOST setup parameters of the reference and forecast models for Kihei, Hawaii.

Computations were performed on a single Intel Xeon E5670 processor at 2.936 GHz, 12 M cache, Dell PowerEdge R510.

Figures 2c and **3c** show the contour of the coastal area where a large portion of land is at an elevation of 5 m or below and roughly 1–1.5 km from the coastline, providing a mild slope region where businesses and population are located. Generally, the elevation slowly increases another 5 m eastward and then quickly slopes toward the hills. A portion of the occupied area is located at the northeastern end of Highway 31 (**Figure 1**) at an approximate elevation of 40 m mean sea level (MSL). The MHPCC is located on the central east side of Highway 31 at a much higher elevation (50 m MSL).

A large portion of the coast features a small coastal shelf where the water depth slowly increases to 5 m depth, quickly drops another 5 m, and then encounters another mild slope. The bathymetry gets complicated farther offshore, with deeper depths clustered in concentrated areas. These areas are clearly seen on the southwest areas of **Figures 2c** and **3c**. Similar clusters are also found between 20.75°N and 20.76°N along 203.26°E. Another noteworthy feature is a "c" shape formed at the 10 m contour line along 20.76°N. The effects of this feature are seen in the maximum current speed distribution, discussed in Section 4.

3.2 Historical events and data

The Hawaiian Islands are located in the path of any tsunamis generated in the Pacific Ocean. With active subduction zones in the Pacific Basin, the potential for tsunamigenic earthquakes is high (Nishenko, 1991). The Hawaiian Islands have been hit by numerous tsunamis; some have caused millions of dollars in damage and loss of human lives (Alexandra *et al.*, 2009, NGDC/WDS, 2014). Historical records (**Table 2**) show tsunami runup in Kihei for the 1946 Unimak, 1957 Andreanof, and 1960 Chilean tsunamis, but there are no records of significant damage (NGDC, 2011). Although only these three historical tsunamis were recorded, simulations are conducted with other historical events to determine how the community of Kihei would be affected.

A basin-wide database of precomputed water elevations and flow velocities for unit sources covering worldwide subduction zones has been generated to expedite forecasts (Gica *et al.*, 2008). As the tsunami wave propagates across the ocean and successively reaches Deep-ocean Assessment and Reporting of Tsunamis (DART[®]) observation sites, recorded sea level is ingested into the tsunami forecast application in near-real time and incorporated into an inversion algorithm to produce an improved estimate of the tsunami source (Percival *et al.*, 2011). A linear combination of the precomputed database is then performed based on this improved tsunami source, now reflecting the transfer of energy to the fluid body, to produce boundary conditions of water elevation and flow velocities to initiate the forecast model computation. This process is reflected in **Table 3** under the heading *Model—Tsunami Source*.

Historical tide gauge records are not available for Kihei since no tide gauge was ever installed. The closest tide gauge is located on the other side of the island of Maui, in Kahului Harbor. Due to significant differences in wave characteristics at Kahului Harbor, the Kahului tide gauge cannot be used for model data comparison at Kihei; thus, a warning point was selected. The warning point for Kihei is located at 203.540277°E, 20.747685°N, at a depth of 1.74 m (**Figures 2c** and **3c**). The recent 2011 Tohoku tsunami caused minor flooding along the coast of Kihei, but historically, Kihei has not experienced significant tsunami damage. The islands of Lanai and Kahoolawe (**Figure 1**) may provide some protection from such damage by partially blocking Kihei from the open ocean. Depending on the location of the tsunami source, this island blocking effect might not hold true in all cases. This is tested by running synthetic mega-tsunami events from various sources in the Pacific region.

3.3 Model setup

Normally, the high-resolution DEM is developed by NGDC and NCTR using all available bathymetric, topographic, and shoreline data. For Kihei, the high-resolution DEM was developed at PMEL (Chamberlin, 2007) with a grid resolution of 1/3 arc sec and coverage extent of 156.55°W, 20.65°N to 156.2°W, 21.05°N (**Figure 4**). The A and B grids for Kihei are from those developed by Tang *et al.* (2010) to be consistent with the other inundation models developed in Hawaii. The C grid is extracted from the 1/3-arc-sec DEM discussed above.

The coverage extents of the C grid for the reference and forecast models are identical. **Table 1** shows the details of the nested grids (A, B, and C), including the modeling parameters used, and the plots of the forecast and reference models are shown in **Figures 2** and **3**, respectively.

Although the DEM used for the forecast and reference models is derived from the same source, the use of a different grid resolution to optimize the forecast model may produce instabilities in the grid. These are stabilized by making modifications to the DEM, either by correcting the specific point of instability manually or by smoothing a cluster of nodes if the single node causing the instability is not located. The difference between the DEMs used in the forecast and reference models is evident in **Figures 2c** and **3c**. A complicated bathymetry in the

. .

Event	Earthquake Date Time [UTC]	Coverage [Lat, Lon]	Seismic Moment Magnitude [Mw]	Kunup height at 20.785°N, 156.467°E [m] ¹
1946 Unimak	1946-04-01 $12:28:56$	52.75°N, 163.50°W	$^{2}8.5$	2.70
1957 Andreanof	1957-03-09 $14:22:31:9$	38.29°N, 175.39°W	³ 8.6	2.10
1960 Chile	1960-05-22 19:11:17	38.29°S, 73.05°W	⁴ 9.5	2.40

Table 2: Historical events with recorded runup at Kihei, Hawaii.

¹ National Geophysical Data Center (NGDC)

² López and Okal (2006)

³ United States Geological Survey (USGS)

⁴ Kanamori and Cipar (1974)

deeper region is clearly visible in the higher-resolution reference model (lower left area along 203.26°E, **Figure 3c**), while it is much smoother in the forecast model (**Figure 2c**).

The forecast model is designed to provide 4 hr of simulated tsunami wave characteristics, including a time series at the selected warning point, within the operational time constraint of 10 min. For Kihei, the forecast model simulates 4 hr of tsunami wave characteristics in approximately 13.22 min, which exceeds this time constraint. The reason for this longer simulation is the use of a higher-resolution 1-arc-sec C grid for better representation of the DEM. The reference model, on the other hand, takes about 22.68 hr to complete the simulated run of 4 hr.

Model	Tsunami Source	$7.5 \times b23 + 19.7 \times b24 + 3.7 \times b25$	31.4 × a15 + 10.6 × a16 + 12.2 × a17	(Kanamori and Cipar, 1974)	9.0 × a20	2.81 × b11	6.6 imes b29	$4.0 \times a12 + 0.5 \times b12 + 2.0 \times a13 + 1.5 \times b13$	$-3.64 \times B13$	12.0 × b10	$0.9 \times a61 + 1.25 \times b61 + 5.6 \times a62 + 6.97 \times b62 + 3.5 \times z62$	$3.96 \times a34 + 3.96 \times b34$	$17.24 \times a88 + 8.82 \times a90 + 11.84 \times b88 + 18.39 \times b89 + 16.75 \times b90 + 20.78 \times z88 + 7.06 \times z90$	$\begin{array}{l} 4.66 \times b24 + 12.23 \times b25 + 26.31 \times a26 + 21.27 \times b26 + \\ 22.75 \times a27 + 4.98 \times b27 \; (\mathrm{Tang}\; et\; al.,\; 2012) \end{array}$
	Subduction Zone	ACSZ	ACSZ	CSSZ	KISZ	ACSZ	NTSZ	KISZ	KISZ	ZSVN	CSSZ	NTSZ	CSSZ	KISZ
	Tsunami Magnitude ¹	8.5	8.7		8.1	7.8	8.1	8.1	7.9	8.2	8.1	8.1	8.8	8.9
	Magnitude Mw	² 8.5	38.6	⁴ 9.5	38.3	37.7	³ 8.3	38.3	38.1	48.1	38.0	³ 8.1	³ 8.8	29.0
'Seismic	CMT Date Time (UTC) Centroid	Not Available	Not Available	Not Available	04 Oct 13:23:28.5 43.60°N 147.63°E	17 Nov 06:43:31.0 51.14°N 177.86°E	03 May 15:27:03.7 20.39°S 173.47°W	15 Nov 11:15:08 46.71°N 154.33°E	13 Jan 04:23:48.1 46.17°N 154.80°E	01 Apr 20:40:38.9 7.76° S 156.34°E	15 Aug 23:41:57.9 13.73°S 77.04°W	29 Sep 17:48:26.8 15.13° S 171.97°W	27 Feb $06:35:15.435.95^{\circ}S 73.15^{\circ}W$	11 Mar 05:46:23 38.486°N 142.597°E
Earthquake	USGS Date Time (UTC) Epicenter	01 Apr 12:28:56 52.75°N 163.50°W	09 Mar 14:22:31 51.56°N 175.39°W	22 May 19:11:14 38.29°S 73.05°W	04 Oct 13:22:58 43.73°N 147.321°E	17 Nov 06:43:07 51.13°N 178.74°E	03 May 15:26:39 20.13°S 174.161°W	15 Nov 11:14:16 46.607°N 153.230°E	13 Jan 04:23:20 46.272°N 154.455°E	01 Apr 20:39:56 8.481°S 156.978°E	15 Aug 23:40:57 13.354°S 76.509°W	29 Sep 17:48:10 15.509°S 172.034°W	27 Feb 06:34:14 35.909°S 72.733°W	11 Mar 05:46:24 38.297°N 142.372°E
	Event	1946 Unimak	1957 Andreanof	1960 Chile	1994 East Kuril	2003 Rat Island	2006 Tonga	2006 Kuril	2007 Kuril	2007 Solomon	2007 Peru	2009 Samoa	2010 Chile	2011 Tohoku

Table 3: Historical events used for model validation of Kihei, Hawaii.

 1 National Geophysical Data Center (NGDC) 2 López and Okal (2006)

³ United States Geological Survey (USGS) ⁴ Kanamori and Cipar (1974)

4. Results and Discussion

4.1 Model validation

In the development of the reference and forecast models for Kihei, Hawaii, validation of the DEM is required to determine the accuracy of the simulated tsunami characteristics as waves reach the coastal areas. As numerous tsunamis in the Pacific Basin have impacted the Hawaiian Islands, it seems likely that, historically, Kihei has been susceptible to tsunamis. Although the data are limited due to the absence of a tide gauge in Kihei, historical records for the three events listed in Section 3.2 (**Table 2**) will be used to validate the forecast model, and other historical events are simulated to determine how the waves affect the coastal areas of Kihei (**Table 3**). The locations of these historical events relative to Kihei are plotted in the upper panel of **Figure 5**.

4.2 Model stability and reliability

The forecast model must be stable enough to reliably simulate several hours of a tsunami event. A set of reliability and stability tests was conducted by simulating synthetic events emanating from different regions and using different earthquake magnitudes. Since each tsunami event is unique, tests using different earthquake magnitudes and source locations would indicate if the model grid developed will generate instabilities that need to be corrected. This set of tests is not exhaustive. but the inclusion of representative cases using unit sources from the NCTR propagation database (Gica et al., 2008) should serve as a sufficient sample. A total of 41 avnthetic mega-tsunami (Mw 9.4) events were generated from 20 unit sources with a slip value of 30 m for each unit source, and 20 cases of Mw 7.5 events were generated from one unit source with a slip of 1 m. One case of Mw 6.2 is also included to test the model for a small wave condition. Tests were conducted for a total of 24 hr simulation. Tables 4 and 5 list the sources used for the synthetic mega-tsunami events and the smaller (Mw 7.5 and Mw 6.2) events, respectively. The location of the synthetic mega-tsunami events (Table 4) relative to Kihei are shown in the lower panel of **Figure 5**.

4.3 Results of tested events

The maximum tsunami wave amplitude distribution, inundation, tsunami time series, maximum tsunami current speed distribution, current speed, and directionality for the tested (historic and synthetic) events are presented in Figures 6–21. All the plots show results of both the forecast and reference models. The simulated tsunami time series, current speed, and directionality are recorded at the selected warning point (Figures 2c and 3c). Comparison between the forecast and reference models for 13 historical events are shown in Figures 6–18, while Figures 19–21 are representative plots for the synthetic mega-tsunami events. Plots of maximum tsunami amplitude distribution show if the coastal areas of

Scenario	Subduction Zone	Tsunami Source
ACSZ 1–10	Aleutian-Alaska-Cascadia	A1–10, B1–10
ACSZ 11–20	Aleutian-Alaska-Cascadia	A11–20, B11–20
ACSZ 21–30	Aleutian-Alaska-Cascadia	A21-30, B21-30
ACSZ 31-40	Aleutian-Alaska-Cascadia	A31-40, B31-40
ACSZ 41–50	Aleutian-Alaska-Cascadia	A41–50, B41–50
ACSZ 46-55	Aleutian-Alaska-Cascadia	A46–55, B46–55
ACSZ 56-65	Aleutian-Alaska-Cascadia	A56-65, B56-65
CSSZ 1–10	Central and South America	A1–10, B1–10
CSSZ 11–20	Central and South America	A11–20, B11–20
CSSZ 21-30	Central and South America	A21-30, B21-30
CSSZ 31-40	Central and South America	A31-40, B31-40
CSSZ 41–50	Central and South America	A41–50, B41–50
CSSZ 51–60	Central and South America	A51-60, B51-60
CSSZ 61–70	Central and South America	A61-70, B61-70
CSSZ 71-80	Central and South America	A71-80, B71-80
CSSZ 81–90	Central and South America	A81-90, B81-90
CSSZ 91–100	Central and South America	A91–100, B91–100
CSSZ 101–110	Central and South America	A101–110, B101–110
CSSZ 106–115	Central and South America	A106–115, B106–115
EPSZ 1–10	East Philippines	A1-10, B1-10
EPSZ 9–18	East Philippines	A9–18, B9–18
KISZ 1–10	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	A1-10, B1-10
KISZ 11–20	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	A11-20, B11-20
KISZ 32-41	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	A32-41, B32-41
KISZ 42–51	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	A42-51, B42-51
KISZ 52–61	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	A52-61, B52-61
KISZ 56–65	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	A56-65, B56-65
KISZ 66–75	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	A66-75, B66-75
MOSZ 1–10	Manus-Oceanic Convergent Boundary	A1-10, B1-10
MOSZ 8-17	Manus-Oceanic Convergent Boundary	A8-17, B8-17
NGSZ 1–10	North New Guinea	A1-10, B1-10
NGSZ 6–15	North New Guinea	A6-15, B6-15
NTSZ 1–10	New Zealand-Kermadec-Tonga	A1–10, B1–10
NTSZ 11–20	New Zealand-Kermadec-Tonga	A11-20, B11-20
NTSZ 21–30	New Zealand-Kermadec-Tonga	A21-30, B21-30
NTSZ 30–39	New Zealand-Kermadec-Tonga	A30-39, B30-39
NVSZ 1–10	New Britain-Solomons-Vanuatu	A1–10, B1–10
NVSZ 11–20	New Britain-Solomons-Vanuatu	A11–20, B11–20
NVSZ 28-37	New Britain-Solomons-Vanuatu	A28–37, B28–37
RNSZ 1–10	Ryukyu-Kyushu-Nankai	A1–10, B1–10
RNSZ 13–22	Ryukyu-Kyushu-Nankai	A13-22, B13-22

Table 4: Synthetic mega-tsunami (Mw 9.4) events tested for Kihei, Hawaii.

Scenario	Subduction Zone	Tsunami Source
ACSZ 9	Aleutian-Alaska-Cascadia	B9
ACSZ 18	Aleutian-Alaska-Cascadia	B18
ACSZ 30	Aleutian-Alaska-Cascadia	B30
ACSZ 50	Aleutian-Alaska-Cascadia	B50
ACSZ 65	Aleutian-Alaska-Cascadia	B65
CSSZ 2	Central and South America	B2
CSSZ 22	Central and South America	B22
CSSZ 49	Central and South America	B49
CSSZ 59	Central and South America	B59
CSSZ 84	Central and South America	B84
EPSZ 10	East Philippines	B10
KISZ 8	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	B8
KISZ 15	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	B15
KISZ 27	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	B27
KISZ 53	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	B53
MOSZ 9	Manus-Oceanic Convergent Boundary	B9
NTSZ 19	New Zealand-Kermadec-Tonga	B19
NTSZ 36	New Zealand-Kermadec-Tonga	B36
NVSZ 23	New Britain-Solomons-Vanuatu	B23
RNSZ 11	Ryukyu-Kyushu-Nankai	B11

Table 5: Synthetic Mw 7.5 tsunami cases tested for Kihei, Hawaii. Single highlighted case was also tested as a micro-tsunami (Mw 6.2) scenario.

Kihei will be inundated. The maximum tsunami current speed distribution plots the maximum current speed, both at sea and on land as inundation occurs. The direction of the current is subdivided into four regions: west to north, south to west, east to south, and north to east. Relative to the coastline, this directionality indicates whether the incoming tsunami wave is advancing from the shore, retreating from the shore, or moving in an alongshore direction.

Due to the absence of a tide gauge in Kihei, tsunami time series comparisons are made only between the forecast and reference model, with the exception of a few historical events where records of tsunami runup are available (**Table 2**). In all of the historical cases, as seen in the tsunami time series at the warning point, the maximum tsunami wave amplitude for the reference model is higher than the forecast model (**Figures 6a–18a**), and the first tsunami wave matches very well between the reference and forecast model. The succeeding waves are much higher for the reference model but match well in phase. The lower maximum wave in the forecast model may be due to the grid resolution used. To increase the grid resolution, however, would result in a longer completion time, which (at 13.22 min) already exceeds the 10 min maximum completion time requirement. Similar to the maximum tsunami wave amplitude results, the current speed at the warning point is much higher for the reference model. Finer wave patterns, visible in the reference model, are not present in the forecast model. Within the plot, it is worth noting that the southwest area of the C grid shows slightly different maximum current speed distribution for the reference model when compared to the forecast model (**Figures 6c–18c**). This is attributed to the complex bathymetry in that region, which is modified in the forecast model to generate a stable run (**Figures 2c** and **3c**). Overall, both maximum tsunami wave amplitude distribution and maximum current speed distribution are similar between the forecast and reference models. Inundation extent was either nonexistent or insignificant for all of the 13 simulated historical cases.

Post-tsunami survey measurement runup data are available from NGDC for the three simulated historical cases (**Table 2**). For the 1946 Unimak tsunami, the record indicated a runup height of 2.7 m. The simulated result for this specific event produced a runup of approximately 1.78 m for the forecast model and 1.82 m for the reference model. For the 1957 Andreanof tsunami, the historical runup of 2.1 m exceeds the simulated results of 1.56 m for the forecast model and 1.68 m for the reference model. For both events, the distance from the simulated runup to the recorded runup is approximately 71 m for the forecast model and 63 m for the reference model. A runup of 2.4 m recorded for the 1960 Chile tsunami (NGDC, 2011) corresponds with a simulated 2.07 m runup by the forecast model and 2.36 m runup by the reference model, at distances of 71 m and 94 m away, respectively, from the recorded data.

Overall, the comparison of the simulated runup values with historical records for all three events (**Table 2**) show a higher runup for historical events. The simulated events were approximately 0.33 to 0.9 m below that of the historical record, and approximately 63 to 94 m away from the recorded runup location. The discrepancies may be due to the tsunami source used in the simulation, which still may not be well defined. Videos of the more recent 2011 Tohoku event have been posted online (e.g., YouTube, 2011) showing evidence of flooding in Kihei. Simulation of this event also indicates minor flooding along the coast (**Figure 18**). A tsunami survey in the state of Hawaii was conducted for the 2011 Tohoku event; field measurement data of inundation and runup can be used to validate the Kihei forecast model. However, during the development and testing of the Kihei model and at the time this report is being written, NCTR has not yet obtained these data. For the remaining historical events where historical data are not available, the forecast model is compared with the reference model.

The synthetic events simulated for the forecast model show that it is both stable and reliable. Although the mega-tsunami tests are not exhaustive, the results indicate which tsunami source regions would pose the greatest threat to Kihei. Of the 41 synthetic mega-tsunamis (**Table 4**), only 18 sources based on the forecast model (15 sources based on the reference model) produced very minor inundation along the coast of Kihei. **Table 6** lists the extent of inundation for each synthetic event simulated and **Figures 19–21** shows representative plots. **Figure 22** shows the locations of the low coastal impact synthetic mega-tsunami events relative to Kihei, clearly indicating that the main tsunami energy is directed away from Kihei. Tsunami sources that have extreme coastal impacts emanate from EPSZ 9–18, KISZ 1–10, KISZ 11–20, KISZ 42–51, and MOSZ 1–10. A representative plot of extreme inundation based on EPSZ 9–18 is shown in **Figure 19**. The locations of these extreme tsunami sources relative to Kihei are shown in **Figure 23**. The inundation extent for these tsunami sources occupies a significant portion of the coastal town. The remaining 18 synthetic mega-tsunami events are not extreme but still produce significant tsunami impact.

Figure 24 plots the tsunami time series at the selected warning point for all synthetic mega-tsunami events for both forecast and reference models, again showing that, consistent with the simulation of historical events, the forecast model has a lower maximum wave than the reference model. As previously discussed, this may be attributable to the lower grid resolution used. Overall, the first couple of waves match well between the forecast and reference model.

In **Figures 6–21**, the plots showing the maximum tsunami wave amplitude distribution do not clearly demonstrate how the incoming tsunami waves interact with the coastal reef in Kihei. This interaction is clearly seen in the maximum tsunami current speed distribution plots. The current speed is high as the incoming tsunami waves encounter the 5 m offshore contour line of the coastal shelf. Its strength diminishes as it passes through the coastal shelf. However, depending on the location of the tsunami source relative to Kihei, the incoming waves could produce either no inundation or extreme inundation with high current speed as they reach the coastal areas. For synthetic megatsunami events (**Table 4**), the current speed on land is at least 5 m/sec, with an extreme case of around 10 m/sec for the EPSZ 9–18 source (**Figure 19**). The plot of the current directionality shows a complex pattern: the tsunami waves not only approach and recede from the shore, but also generate cross-currents.

Scenario	Forecast Model	Reference Model
ACSZ 1–10	minimal or no inundation	non-extreme
ACSZ 11–20	non-extreme	close to extreme
ACSZ 21–30	non-extreme	non-extreme
ACSZ 31-40	minimal or no inundation	minimal or no inundation
ACSZ 41–50	non-extreme	non-extreme
ACSZ 46-55	non-extreme	non-extreme
ACSZ 56-65	non-extreme	non-extreme
CSSZ 1–10	minimal or no inundation	minimal or no inundation
CSSZ 11–20	minimal or no inundation	minimal or no inundation
CSSZ 21–30	minimal or no inundation	minimal or no inundation
CSSZ 31–40	minimal or no inundation	minimal or no inundation
CSSZ 41-50	minimal or no inundation	minimal or no inundation
CSSZ 51-60	minimal or no inundation	minimal or no inundation
CSSZ 61–70	minimal or no inundation	minimal or no inundation
CSSZ 71–80	minimal or no inundation	minimal or no inundation
CSSZ 81–90	non-extreme	non-extreme
CSSZ 91–100	non-extreme	non-extreme
CSSZ 101–110	close to extreme	close to extreme
CSSZ 106–115	non-extreme	non-extreme
EPSZ 1–10	non-extreme	non-extreme
EPSZ 9–18	extreme	extreme
KISZ 1–10	extreme	extreme
KISZ 11–20	extreme	extreme
KISZ 32-41	non-extreme	non-extreme
KISZ 42–51	extreme	extreme
KISZ 52–61	non-extreme	non-extreme
m KISZ~56-65	non-extreme	non-extreme
KISZ 66–75	non-extreme	non-extreme
MOSZ 1–10	extreme	extreme
MOSZ 8–17	minimal or no inundation	minimal or no inundation
NGSZ 1–10	minimal or no inundation	minimal or no inundation
NGSZ $6-15$	minimal or no inundation	minimal or no inundation
NTSZ 1–10	non-extreme	non-extreme
NTSZ 11–20	minimal or no inundation	minimal or no inundation
NTSZ 21–30	minimal or no inundation	minimal or no inundation
NTSZ 30-39	non-extreme	non-extreme
NVSZ 1–10	minimal or no inundation	minimal or no inundation
NVSZ 11–20	minimal or no inundation	minimal or no inundation
NVSZ 28–37	close to extreme	close to extreme
RNSZ 1–10	minimal or no inundation	minimal or no inundation
RNSZ 12–21	non-extreme	non-extreme

Table 6: Classification of inundation extent* resulting from synthetic mega-tsunami events for Kihei, Hawaii.

*See Figures 19, 20, and 21 for representative plots of extreme, non-extreme, and minimal or no inundation.

5. Conclusions

Reference and forecast models have been developed for Kihei, Hawaii. Both models were found to be reliable, and demonstrated relatively good comparison to each other in all cases tested.

Three historical tsunami events produced documented runup in Kihei: 1946 Unimak, 1957 Andreanof, and 1960 Chile. For comparative purposes, these events were used to validate the reliability of the reference and forecast models. The simulated runup (for both forecast and reference models) was found, on average, to be 0.52 m less than the recorded runup and 72 m away from the observed location. This discrepancy could indicate that the source used by NCTR is still not well defined. For the 2011 Tohoku event, both reference and forecast models indicate minor flooding along the coast, but comparative data for this event were not available at the time this report was developed, and are therefore not included.

Further tests show that both the forecast and reference models are stable for a 24 hr simulation of both historical cases and synthetic sources with different earthquake magnitudes emanating from different source regions. A total of 62 (41 Mw 9.4, 20 Mw 7.5, and 1 Mw 6.2) events were simulated. In addition to testing the stability of the forecast model, the mega-tsunami (Mw 9.4) scenarios can be useful in hazard assessment by helping to identify the source regions that represent the greatest tsunami threat to Kihei and to assist the local community in evacuation planning. Based on the forecast model, the 41 mega-tsunami scenarios tested result in minor inundation along the coast from 18 sources, significant inundation from another 16 sources, close to extreme inundation from two sources, and extreme inundation from five sources.

In this report, the tsunami time series at the selected warning point and distribution of the maximum tsunami wave amplitude, as well as plots of the maximum current speed distribution and current directionality at the selected warning point are presented. The current direction at the selected warning point demonstrates the complex pattern of the tsunami waves. Synthetic mega-tsunami event testing shows that East Phillippines source region EPSZ 9–18 can produce a current speed on land of at least 5 m/sec.

This forecast model was developed to provide tsunami forecast capability for Kihei, so the DEM has been optimized to simulate 4 hr of tsunami wave characteristics in approximately 13.22 min. This run time exceeds the 10 min completion time requirement. The longer run time may be attributed to the finer grid resolution used in the forecast model to simulate tsunami waves that closely match the higher-resolution reference model. As presented in this report, the Kihei forecast model is expected to provide a reliable forecast during an event and remain stable for a 24 hr simulation.

6. Acknowledgments

This work is funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement Numbers NA10OAR4320148 and NA08OAR4320899, and is JISAO Contribution No. 2079. This work is also Contribution No. 3992 from NOAA/Pacific Marine Environmental Laboratory and NOAA ISI ID301. The author would like to thank Lindsey Wright (for testing of SIFT, Appendix C) and Sandra Bigley (for comments, edits, and formatting of this report).

7. References

- Alexandra, L., G. Cain, and P. Iwasaki (2009): Tsunami Education: A Blueprint for Coastal Communities. The Pacific Tsunami Museum and the County of Hawai'i Planning Department. Honolulu, Hawaii, 90 pp. Online at http:// tsunami.org/labout/pdfs/blueprint_for_coastal_communities.pdf.
- Census Bureau (2000): Profile of General Demographic Characteristics: 2000, http://factfinder2.census.gov/bkmk/table/1.0/en/DEC/00_SF1/ DP1/1600000US1536500, accessed 21 July 2014.
- Census Bureau (2010): US Census Bureau State & County QuickFacts, http://quickfacts.census.gov/qfd/states/15/1536500.html, accessed 18 July 2014.
- Chamberlin, C. (2007): 1/3s digital elevation model for Kahului, Maui, Hawaii, NCTR. April 27 2007, http://nctrd.pmel.noaa.gov/atlas/grid/Kahului%20 1_3s/.
- Gica, E., M. Spillane, V.V. Titov, C.D. Chamberlin, and J.C. Newman (2008): Development of the forecast propagation database for NOAA's Short-term Inundation Forecast for Tsunamis (SIFT). NOAA Tech. Memo. OAR PMEL-139, NTIS: PB2008-109391, 89 pp.
- GoHawaii, http://www.gohawaii.com/maui/regions-neighborhoods/south-maui/ kihei, accessed 18 July 2014.
- Kanamori, H., and J.J. Cipar (1974): Focal process of the great Chilean earthquake, May 22, 1960. *Phys. Earth Planet. Inter.*, 9, 128–136.
- López, A.M. and E.A. Okal (2006): A seismological reassessment of the source of the 1946 Aleutian "tsunami" earthquake. *Geophys. J. Int.*, 165(3), 835– 849, doi:10.1111/j.1365-246X.2006.02899.x.
- NGDC (2011): National Geophysical Data Center, NOAA Tsunami Inundation Digital Elevation Models (DEMs), http://ngdc.noaa.gov/mgg/inundation/ tsunami/inundation.html, accessed 1 June 2011.
- NGDC/WDS (2014): Global Historical Tsunami Database. National Geophysical Data Center / World Data Service, NOAA. http://www.ngdc.noaa.gov/ hazard/tsu_db.shtml, doi:10.7289/V5PN93H7, accessed 10 July 2014.
- Nishenko, S.P. (1991): Circum-Pacific seismic potential: 1989–1999. Pure Appl. Geophys., 135(2), 169–259.

- Percival, D.B., D.W. Denbo, M.C. Eble, E. Gica, H.O. Mofjeld, M.C. Spillane, L. Tang, and V.V. Titov (2011): Extraction of tsunami source coefficients via inversion of DART[®] buoy data. *Nat. Hazards*, 58(1), 567–590, doi:10.1007/s11069-010-9688-1.
- Synolakis, C.E., E.N. Bernard, V.V. Titov, U. Kânoğlu, and F.I. González (2008): Validation and verification of tsunami numerical models. *Pure Appl. Geophys.* 165(11–12), 2197–2228.
- Tang, L., V.V. Titov, and C.D. Chamberlin (2009): Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. J. Geophys. Res., 114, C12025, doi:10.1029/2009JC005476.
- Tang, L., C.D. Chamberlin, and V.V. Titov (2010): A tsunami forecast model for Hilo, Hawai'i, NOAA OAR Special Report, PMEL Tsunami Forecast Series: Vol. 1, 94 pp.
- Titov, V.V. (2009): Tsunami forecasting. In *The Sea, Vol. 15*, Chapter 12, Harvard University Press, Cambridge, MA, and London, England, 371–400.
- Titov, V., and F.I. González (1997): Implementation and testing of the Method of Splitting Tsunami (MOST) model. NOAA Tech. Memo. ERL PMEL-112, NTIS: PB98-122773, NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 11 pp.
- Titov, V.V., and C.E. Synolakis (1998). Numerical modeling of tidal wave runup. J. Waterw. Port Coast. Ocean Eng., 124(4), 157–171.
- Titov, V.V., F.I. González, E.N. Bernard, M.C. Eble, H.O. Mofjeld, J.C. Newman, and A.J. Venturato (2005): Real-time tsunami forecasting: Challenges and solutions. *Nat. Hazards*, *35*, 41–58.
- Wei, Y., E. Bernard, L. Tang, R. Weiss, V. Titov, C. Moore, M. Spillane, M. Hopkins, and U. Kânoğlu (2008): Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines. *Geophys. Res. Lett.*, 35, L04609, doi:10.1029/2007GL032250.
- YouTube (2011): March 11, 2011 Tsunami Aftermath Hawaii, Kihei, Kulanihakoi Gulch, uploaded by P.G. Hugel, https://www.youtube.com/ watch?v=kG07fi3jBCE, accessed May 2011.

FIGURES

Figure 1: Google maps showing the location of Kihei, Hawaii.

Figure 2: Plot of forecast model grids developed for Kihei, Hawaii. (a) A grid, (b) B grid, and (c) C grid.

Figure 3: Plot of reference model grids developed for Kihei, Hawaii. (a) A grid, (b) B grid, and (c) C grid.

Figure 4: Plot of DEM for Kahului, Hawaii, which also covers the Kihei area.

Figure 5: Location of historical (upper panel) and synthetic (lower panel) events (Mw 9.4, 7.5, and 6.2) in relation to Kihei, Hawaii.

Figure 6: Forecast and reference model comparison of 1946 Unimak tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 6, continued: Forecast and reference model comparison of 1946 Unimak tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 7: Forecast and reference model comparison of 1957 Andreanof tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 7, continued: Forecast and reference model comparison of 1957 Andreanof tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 8: Forecast and reference model comparison of 1960 Chile tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 8, continued: Forecast and reference model comparison of 1960 Chile tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 9: Forecast and reference model comparison of 1994 East Kuril tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 9, continued: Forecast and reference model comparison of 1994 East Kuril tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 10: Forecast and reference model comparison of 2003 Rat Island tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 10, continued: Forecast and reference model comparison of 2003 Rat Island tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 11: Forecast and reference model comparison of 2006 Tonga tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 11, continued: Forecast and reference model comparison of 2006 Tonga tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 12: Forecast and reference model comparison of 2006 Kuril tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 12, continued: Forecast and reference model comparison of 2006 Kuril tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 13: Forecast and reference model comparison of 2007 Kuril tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 13, continued: Forecast and reference model comparison of 2007 Kuril tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 14: Forecast and reference model comparison of 2007 Solomon tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 14, continued: Forecast and reference model comparison of 2007 Solomon tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 15: Forecast and reference model comparison of 2007 Peru tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 15, continued: Forecast and reference model comparison of 2007 Peru tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 16: Forecast and reference model comparison of 2009 Samoa tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 16, continued: Forecast and reference model comparison of 2009 Samoa tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 17: Forecast and reference model comparison of 2010 Chile tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 17, continued: Forecast and reference model comparison of 2010 Chile tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 18: Forecast and reference model comparison of 2011 Tohoku tsunami: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 18, continued: Forecast and reference model comparison of 2011 Tohoku tsunami: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 19: Representative plot of extreme inundation. White spots on land indicate non-inundated areas. Forecast and reference model comparison for synthetic case EPSZ 9–18: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 19, continued: Forecast and reference model comparison for synthetic case EPSZ 9–18: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 20: Representative plot of non-extreme but significant inundation. White spots on land indicate non-inundated areas. Forecast and reference model comparison for synthetic case ACSZ 46–55: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 20, continued: Forecast and reference model comparison for synthetic case ACSZ 46–55: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 21: Representative plot of minimal or no inundation. Forecast and reference model comparison for synthetic case NGSZ 6–15: (a) maximum tsunami wave amplitude distribution and (b) tsunami time series at the warning point.

Figure 21, continued: Forecast and reference model comparison for synthetic case NGSZ 6–15: (c) maximum current speed distribution and (d) current speed and directionality at the warning point.

Figure 24: Tsunami time series for forecast and reference models simulated from synthetic mega-tsunami events.

Figure 24: (continued)

Figure 24: (continued)

Appendix A. Model input files for Kihei, Hawaii

Development of the tsunami forecast model for Kihei, Hawaii, occurred prior to parameter changes that were made to reflect modifications to the MOST model code. As a result, the input files for running the high-resolution reference inundation model and the optimized tsunami forecast model in MOST have been updated accordingly. The updated files for Kihei are provided below.

A1. Reference model *.in file for Kihei, Hawaii

Minimum amplitude of input offshore wave (m)
Input minimum depth for offshore (m)
Input "dry land" depth for inundation (m)
Input friction coefficient (n**2)
A and B grid runup flag (0=disallow, 1=allow)
Blow-up limit/max eta before blow-up (m)
Input time step (sec)
Input number of steps
Compute "A" arrays every nth ime step, n=
Compute "B" arrays every nth ime step, n=
Input number of steps between snapshots
Starting from
Saving grid every nth node, n=

A2. Forecast model *.in file for Kihei, Hawaii

0.0001	Minimum amplitude of input offshore wave (m)
1	Input minimum depth for offshore (m)
0.1	Input "dry land" depth for inundation (m)
0.0009	Input friction coefficient (n**2)
1	A and B grid runup flag (0=disallow, 1=allow)
300.0	Blow-up limit/max eta before blow-up (m)
1	Input time step (sec)
288000	Input number of steps
10	Compute "A" arrays every nth ime step, n=
1	Compute "B" arrays every nth ime step, n=
30	Input number of steps between snapshots
1	Starting from
1	Saving grid every nth node, n=

Appendix B. Propagation Database

Pacific Ocean Unit Sources

The NOAA propagation database presented in this section is the representation of the database as of January 2013, and may not be the most current version of the database available upon publication. The forecast model for Kihei, Hawaii, was developed using the propagation database as of 2011; thus, there is a possibility of changes due to updates in the earthquake source parameters.

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
acsz-1a	Aleutian–Alaska–Cascadia	164.7994	55.9606	299	17	19.61
acsz-1b	Aleutian–Alaska–Cascadia	164.4310	55.5849	299	17	5
acsz-2a	Aleutian–Alaska–Cascadia	166.3418	55.4016	310.2	17	19.61
acsz-2b	Aleutian–Alaska–Cascadia	165.8578	55.0734	310.2	17	5
acsz-3a	Aleutian–Alaska–Cascadia	167.2939	54.8919	300.2	23.36	24.82
acsz-3b	Aleutian–Alaska–Cascadia	166.9362	54.5356	300.2	23.36	5
acsz-4a	Aleutian–Alaska–Cascadia	168.7131	54.2852	310.2	38.51	25.33
acsz-4b	Aleutian–Alaska–Cascadia	168.3269	54.0168	310.2	24	5
acsz-5a	Aleutian–Alaska–Cascadia	169.7447	53.7808	302.8	37.02	23.54
acsz-5b	Aleutian–Alaska–Cascadia	169.4185	53.4793	302.8	21.77	5
acsz-6a	Aleutian–Alaska–Cascadia	171.0144	53.3054	303.2	35.31	22.92
acsz-6b	Aleutian–Alaska–Cascadia	170.6813	52.9986	303.2	21	5
acsz-7a	Aleutian–Alaska–Cascadia	172.1500	52.8528	298.2	35.56	20.16
acsz-7b	Aleutian–Alaska–Cascadia	171.8665	52.5307	298.2	17.65	5
acsz-8a	Aleutian–Alaska–Cascadia	173.2726	52.4579	290.8	37.92	20.35
acsz-8b	Aleutian–Alaska–Cascadia	173.0681	52.1266	290.8	17.88	5
acsz-9a	Aleutian–Alaska–Cascadia	174.5866	52.1434	289	39.09	21.05
acsz-9b	Aleutian–Alaska–Cascadia	174.4027	51.8138	289	18.73	5
acsz-10a	Aleutian–Alaska–Cascadia	175.8784	51.8526	286.1	40.51	20.87
acsz-10b	Aleutian–Alaska–Cascadia	175.7265	51.5245	286.1	18.51	5
acsz-11a	Aleutian–Alaska–Cascadia	177.1140	51.6488	280	15	17.94
acsz-11b	Aleutian–Alaska–Cascadia	176.9937	51.2215	280	15	5
acsz-12a	Aleutian–Alaska–Cascadia	178.4500	51.5690	273	15	17.94
acsz-12b	Aleutian–Alaska–Cascadia	178.4130	51.1200	273	15	5
acsz-13a	Aleutian–Alaska–Cascadia	179.8550	51.5340	271	15	17.94
acsz-13b	Aleutian–Alaska–Cascadia	179.8420	51.0850	271	15	5
acsz-14a	Aleutian–Alaska–Cascadia	181.2340	51.5780	267	15	17.94
acsz-14b	Aleutian–Alaska–Cascadia	181.2720	51.1290	267	15	5
acsz-15a	Aleutian–Alaska–Cascadia	182.6380	51.6470	265	15	17.94
acsz-15b	Aleutian–Alaska–Cascadia	182.7000	51.2000	265	15	5
acsz-16a	Aleutian–Alaska–Cascadia	184.0550	51.7250	264	15	17.94
acsz-16b	Aleutian–Alaska–Cascadia	184.1280	51.2780	264	15	5
acsz-17a	Aleutian–Alaska–Cascadia	185.4560	51.8170	262	15	17.94
acsz-17b	Aleutian–Alaska–Cascadia	185.5560	51.3720	262	15	5
acsz-18a	Aleutian–Alaska–Cascadia	186.8680	51.9410	261	15	17.94
acsz-18b	Aleutian–Alaska–Cascadia	186.9810	51.4970	261	15	5
acsz-19a	Aleutian–Alaska–Cascadia	188.2430	52.1280	257	15	17.94
acsz-19b	Aleutian–Alaska–Cascadia	188.4060	51.6900	257	15	5

 Table B1: Earthquake parameters for Aleutian–Alaska–Cascadia Subduction Zone unit sources.

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
acsz-20a	Aleutian–Alaska–Cascadia	189.5810	52.3550	251	15	17.94
acsz-20b	Aleutian–Alaska–Cascadia	189.8180	51.9300	251	15	5
acsz-21a	Aleutian–Alaska–Cascadia	190.9570	52.6470	251	15	17.94
acsz-21b	Aleutian–Alaska–Cascadia	191.1960	52.2220	251	15	5
acsz-21z	Aleutian–Alaska–Cascadia	190.7399	53.0443	250.8	15	30.88
acsz-22a	Aleutian–Alaska–Cascadia	192.2940	52.9430	247	15	17.94
acsz-22b	Aleutian–Alaska–Cascadia	192.5820	52.5300	247	15	5
acsz-22z	Aleutian–Alaska–Cascadia	192.0074	53.3347	247.8	15	30.88
acsz-23a	Aleutian–Alaska–Cascadia	193.6270	53.3070	245	15	17.94
acsz-23b	Aleutian–Alaska–Cascadia	193.9410	52.9000	245	15	5
acsz-23z	Aleutian–Alaska–Cascadia	193.2991	53.6768	244.6	15	30.88
acsz-24a	Aleutian–Alaska–Cascadia	194.9740	53.6870	245	15	17.94
acsz-24b	Aleutian–Alaska–Cascadia	195.2910	53.2800	245	15	5
acsz-24y	Aleutian–Alaska–Cascadia	194.3645	54.4604	244.4	15	43.82
acsz-24z	Aleutian–Alaska–Cascadia	194.6793	54.0674	244.6	15	30.88
acsz-25a	Aleutian–Alaska–Cascadia	196.4340	54.0760	250	15	17.94
acsz-25b	Aleutian–Alaska–Cascadia	196.6930	53.6543	250	15	5
acsz-25y	Aleutian–Alaska–Cascadia	195.9009	54.8572	247.9	15	43.82
acsz-25z	Aleutian–Alaska–Cascadia	196.1761	54.4536	248.1	15	30.88
acsz-26a	Aleutian–Alaska–Cascadia	197.8970	54.3600	253	15	17.94
acsz-26b	Aleutian–Alaska–Cascadia	198.1200	53.9300	253	15	5
acsz-26y	Aleutian–Alaska–Cascadia	197.5498	55.1934	253.1	15	43.82
acsz-26z	Aleutian–Alaska–Cascadia	197.7620	54.7770	253.3	15	30.88
acsz-27a	Aleutian–Alaska–Cascadia	199.4340	54.5960	256	15	17.94
acsz-27b	Aleutian–Alaska–Cascadia	199.6200	54.1600	256	15	5
acsz-27x	Aleutian–Alaska–Cascadia	198.9736	55.8631	256.5	15	56.24
acsz-27y	Aleutian–Alaska–Cascadia	199.1454	55.4401	256.6	15	43.82
acsz-27z	Aleutian–Alaska–Cascadia	199.3135	55.0170	256.8	15	30.88
acsz-28a	Aleutian–Alaska–Cascadia	200.8820	54.8300	253	15	17.94
acsz-28b	Aleutian–Alaska–Cascadia	201.1080	54.4000	253	15	5
acsz-28x	Aleutian–Alaska–Cascadia	200.1929	56.0559	252.5	15	56.24
acsz-28y	Aleutian–Alaska–Cascadia	200.4167	55.6406	252.7	15	43.82
acsz-28z	Aleutian–Alaska–Cascadia	200.6360	55.2249	252.9	15	30.88
acsz-29a	Aleutian–Alaska–Cascadia	202.2610	55.1330	247	15	17.94
acsz-29b	Aleutian–Alaska–Cascadia	202.5650	54.7200	247	15	5
acsz-29x	Aleutian–Alaska–Cascadia	201.2606	56.2861	245.7	15	56.24
acsz-29y	Aleutian–Alaska–Cascadia	201.5733	55.8888	246	15	43.82
acsz-29z	Aleutian–Alaska–Cascadia	201.8797	55.4908	246.2	15	30.88

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
acsz-30a	Aleutian–Alaska–Cascadia	203.6040	55.5090	240	15	17.94
acsz-30b	Aleutian–Alaska–Cascadia	203.9970	55.1200	240	15	5
acsz-30w	Aleutian–Alaska–Cascadia	201.9901	56.9855	239.5	15	69.12
acsz-30x	Aleutian–Alaska–Cascadia	202.3851	56.6094	239.8	15	56.24
acsz-30y	Aleutian–Alaska–Cascadia	202.7724	56.2320	240.2	15	43.82
acsz-30z	Aleutian–Alaska–Cascadia	203.1521	55.8534	240.5	15	30.88
acsz-31a	Aleutian–Alaska–Cascadia	204.8950	55.9700	236	15	17.94
acsz-31b	Aleutian–Alaska–Cascadia	205.3400	55.5980	236	15	5
acsz-31w	Aleutian–Alaska–Cascadia	203.0825	57.3740	234.5	15	69.12
acsz-31x	Aleutian–Alaska–Cascadia	203.5408	57.0182	234.9	15	56.24
acsz-31y	Aleutian–Alaska–Cascadia	203.9904	56.6607	235.3	15	43.82
acsz-31z	Aleutian–Alaska–Cascadia	204.4315	56.3016	235.7	15	30.88
acsz-32a	Aleutian–Alaska–Cascadia	206.2080	56.4730	236	15	17.94
acsz-32b	Aleutian–Alaska–Cascadia	206.6580	56.1000	236	15	5
acsz-32w	Aleutian–Alaska–Cascadia	204.4129	57.8908	234.3	15	69.12
acsz-32x	Aleutian–Alaska–Cascadia	204.8802	57.5358	234.7	15	56.24
acsz-32y	Aleutian–Alaska–Cascadia	205.3385	57.1792	235.1	15	43.82
acsz-32z	Aleutian–Alaska–Cascadia	205.7880	56.8210	235.5	15	30.88
acsz-33a	Aleutian–Alaska–Cascadia	207.5370	56.9750	236	15	17.94
acsz-33b	Aleutian–Alaska–Cascadia	207.9930	56.6030	236	15	5
acsz-33w	Aleutian–Alaska–Cascadia	205.7126	58.3917	234.2	15	69.12
acsz-33x	Aleutian–Alaska–Cascadia	206.1873	58.0371	234.6	15	56.24
acsz-33y	Aleutian–Alaska–Cascadia	206.6527	57.6808	235	15	43.82
acsz-33z	Aleutian–Alaska–Cascadia	207.1091	57.3227	235.4	15	30.88
acsz-34a	Aleutian–Alaska–Cascadia	208.9371	57.5124	236	15	17.94
acsz-34b	Aleutian–Alaska–Cascadia	209.4000	57.1400	236	15	5
acsz-34w	Aleutian–Alaska–Cascadia	206.9772	58.8804	233.5	15	69.12
acsz-34x	Aleutian–Alaska–Cascadia	207.4677	58.5291	233.9	15	56.24
acsz-34y	Aleutian–Alaska–Cascadia	207.9485	58.1760	234.3	15	43.82
acsz-34z	Aleutian–Alaska–Cascadia	208.4198	57.8213	234.7	15	30.88
acsz-35a	Aleutian–Alaska–Cascadia	210.2597	58.0441	230	15	17.94
acsz-35b	Aleutian–Alaska–Cascadia	210.8000	57.7000	230	15	5
acsz-35w	Aleutian–Alaska–Cascadia	208.0204	59.3199	228.8	15	69.12
acsz-35x	Aleutian–Alaska–Cascadia	208.5715	58.9906	229.3	15	56.24
acsz-35y	Aleutian–Alaska–Cascadia	209.1122	58.6590	229.7	15	43.82
acsz-35z	Aleutian–Alaska–Cascadia	209.6425	58.3252	230.2	15	30.88
acsz-36a	Aleutian–Alaska–Cascadia	211.3249	58.6565	218	15	17.94
acsz-36b	Aleutian–Alaska–Cascadia	212.0000	58.3800	218	15	5

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
acsz-36w	Aleutian–Alaska–Cascadia	208.5003	59.5894	215.6	15	69.12
acsz-36x	Aleutian–Alaska–Cascadia	209.1909	59.3342	216.2	15	56.24
acsz-36y	Aleutian–Alaska–Cascadia	209.8711	59.0753	216.8	15	43.82
acsz-36z	Aleutian–Alaska–Cascadia	210.5412	58.8129	217.3	15	30.88
acsz-37a	Aleutian–Alaska–Cascadia	212.2505	59.2720	213.7	15	17.94
acsz-37b	Aleutian–Alaska–Cascadia	212.9519	59.0312	213.7	15	5
acsz-37x	Aleutian–Alaska–Cascadia	210.1726	60.0644	213	15	56.24
acsz-37y	Aleutian–Alaska–Cascadia	210.8955	59.8251	213.7	15	43.82
acsz-37z	Aleutian–Alaska–Cascadia	211.6079	59.5820	214.3	15	30.88
acsz-38a	Aleutian–Alaska–Cascadia	214.6555	60.1351	260.1	0	15
acsz-38b	Aleutian–Alaska–Cascadia	214.8088	59.6927	260.1	0	15
acsz-38y	Aleutian–Alaska–Cascadia	214.3737	60.9838	259	0	15
acsz-38z	Aleutian–Alaska–Cascadia	214.5362	60.5429	259	0	15
acsz-39a	Aleutian–Alaska–Cascadia	216.5607	60.2480	267	0	15
acsz-39b	Aleutian–Alaska–Cascadia	216.6068	59.7994	267	0	15
acsz-40a	Aleutian–Alaska–Cascadia	219.3069	59.7574	310.9	0	15
acsz-40b	Aleutian–Alaska–Cascadia	218.7288	59.4180	310.9	0	15
acsz-41a	Aleutian–Alaska–Cascadia	220.4832	59.3390	300.7	0	15
acsz-41b	Aleutian–Alaska–Cascadia	220.0382	58.9529	300.7	0	15
acsz-42a	Aleutian–Alaska–Cascadia	221.8835	58.9310	298.9	0	15
acsz-42b	Aleutian–Alaska–Cascadia	221.4671	58.5379	298.9	0	15
acsz-43a	Aleutian–Alaska–Cascadia	222.9711	58.6934	282.3	0	15
acsz-43b	Aleutian–Alaska–Cascadia	222.7887	58.2546	282.3	0	15
acsz-44a	Aleutian–Alaska–Cascadia	224.9379	57.9054	340.9	12	11.09
acsz-44b	Aleutian–Alaska–Cascadia	224.1596	57.7617	340.9	7	5
acsz-45a	Aleutian–Alaska–Cascadia	225.4994	57.1634	334.1	12	11.09
acsz-45b	Aleutian–Alaska–Cascadia	224.7740	56.9718	334.1	7	5
acsz-46a	Aleutian–Alaska–Cascadia	226.1459	56.3552	334.1	12	11.09
acsz-46b	Aleutian–Alaska–Cascadia	225.4358	56.1636	334.1	7	5
acsz-47a	Aleutian–Alaska–Cascadia	226.7731	55.5830	332.3	12	11.09
acsz-47b	Aleutian–Alaska–Cascadia	226.0887	55.3785	332.3	7	5
acsz-48a	Aleutian–Alaska–Cascadia	227.4799	54.6763	339.4	12	11.09
acsz-48b	Aleutian–Alaska–Cascadia	226.7713	54.5217	339.4	7	5
acsz-49a	Aleutian–Alaska–Cascadia	227.9482	53.8155	341.2	12	11.09
acsz-49b	Aleutian–Alaska–Cascadia	227.2462	53.6737	341.2	7	5
acsz-50a	Aleutian–Alaska–Cascadia	228.3970	53.2509	324.5	12	11.09
acsz-50b	Aleutian–Alaska–Cascadia	227.8027	52.9958	324.5	7	5
acsz-51a	Aleutian–Alaska–Cascadia	229.1844	52.6297	318.4	12	11.09

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
acsz-51b	Aleutian–Alaska–Cascadia	228.6470	52.3378	318.4	7	5
acsz-52a	Aleutian–Alaska–Cascadia	230.0306	52.0768	310.9	12	11.09
acsz-52b	Aleutian–Alaska–Cascadia	229.5665	51.7445	310.9	7	5
acsz-53a	Aleutian–Alaska–Cascadia	231.1735	51.5258	310.9	12	11.09
acsz-53b	Aleutian–Alaska–Cascadia	230.7150	51.1935	310.9	7	5
acsz-54a	Aleutian–Alaska–Cascadia	232.2453	50.8809	314.1	12	11.09
acsz-54b	Aleutian–Alaska–Cascadia	231.7639	50.5655	314.1	7	5
acsz-55a	Aleutian–Alaska–Cascadia	233.3066	49.9032	333.7	12	11.09
acsz-55b	Aleutian–Alaska–Cascadia	232.6975	49.7086	333.7	7	5
acsz-56a	Aleutian–Alaska–Cascadia	234.0588	49.1702	315	11	12.82
acsz-56b	Aleutian–Alaska–Cascadia	233.5849	48.8584	315	9	5
acsz-57a	Aleutian–Alaska–Cascadia	234.9041	48.2596	341	11	12.82
acsz-57b	Aleutian–Alaska–Cascadia	234.2797	48.1161	341	9	5
acsz-58a	Aleutian–Alaska–Cascadia	235.3021	47.3812	344	11	12.82
acsz-58b	Aleutian–Alaska–Cascadia	234.6776	47.2597	344	9	5
acsz-59a	Aleutian–Alaska–Cascadia	235.6432	46.5082	345	11	12.82
acsz-59b	Aleutian–Alaska–Cascadia	235.0257	46.3941	345	9	5
acsz-60a	Aleutian–Alaska–Cascadia	235.8640	45.5429	356	11	12.82
acsz-60b	Aleutian–Alaska–Cascadia	235.2363	45.5121	356	9	5
acsz-61a	Aleutian–Alaska–Cascadia	235.9106	44.6227	359	11	12.82
acsz-61b	Aleutian–Alaska–Cascadia	235.2913	44.6150	359	9	5
acsz-62a	Aleutian–Alaska–Cascadia	235.9229	43.7245	359	11	12.82
acsz-62b	Aleutian–Alaska–Cascadia	235.3130	43.7168	359	9	5
acsz-63a	Aleutian–Alaska–Cascadia	236.0220	42.9020	350	11	12.82
acsz-63b	Aleutian–Alaska–Cascadia	235.4300	42.8254	350	9	5
acsz-64a	Aleutian–Alaska–Cascadia	235.9638	41.9818	345	11	12.82
acsz-64b	Aleutian–Alaska–Cascadia	235.3919	41.8677	345	9	5
acsz-65a	Aleutian–Alaska–Cascadia	236.2643	41.1141	345	11	12.82
acsz-65b	Aleutian–Alaska–Cascadia	235.7000	41.0000	345	9	5
acsz-238a	Aleutian–Alaska–Cascadia	213.2878	59.8406	236.8	15	17.94
acsz-238y	Aleutian–Alaska–Cascadia	212.3424	60.5664	236.8	15	43.82
acsz-238z	Aleutian-Alaska-Cascadia	212.8119	60.2035	236.8	15	30.88

Figure B2: Central and South America Subduction Zone unit sources.

Segment Description (*P.)			Longitude	Latitude	Strike	Dip	Depth
cess-1a Central and South America 254.4573 20.8170 359 19 15.4 cess-1b Central and South America 254.0035 20.8094 359 50 31.67 cess-2a Central and South America 254.7665 20.8286 336.8 19 15.4 cess-2a Central and South America 254.1607 20.1130 336.8 12 5 cess-3a Central and South America 255.6167 19.2649 313.4 17.62 15.12 cess-4a Central and South America 255.0166 18.9537 313.4 11.68 5 cess-5a Central and South America 256.2100 18.8148 302.7 11.54 5 cess-6a Central and South America 256.9125 18.4333 295.1 11.38 5 cess-7a Central and South America 257.8137 18.039 296.9 11.23 5 cess-7b Central and South America 258.5779 17.7151 290.4 11.08 5	Segment	Description	(°E)	(°N)	(°)	(°)	(km)
cssz-bb Central and South America 254.035 20.8094 359 12 5 cssz-lz Central and South America 254.7664 20.8222 359 50 31.67 cssz-2a Central and South America 254.7675 20.2806 336.8 19 15.4 cssz-3a Central and South America 254.8789 19.8923 310.6 18.31 15.27 cssz-4a Central and South America 255.6167 19.2649 313.4 17.62 15.12 cssz-5a Central and South America 255.0790 18.4532 302.7 16.92 15 cssz-6a Central and South America 256.9425 18.438 302.7 11.38 5 cssz-6b Central and South America 257.679 17.6180 296.9 15.54 14.74 cssz-6a Central and South America 257.679 17.7151 290.4 14.85 14.61 cssz-7a Central and South America 258.5779 17.7151 290.4 14.85 14.61	cssz-1a	Central and South America	254.4573	20.8170	359	19	15.4
cssz-lz Central and South America 254.7664 20.8222 359 50 31.67 cssz-2a Central and South America 254.5765 20.2806 336.8 12 5 cssz-2a Central and South America 254.1677 20.1130 336.8 12 5 cssz-3a Central and South America 254.5781 19.8023 310.6 18.31 15.27 cssz-4a Central and South America 255.3056 18.9537 313.4 17.62 15.12 cssz-5a Central and South America 255.9790 18.4532 302.7 16.92 15 cssz-5b Central and South America 256.7495 18.0479 295.1 16.23 14.87 cssz-6a Central and South America 257.8137 18.039 296.9 15.54 14.74 cssz-7b Central and South America 258.479 17.7151 290.4 11.85 5 cssz-7b Central and South America 259.2478 17.4024 290.5 14.15 14.47	cssz-1b	Central and South America	254.0035	20.8094	359	12	5
csss-2a Central and South America 254.5765 20.2806 336.8 19 15.4 csss-3b Central and South America 254.1607 20.1130 336.8 12 5 csss-3b Central and South America 254.5841 19.5085 310.6 11.85 5 csss-4a Central and South America 255.6167 19.2649 313.4 11.68 5 csss-4b Central and South America 256.3260 18.8148 302.7 16.23 14.87 csss-6b Central and South America 256.925 18.4383 295.1 11.38 5 csss-7b Central and South America 257.8137 18.0339 296.9 11.23 5 csss-7b Central and South America 257.6179 17.6140 290.4 11.08 5 csss-7b Central and South America 257.8137 17.4024 290.5 11.23 5 csss-7b Central and South America 259.4578 17.024 290.4 11.08 5	cssz-1z	Central and South America	254.7664	20.8222	359	50	31.67
cssr-2b Central and South America 254.1607 20.1130 336.8 12 5 cssr-3a Central and South America 254.5841 19.5685 310.6 18.31 15.27 cssr-4a Central and South America 255.6167 19.2649 313.4 17.62 15.12 cssr-4b Central and South America 255.0167 19.2649 313.4 11.68 5 cssr-5a Central and South America 256.0425 18.4532 302.7 16.92 15 cssr-6a Central and South America 256.0425 18.4533 302.7 11.63 5 cssr-6b Central and South America 256.0425 18.4333 295.1 11.38 5 cssr-7b Central and South America 255.779 17.7151 290.4 11.08 5 cssr-7b Central and South America 258.4191 17.3082 290.4 11.08 5 cssr-80 Central and South America 260.3768 17.0671 290.8 10.77 5 c	cssz-2a	Central and South America	254.5765	20.2806	336.8	19	15.4
cssr-3a Central and South America 254.8789 19.8923 310.6 18.31 15.27 cssr-4b Central and South America 255.6167 19.2649 313.4 11.68 5 cssr-4a Central and South America 255.6167 19.2649 313.4 11.68 5 cssr-4a Central and South America 256.2240 18.8148 302.7 16.92 15 cssr-5b Central and South America 256.9425 18.4383 295.1 16.23 14.87 cssr-6a Central and South America 257.6137 18.0399 296.9 15.54 14.174 cssr-7b Central and South America 257.6079 17.6480 296.9 11.23 5 cssr-8a Central and South America 259.2793 17.7151 290.4 14.85 14.61 cssr-8b Central and South America 259.2983 16.944 290.5 10.92 5 cssr-9a Central and South America 260.3385 17.0861 290.8 10.77 5 <td>cssz-2b</td> <td>Central and South America</td> <td>254.1607</td> <td>20.1130</td> <td>336.8</td> <td>12</td> <td>5</td>	cssz-2b	Central and South America	254.1607	20.1130	336.8	12	5
cssz-3b Central and South America 254.5841 19.5685 310.6 11.85 5 cssz-4a Central and South America 255.6167 19.2649 313.4 17.62 15.12 cssz-4a Central and South America 255.0366 18.9537 313.4 11.68 5 cssz-6a Central and South America 256.2240 18.8148 302.7 16.23 14.87 cssz-6a Central and South America 256.2421 18.0479 295.1 16.23 14.87 cssz-6b Central and South America 257.6079 17.6480 296.9 11.23 5 cssz-7a Central and South America 257.6079 17.7151 290.4 14.85 14.61 cssz-8a Central and South America 259.4578 17.0424 290.5 10.92 5 cssz-9a Central and South America 260.3855 17.0861 290.8 10.77 5 cssz-10b Central and South America 260.2656 16.3487 291.8 12.277 14.21	cssz-3a	Central and South America	254.8789	19.8923	310.6	18.31	15.27
cssz-4a Central and South America 255.6167 19.2649 313.4 17.62 15.12 cssz-4b Central and South America 255.3056 18.9537 313.4 11.68 5 cssz-5a Central and South America 256.2240 18.8148 302.7 11.54 5 cssz-6a Central and South America 256.9250 18.4532 302.7 11.54 5 cssz-6b Central and South America 256.7495 18.0479 295.1 11.38 5 cssz-7b Central and South America 257.6079 17.6180 296.9 15.54 14.61 cssz-8b Central and South America 258.5779 17.151 290.4 14.85 14.61 cssz-8a Central and South America 259.2578 17.4024 290.5 14.15 14.47 cssz-9b Central and South America 260.3855 17.0861 290.8 10.7 5 cssz-10a Central and South America 261.255 16.7564 291.8 10.27 14.21 </td <td>cssz-3b</td> <td>Central and South America</td> <td>254.5841</td> <td>19.5685</td> <td>310.6</td> <td>11.85</td> <td>5</td>	cssz-3b	Central and South America	254.5841	19.5685	310.6	11.85	5
cssz-4b Central and South America 255.3056 18.9537 313.4 11.68 5 cssz-5a Central and South America 256.2240 18.8148 302.7 16.92 15 cssz-5b Central and South America 256.9790 18.4532 302.7 11.54 5 cssz-6a Central and South America 256.7495 18.0479 295.1 11.38 5 cssz-6b Central and South America 257.8137 18.0339 296.9 15.54 14.47 cssz-7b Central and South America 257.8137 18.0339 290.9 15.54 14.61 cssz-8a Central and South America 258.5779 17.7151 290.4 11.08 5 cssz-9b Central and South America 259.24578 17.4024 290.5 10.92 5 cssz-10a Central and South America 260.385 17.0861 290.8 13.46 14.34 cssz-11a Central and South America 261.0255 16.7554 291.8 10.62 5	cssz-4a	Central and South America	255.6167	19.2649	313.4	17.62	15.12
cssz-5a Central and South America 256.2240 18.8148 302.7 16.92 15 cssz-5b Central and South America 255.9790 18.4532 302.7 11.54 5 cssz-6a Central and South America 256.7495 18.0479 295.1 11.38 5 cssz-7a Central and South America 257.6179 17.6480 296.9 15.54 14.74 cssz-7b Central and South America 257.6079 17.6480 296.9 11.23 5 cssz-8a Central and South America 258.5779 17.7151 290.4 11.08 5 cssz-9a Central and South America 259.2983 16.944 290.5 14.15 14.474 cssz-9b Central and South America 260.385 17.0861 290.8 13.76 255 cssz-10b Central and South America 261.0556 16.3487 291.8 10.62 5 cssz-11a Central and South America 262.0561 16.6403 288.9 10.8 14.08	cssz-4b	Central and South America	255.3056	18.9537	313.4	11.68	5
cssz-5b Central and South America 255.9790 18.4532 302.7 11.54 5 cssz-6a Central and South America 256.9425 18.4383 295.1 16.23 14.87 cssz-6a Central and South America 256.7495 18.0339 296.9 15.54 14.74 cssz-7a Central and South America 257.6079 17.6480 296.9 11.23 5 cssz-8a Central and South America 258.5779 17.7151 290.4 14.85 14.61 cssz-8b Central and South America 258.5779 17.7151 290.4 11.08 5 cssz-9a Central and South America 259.2983 16.9944 290.5 10.92 5 cssz-10a Central and South America 260.1768 16.6776 291.8 10.77 5 cssz-11a Central and South America 261.2555 16.7544 291.8 10.62 5 cssz-12b Central and South America 262.0561 16.4603 288.9 10.46 5	cssz-5a	Central and South America	256.2240	18.8148	302.7	16.92	15
cssz-6a Central and South America 256.9425 18.4383 295.1 16.23 14.87 cssz-6b Central and South America 256.7495 18.0479 295.1 11.38 5 cssz-7a Central and South America 257.8137 18.0339 296.9 15.54 14.74 cssz-7b Central and South America 257.6079 17.6480 290.4 11.88 5 cssz-8a Central and South America 258.5799 17.7151 290.4 11.08 5 cssz-9a Central and South America 259.2983 16.9944 290.5 10.92 5 cssz-10a Central and South America 260.385 17.0861 290.8 10.77 5 cssz-10b Central and South America 261.2555 16.7554 291.8 12.79 14.21 cssz-11a Central and South America 262.0561 16.6487 281.9 10.46 5 cssz-12b Central and South America 262.5638 16.2381 283.2 10.31 5	cssz-5b	Central and South America	255.9790	18.4532	302.7	11.54	5
cssz-6bCentral and South America256.749518.0479295.111.385cssz-7aCentral and South America257.813718.0339296.915.5414.74cssz-7bCentral and South America257.607917.6480296.911.235cssz-8aCentral and South America258.577917.7151290.414.8514.61cssz-8bCentral and South America258.419117.3082290.411.085cssz-9aCentral and South America259.457817.4024290.514.1514.47cssz-9aCentral and South America250.298316.9944290.510.925cssz-10aCentral and South America260.176816.6776290.810.775cssz-11aCentral and South America261.255516.7554291.812.0714.21cssz-12bCentral and South America262.056116.4603288.912.0814.08cssz-12bCentral and South America262.056116.4603288.910.465cssz-13aCentral and South America262.056116.4613272.110.165cssz-14bCentral and South America263.590115.7024273.210.315cssz-15aCentral and South America263.590115.7024272.110.155cssz-15aCentral and South America263.590115.7024272.110.155cssz-15aCentral and South America2	cssz-6a	Central and South America	256.9425	18.4383	295.1	16.23	14.87
essz-7a Central and South America 257.8137 18.0339 296.9 15.54 14.74 cssz-7b Central and South America 257.6079 17.6480 296.9 11.23 5 cssz-8a Central and South America 258.5779 17.7151 290.4 14.85 14.61 cssz-8a Central and South America 258.5779 17.4024 290.5 14.15 14.47 cssz-9a Central and South America 259.2983 16.9944 290.5 10.92 5 cssz-10b Central and South America 260.1768 16.6776 290.8 10.77 5 cssz-11a Central and South America 261.2555 16.7554 291.8 12.77 14.21 cssz-12b Central and South America 262.0561 16.4603 288.9 12.08 14.08 cssz-13a Central and South America 262.0561 16.4613 283.2 10.31 5 cssz-14b Central and South America 262.0563 16.2417 288.9 10.46 5	cssz-6b	Central and South America	256.7495	18.0479	295.1	11.38	5
essz-7b Central and South America 257.6079 17.6480 296.9 11.23 5 cssz-8a Central and South America 258.5779 17.7151 290.4 14.85 14.61 cssz-8a Central and South America 258.4191 17.3082 290.4 11.08 5 cssz-9a Central and South America 259.2983 16.9944 290.5 10.92 5 cssz-10a Central and South America 260.3385 17.0861 290.8 13.46 14.34 cssz-10b Central and South America 260.1768 16.6776 290.8 10.77 5 cssz-11a Central and South America 261.2555 16.7554 291.8 12.77 14.21 cssz-12b Central and South America 262.0561 16.4603 288.9 12.08 14.08 cssz-13a Central and South America 262.8638 16.231 283.2 10.31 5 cssz-14b Central and South America 263.6066 16.1435 272.1 10.69 13.86	cssz-7a	Central and South America	257.8137	18.0339	296.9	15.54	14.74
cssz-8a Central and South America 258.5779 17.7151 290.4 14.85 14.61 cssz-8b Central and South America 258.4191 17.3082 290.4 11.08 5 cssz-9a Central and South America 259.4578 17.4024 290.5 14.15 14.47 cssz-9b Central and South America 259.2983 16.9944 290.5 10.92 5 cssz-10a Central and South America 260.3385 17.0861 290.8 10.77 5 cssz-11a Central and South America 260.1768 16.6576 291.8 12.77 14.21 cssz-12a Central and South America 261.2556 16.3487 291.8 10.62 5 cssz-12b Central and South America 262.0561 16.4603 283.9 10.46 5 cssz-13a Central and South America 262.8538 16.2381 283.2 10.31 5 cssz-14b Central and South America 263.6066 16.1435 272.1 10.69 13.81	cssz-7b	Central and South America	257.6079	17.6480	296.9	11.23	5
cssz-8b Central and South America 258.4191 17.3082 290.4 11.08 5 cssz-9a Central and South America 259.4578 17.4024 290.5 14.15 14.47 cssz-9b Central and South America 259.2983 16.9944 290.5 10.92 5 cssz-10a Central and South America 260.3385 17.0861 290.8 13.46 14.34 cssz-10b Central and South America 260.1768 16.6776 290.8 10.77 5 cssz-11a Central and South America 261.2255 16.7554 291.8 10.62 5 cssz-12a Central and South America 262.0561 16.4603 288.9 10.46 5 cssz-12b Central and South America 262.0561 16.0447 288.9 10.46 5 cssz-13a Central and South America 262.7593 15.8094 283.2 10.31 5 cssz-13b Central and South America 263.5001 15.7024 272.1 10.69 13.81 <	cssz-8a	Central and South America	258.5779	17.7151	290.4	14.85	14.61
cssz-9aCentral and South America259.457817.4024290.514.1514.47cssz-9bCentral and South America259.298316.9944290.510.925cssz-10aCentral and South America260.338517.0861290.813.4614.34cssz-10bCentral and South America260.176816.6776290.810.775cssz-11aCentral and South America261.225516.7554291.812.7714.21cssz-11bCentral and South America261.055616.3487291.810.625cssz-12aCentral and South America262.056116.4603288.912.0814.08cssz-12bCentral and South America262.863816.2381283.211.3813.95cssz-13aCentral and South America262.759315.8094283.210.315cssz-14aCentral and South America263.606616.1435272.110.6913.81cssz-15aCentral and South America264.825915.8292931013.68cssz-15bCentral and South America265.186516.69712931031.05cssz-15bCentral and South America265.060016.29002931022.36cssz-15bCentral and South America265.05314.951304.915.15.82cssz-15bCentral and South America265.056016.29002931022.36cssz-15bCentral and South America<	cssz-8b	Central and South America	258.4191	17.3082	290.4	11.08	5
cssz-9b Central and South America 259.2983 16.9944 290.5 10.92 5 cssz-10a Central and South America 260.3385 17.0861 290.8 13.46 14.34 cssz-10b Central and South America 260.1768 16.6776 290.8 10.77 5 cssz-11a Central and South America 261.2255 16.7554 291.8 12.77 14.21 cssz-11b Central and South America 261.0556 16.3487 291.8 10.62 5 cssz-12a Central and South America 262.0561 16.4603 288.9 12.08 14.08 cssz-12b Central and South America 262.8638 16.2381 283.2 11.38 13.95 cssz-13a Central and South America 262.7593 15.8094 283.2 10.31 5 cssz-14a Central and South America 263.6066 16.1435 272.1 10.69 13.81 cssz-15a Central and South America 264.8259 15.8829 293 10 5	cssz-9a	Central and South America	259.4578	17.4024	290.5	14.15	14.47
cssz-10aCentral and South America260.338517.0861290.813.4614.34cssz-10bCentral and South America260.176816.6776290.810.775cssz-11aCentral and South America261.25516.7554291.812.7714.21cssz-12aCentral and South America262.056116.4603288.912.0814.08cssz-12bCentral and South America262.056116.0447288.910.465cssz-13aCentral and South America262.759315.8094283.211.3813.95cssz-14aCentral and South America262.759315.8094283.210.6913.81cssz-14aCentral and South America263.606616.1435272.110.6913.81cssz-15bCentral and South America264.825915.88292931013.68cssz-15bCentral and South America265.186516.69712931031.05cssz-15bCentral and South America265.006016.29002931022.36cssz-15bCentral and South America265.053314.9951304.91515.82cssz-16bCentral and South America265.036314.9951304.9155cssz-15bCentral and South America265.036314.9951304.9155cssz-16bCentral and South America265.036314.9951304.91541.7cssz-16bCentral and South America <td< td=""><td>cssz-9b</td><td>Central and South America</td><td>259.2983</td><td>16.9944</td><td>290.5</td><td>10.92</td><td>5</td></td<>	cssz-9b	Central and South America	259.2983	16.9944	290.5	10.92	5
cssz-10bCentral and South America260.176816.6776290.810.775cssz-11aCentral and South America261.225516.7554291.812.7714.21cssz-11bCentral and South America261.055616.3487291.810.625cssz-12aCentral and South America262.056116.4603288.912.0814.08cssz-12bCentral and South America262.056116.0447288.910.465cssz-13aCentral and South America262.759315.8094283.210.315cssz-14aCentral and South America263.606616.1435272.110.6913.81cssz-14aCentral and South America264.825915.8292931013.68cssz-15bCentral and South America265.186516.69712931031.05cssz-15bCentral and South America265.792815.3507304.915.7825cssz-16bCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America265.535314.9951304.91541.7cssz-16bCentral and South America266.309216.0619304.91541.7cssz-16cCentral and South America266.050815.7063304.91528.76cssz-16bCentral and South America2	cssz-10a	Central and South America	260.3385	17.0861	290.8	13.46	14.34
cssz-11aCentral and South America261.225516.7554291.812.7714.21cssz-11bCentral and South America261.055616.3487291.810.625cssz-12aCentral and South America262.056116.4603288.912.0814.08cssz-12bCentral and South America261.098216.0447288.910.465cssz-13aCentral and South America262.863816.2381283.211.3813.95cssz-13bCentral and South America262.759315.8094283.210.315cssz-14aCentral and South America263.606616.1435272.110.6913.81cssz-15aCentral and South America264.825915.88292931013.68cssz-15aCentral and South America265.186516.6971293105cssz-15bCentral and South America265.792815.3507304.91515.82cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America265.35314.9951304.9155cssz-16cCentral and South America266.309216.0619304.91541.7cssz-16zCentral and South America266.50815.7063304.91528.76cssz-16zCentral and South America266.050815.7063304.91528.76cssz-16zCentral and South America266.6	cssz-10b	Central and South America	260.1768	16.6776	290.8	10.77	5
cssz-11bCentral and South America261.055616.3487291.810.625cssz-12aCentral and South America262.056116.4603288.912.0814.08cssz-12bCentral and South America261.908216.0447288.910.465cssz-13aCentral and South America262.863816.2381283.211.3813.95cssz-13bCentral and South America262.759315.8094283.210.315cssz-14aCentral and South America263.606616.1435272.110.6913.81cssz-15aCentral and South America264.825915.8292931013.68cssz-15bCentral and South America265.186516.6971293105cssz-15yCentral and South America265.006016.29002931022.36cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16yCentral and South America266.309216.0619304.91541.7cssz-16yCentral and South America266.309216.0619304.91528.76cssz-16yCentral and South America266.050815.7063304.91528.76cssz-16yCentral and South America266.050815.7063304.91528.76cssz-16yCentral and South America266.050815.7063304.91528.76cssz-16yCentral and South America266.0	cssz-11a	Central and South America	261.2255	16.7554	291.8	12.77	14.21
cssz-12aCentral and South America262.056116.4603288.912.0814.08cssz-12bCentral and South America261.908216.0447288.910.465cssz-13aCentral and South America262.863816.2381283.211.3813.95cssz-13bCentral and South America262.759315.8094283.210.315cssz-14aCentral and South America263.606616.1435272.110.6913.81cssz-14bCentral and South America264.825915.8292931013.68cssz-15aCentral and South America264.646215.4758293105cssz-15bCentral and South America265.186516.69712931031.05cssz-15zCentral and South America265.792815.3507304.91515.82cssz-16aCentral and South America265.35314.9951304.91541.7cssz-16bCentral and South America266.309216.0619304.91528.76cssz-16cCentral and South America266.050815.7063304.91528.76cssz-16aCentral and South America266.309216.0619304.91528.76cssz-16bCentral and South America266.309216.0619304.91528.76cssz-16aCentral and South America266.494714.9019299.52017.94cssz-16bCentral and South America266.3	cssz-11b	Central and South America	261.0556	16.3487	291.8	10.62	5
cssz-12bCentral and South America261.908216.0447288.910.465cssz-13aCentral and South America262.863816.2381283.211.3813.95cssz-13bCentral and South America262.759315.8094283.210.315cssz-14aCentral and South America263.606616.1435272.110.6913.81cssz-14bCentral and South America263.590115.7024272.110.155cssz-15aCentral and South America264.825915.88292931013.68cssz-15bCentral and South America265.186516.69712931031.05cssz-15zCentral and South America265.006016.29002931022.36cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America265.35314.9951304.912.55cssz-16bCentral and South America266.309216.0619304.91541.7cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.279714.5346299.5155cssz-17bCentral and South America266.279714.5346299.5155cssz-17bCentral and South America266.279714.5346299.5155cssz-17bCentral and South America266.27971	cssz-12a	Central and South America	262.0561	16.4603	288.9	12.08	14.08
cssz-13aCentral and South America262.863816.2381283.211.3813.95cssz-13bCentral and South America262.759315.8094283.210.315cssz-14aCentral and South America263.606616.1435272.110.6913.81cssz-14bCentral and South America263.590115.7024272.110.155cssz-15aCentral and South America264.825915.88292931013.68cssz-15bCentral and South America265.186516.69712931031.05cssz-15zCentral and South America265.006016.29002931022.36cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America266.309216.0619304.91541.7cssz-16bCentral and South America266.050815.7063304.91528.76cssz-16yCentral and South America266.050815.7063304.91541.7cssz-16yCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.494714.9019299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-12b	Central and South America	261.9082	16.0447	288.9	10.46	5
cssz-13bCentral and South America262.759315.8094283.210.315cssz-14aCentral and South America263.606616.1435272.110.6913.81cssz-14bCentral and South America263.590115.7024272.110.155cssz-15aCentral and South America264.825915.88292931013.68cssz-15bCentral and South America264.646215.4758293105cssz-15yCentral and South America265.186516.69712931031.05cssz-15zCentral and South America265.006016.29002931022.36cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America266.309216.0619304.91541.7cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.050815.7063304.91528.76cssz-17bCentral and South America266.279714.5346299.52017.94cssz-17yCentral and South America266.279714.5346299.52052.14	cssz-13a	Central and South America	262.8638	16.2381	283.2	11.38	13.95
cssz-14aCentral and South America263.606616.1435272.110.6913.81cssz-14bCentral and South America263.590115.7024272.110.155cssz-15aCentral and South America264.825915.88292931013.68cssz-15bCentral and South America264.646215.4758293105cssz-15yCentral and South America265.186516.69712931031.05cssz-15zCentral and South America265.006016.29002931022.36cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America266.309216.0619304.91541.7cssz-16yCentral and South America266.050815.7063304.91528.76cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.279714.5346299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-13b	Central and South America	262.7593	15.8094	283.2	10.31	5
cssz-14bCentral and South America263.590115.7024272.110.155cssz-15aCentral and South America264.825915.88292931013.68cssz-15bCentral and South America264.646215.4758293105cssz-15yCentral and South America265.186516.69712931031.05cssz-15zCentral and South America265.006016.29002931022.36cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America266.309216.0619304.91541.7cssz-16yCentral and South America266.050815.7063304.91528.76cssz-16zCentral and South America266.494714.901929.52017.94cssz-17aCentral and South America266.279714.5346299.5155cssz-17bCentral and South America266.279714.5346299.5155	cssz-14a	Central and South America	263.6066	16.1435	272.1	10.69	13.81
cssz-15aCentral and South America264.825915.88292931013.68cssz-15bCentral and South America264.646215.4758293105cssz-15yCentral and South America265.186516.69712931031.05cssz-15zCentral and South America265.006016.29002931022.36cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America265.35314.9951304.912.55cssz-16yCentral and South America266.309216.0619304.91541.7cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.279714.5346299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-14b	Central and South America	263.5901	15.7024	272.1	10.15	5
cssz-15bCentral and South America264.646215.4758293105cssz-15yCentral and South America265.186516.69712931031.05cssz-15zCentral and South America265.006016.29002931022.36cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America265.35314.9951304.912.55cssz-16yCentral and South America266.309216.0619304.91541.7cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.494714.9019299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-15a	Central and South America	264.8259	15.8829	293	10	13.68
cssz-15yCentral and South America265.186516.69712931031.05cssz-15zCentral and South America265.006016.29002931022.36cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America265.535314.9951304.912.55cssz-16yCentral and South America266.309216.0619304.91541.7cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.494714.9019299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-15b	Central and South America	264.6462	15.4758	293	10	5
cssz-15zCentral and South America265.006016.29002931022.36cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America265.535314.9951304.912.55cssz-16yCentral and South America266.309216.0619304.91541.7cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.494714.9019299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-15y	Central and South America	265.1865	16.6971	293	10	31.05
cssz-16aCentral and South America265.792815.3507304.91515.82cssz-16bCentral and South America265.535314.9951304.912.55cssz-16yCentral and South America266.309216.0619304.91541.7cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.494714.9019299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-15z	Central and South America	265.0060	16.2900	293	10	22.36
cssz-16bCentral and South America265.535314.9951304.912.55cssz-16yCentral and South America266.309216.0619304.91541.7cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.494714.9019299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-16a	Central and South America	265.7928	15.3507	304.9	15	15.82
cssz-16yCentral and South America266.309216.0619304.91541.7cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.494714.9019299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-16b	Central and South America	265.5353	14.9951	304.9	12.5	5
cssz-16zCentral and South America266.050815.7063304.91528.76cssz-17aCentral and South America266.494714.9019299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-16y	Central and South America	266.3092	16.0619	304.9	15	41.7
cssz-17aCentral and South America266.494714.9019299.52017.94cssz-17bCentral and South America266.279714.5346299.5155cssz-17yCentral and South America266.925915.6365299.52052.14	cssz-16z	Central and South America	266.0508	15.7063	304.9	15	28.76
cssz-17b Central and South America 266.2797 14.5346 299.5 15 5 cssz-17y Central and South America 266.9259 15.6365 299.5 20 52.14	cssz-17a	Central and South America	266.4947	14.9019	299.5	20	17.94
cssz-17y Central and South America 266.9259 15.6365 299.5 20 52.14	cssz-17b	Central and South America	266.2797	14.5346	299.5	15	5
	cssz-17y	Central and South America	266.9259	15.6365	299.5	20	52.14

 Table B2: Earthquake parameters for Central and South America Subduction Zone unit sources.

Table B2	: (continued)
----------	---------------

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
cssz-17z	Central and South America	266.7101	15.2692	299.5	20	35.04
cssz-18a	Central and South America	267.2827	14.4768	298	21.5	17.94
cssz-18b	Central and South America	267.0802	14.1078	298	15	5
cssz-18y	Central and South America	267.6888	15.2148	298	21.5	54.59
cssz-18z	Central and South America	267.4856	14.8458	298	21.5	36.27
cssz-19a	Central and South America	268.0919	14.0560	297.6	23	17.94
cssz-19b	Central and South America	267.8943	13.6897	297.6	15	5
cssz-19y	Central and South America	268.4880	14.7886	297.6	23	57.01
cssz-19z	Central and South America	268.2898	14.4223	297.6	23	37.48
cssz-20a	Central and South America	268.8929	13.6558	296.2	24	17.94
cssz-20b	Central and South America	268.7064	13.2877	296.2	15	5
cssz-20y	Central and South America	269.1796	14.2206	296.2	45.5	73.94
cssz-20z	Central and South America	269.0362	13.9382	296.2	45.5	38.28
cssz-21a	Central and South America	269.6797	13.3031	292.6	25	17.94
cssz-21b	Central and South America	269.5187	12.9274	292.6	15	5
cssz-21x	Central and South America	269.8797	13.7690	292.6	68	131.8
cssz-21y	Central and South America	269.8130	13.6137	292.6	68	85.43
cssz-21z	Central and South America	269.7463	13.4584	292.6	68	39.07
cssz-22a	Central and South America	270.4823	13.0079	288.6	25	17.94
cssz-22b	Central and South America	270.3492	12.6221	288.6	15	5
cssz-22x	Central and South America	270.6476	13.4864	288.6	68	131.8
cssz-22y	Central and South America	270.5925	13.3269	288.6	68	85.43
cssz-22z	Central and South America	270.5374	13.1674	288.6	68	39.07
cssz-23a	Central and South America	271.3961	12.6734	292.4	25	17.94
cssz-23b	Central and South America	271.2369	12.2972	292.4	15	5
cssz-23x	Central and South America	271.5938	13.1399	292.4	68	131.8
cssz-23y	Central and South America	271.5279	12.9844	292.4	68	85.43
cssz-23z	Central and South America	271.4620	12.8289	292.4	68	39.07
cssz-24a	Central and South America	272.3203	12.2251	300.2	25	17.94
cssz-24b	Central and South America	272.1107	11.8734	300.2	15	5
cssz-24x	Central and South America	272.5917	12.6799	300.2	67	131.1
cssz-24y	Central and South America	272.5012	12.5283	300.2	67	85.1
cssz-24z	Central and South America	272.4107	12.3767	300.2	67	39.07
cssz-25a	Central and South America	273.2075	11.5684	313.8	25	17.94
cssz-25b	Central and South America	272.9200	11.2746	313.8	15	5
cssz-25x	Central and South America	273.5950	11.9641	313.8	66	130.4
cssz-25y	Central and South America	273.4658	11.8322	313.8	66	84.75
cssz-25z	Central and South America	273.3366	11.7003	313.8	66	39.07
cssz-26a	Central and South America	273.8943	10.8402	320.4	25	17.94

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
cssz-26b	Central and South America	273.5750	10.5808	320.4	15	5
cssz-26x	Central and South America	274.3246	11.1894	320.4	66	130.4
cssz-26y	Central and South America	274.1811	11.0730	320.4	66	84.75
cssz-26z	Central and South America	274.0377	10.9566	320.4	66	39.07
cssz-27a	Central and South America	274.4569	10.2177	316.1	25	17.94
cssz-27b	Central and South America	274.1590	9.9354	316.1	15	5
cssz-27z	Central and South America	274.5907	10.3444	316.1	66	39.07
cssz-28a	Central and South America	274.9586	9.8695	297.1	22	14.54
cssz-28b	Central and South America	274.7661	9.4988	297.1	11	5
cssz-28z	Central and South America	275.1118	10.1643	297.1	42.5	33.27
cssz-29a	Central and South America	275.7686	9.4789	296.6	19	11.09
cssz-29b	Central and South America	275.5759	9.0992	296.6	7	5
cssz-30a	Central and South America	276.6346	8.9973	302.2	19	9.36
cssz-30b	Central and South America	276.4053	8.6381	302.2	5	5
cssz-31a	Central and South America	277.4554	8.4152	309.1	19	7.62
cssz-31b	Central and South America	277.1851	8.0854	309.1	3	5
cssz-31z	Central and South America	277.7260	8.7450	309.1	19	23.9
cssz-32a	Central and South America	278.1112	7.9425	303	18.67	8.49
cssz-32b	Central and South America	277.8775	7.5855	303	4	5
cssz-32z	Central and South America	278.3407	8.2927	303	21.67	24.49
cssz-33a	Central and South America	278.7082	7.6620	287.6	18.33	10.23
cssz-33b	Central and South America	278.5785	7.2555	287.6	6	5
cssz-33z	Central and South America	278.8328	8.0522	287.6	24.33	25.95
cssz-34a	Central and South America	279.3184	7.5592	269.5	18	17.94
cssz-34b	Central and South America	279.3223	7.1320	269.5	15	5
cssz-35a	Central and South America	280.0039	7.6543	255.9	17.67	14.54
cssz-35b	Central and South America	280.1090	7.2392	255.9	11	5
cssz-35x	Central and South America	279.7156	8.7898	255.9	29.67	79.22
cssz-35y	Central and South America	279.8118	8.4113	255.9	29.67	54.47
cssz-35z	Central and South America	279.9079	8.0328	255.9	29.67	29.72
cssz-36a	Central and South America	281.2882	7.6778	282.5	17.33	11.09
cssz-36b	Central and South America	281.1948	7.2592	282.5	7	5
cssz-36x	Central and South America	281.5368	8.7896	282.5	32.33	79.47
cssz-36y	Central and South America	281.4539	8.4190	282.5	32.33	52.73
cssz-36z	Central and South America	281.3710	8.0484	282.5	32.33	25.99
cssz-37a	Central and South America	282.5252	6.8289	326.9	17	10.23
cssz-37b	Central and South America	282.1629	6.5944	326.9	6	5
cssz-38a	Central and South America	282.9469	5.5973	355.4	17	10.23
cssz-38b	Central and South America	282.5167	5.5626	355.4	6	5

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
cssz-39a	Central and South America	282.7236	4.3108	24.13	17	10.23
cssz-39b	Central and South America	282.3305	4.4864	24.13	6	5
cssz-39z	Central and South America	283.0603	4.1604	24.13	35	24.85
cssz-40a	Central and South America	282.1940	3.3863	35.28	17	10.23
cssz-40b	Central and South America	281.8427	3.6344	35.28	6	5
cssz-40y	Central and South America	282.7956	2.9613	35.28	35	53.52
cssz-40z	Central and South America	282.4948	3.1738	35.28	35	24.85
cssz-41a	Central and South America	281.6890	2.6611	34.27	17	10.23
cssz-41b	Central and South America	281.3336	2.9030	34.27	6	5
cssz-41z	Central and South America	281.9933	2.4539	34.27	35	24.85
cssz-42a	Central and South America	281.2266	1.9444	31.29	17	10.23
cssz-42b	Central and South America	280.8593	2.1675	31.29	6	5
cssz-42z	Central and South America	281.5411	1.7533	31.29	35	24.85
cssz-43a	Central and South America	280.7297	1.1593	33.3	17	10.23
cssz-43b	Central and South America	280.3706	1.3951	33.3	6	5
cssz-43z	Central and South America	281.0373	0.9573	33.3	35	24.85
cssz-44a	Central and South America	280.3018	0.4491	28.8	17	10.23
cssz-44b	Central and South America	279.9254	0.6560	28.8	6	5
cssz-45a	Central and South America	279.9083	-0.3259	26.91	10	8.49
cssz-45b	Central and South America	279.5139	-0.1257	26.91	4	5
cssz-46a	Central and South America	279.6461	-0.9975	15.76	10	8.49
cssz-46b	Central and South America	279.2203	-0.8774	15.76	4	5
cssz-47a	Central and South America	279.4972	-1.7407	6.9	10	8.49
cssz-47b	Central and South America	279.0579	-1.6876	6.9	4	5
cssz-48a	Central and South America	279.3695	-2.6622	8.96	10	8.49
cssz-48b	Central and South America	278.9321	-2.5933	8.96	4	5
cssz-48y	Central and South America	280.2444	-2.8000	8.96	10	25.85
cssz-48z	Central and South America	279.8070	-2.7311	8.96	10	17.17
cssz-49a	Central and South America	279.1852	-3.6070	13.15	10	8.49
cssz-49b	Central and South America	278.7536	-3.5064	13.15	4	5
cssz-49y	Central and South America	280.0486	-3.8082	13.15	10	25.85
cssz-49z	Central and South America	279.6169	-3.7076	13.15	10	17.17
cssz-50a	Central and South America	279.0652	-4.3635	4.78	10.33	9.64
cssz-50b	Central and South America	278.6235	-4.3267	4.78	5.33	5
cssz-51a	Central and South America	279.0349	-5.1773	359.4	10.67	10.81
cssz-51b	Central and South America	278.5915	-5.1817	359.4	6.67	5
cssz-52a	Central and South America	279.1047	-5.9196	349.8	11	11.96
cssz-52b	Central and South America	278.6685	-5.9981	349.8	8	5
cssz-53a	Central and South America	279.3044	-6.6242	339.2	10.25	11.74

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
cssz-53b	Central and South America	278.8884	-6.7811	339.2	7.75	5
cssz-53y	Central and South America	280.1024	-6.3232	339.2	19.25	37.12
cssz-53z	Central and South America	279.7035	-6.4737	339.2	19.25	20.64
cssz-54a	Central and South America	279.6256	-7.4907	340.8	9.5	11.53
cssz-54b	Central and South America	279.2036	-7.6365	340.8	7.5	5
cssz-54y	Central and South America	280.4267	-7.2137	340.8	20.5	37.29
cssz-54z	Central and South America	280.0262	-7.3522	340.8	20.5	19.78
cssz-55a	Central and South America	279.9348	-8.2452	335.4	8.75	11.74
cssz-55b	Central and South America	279.5269	-8.4301	335.4	7.75	5
cssz-55x	Central and South America	281.0837	-7.7238	335.4	21.75	56.4
cssz-55y	Central and South America	280.7009	-7.8976	335.4	21.75	37.88
cssz-55z	Central and South America	280.3180	-8.0714	335.4	21.75	19.35
cssz-56a	Central and South America	280.3172	-8.9958	331.6	8	11.09
cssz-56b	Central and South America	279.9209	-9.2072	331.6	7	5
cssz-56x	Central and South America	281.4212	-8.4063	331.6	23	57.13
cssz-56y	Central and South America	281.0534	-8.6028	331.6	23	37.59
cssz-56z	Central and South America	280.6854	-8.7993	331.6	23	18.05
cssz-57a	Central and South America	280.7492	-9.7356	328.7	8.6	10.75
cssz-57b	Central and South America	280.3640	-9.9663	328.7	6.6	5
cssz-57x	Central and South America	281.8205	-9.0933	328.7	23.4	57.94
cssz-57y	Central and South America	281.4636	-9.3074	328.7	23.4	38.08
cssz-57z	Central and South America	281.1065	-9.5215	328.7	23.4	18.22
cssz-58a	Central and South America	281.2275	-10.5350	330.5	9.2	10.4
cssz-58b	Central and South America	280.8348	-10.7532	330.5	6.2	5
cssz-58y	Central and South America	281.9548	-10.1306	330.5	23.8	38.57
cssz-58z	Central and South America	281.5913	-10.3328	330.5	23.8	18.39
cssz-59a	Central and South America	281.6735	-11.2430	326.2	9.8	10.05
cssz-59b	Central and South America	281.2982	-11.4890	326.2	5.8	5
cssz-59y	Central and South America	282.3675	-10.7876	326.2	24.2	39.06
cssz-59z	Central and South America	282.0206	-11.0153	326.2	24.2	18.56
cssz-60a	Central and South America	282.1864	-11.9946	326.5	10.4	9.71
cssz-60b	Central and South America	281.8096	-12.2384	326.5	5.4	5
cssz-60y	Central and South America	282.8821	-11.5438	326.5	24.6	39.55
cssz-60z	Central and South America	282.5344	-11.7692	326.5	24.6	18.73
cssz-61a	Central and South America	282.6944	-12.7263	325.5	11	9.36
cssz-61b	Central and South America	282.3218	-12.9762	325.5	5	5
cssz-61y	Central and South America	283.3814	-12.2649	325.5	25	40.03
cssz-61z	Central and South America	283.0381	-12.4956	325.5	25	18.9
cssz-62a	Central and South America	283.1980	-13.3556	319	11	9.79

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
cssz-62b	Central and South America	282.8560	-13.6451	319	5.5	5
cssz-62y	Central and South America	283.8178	-12.8300	319	27	42.03
cssz-62z	Central and South America	283.5081	-13.0928	319	27	19.33
cssz-63a	Central and South America	283.8032	-14.0147	317.9	11	10.23
cssz-63b	Central and South America	283.4661	-14.3106	317.9	6	5
cssz-63z	Central and South America	284.1032	-13.7511	317.9	29	19.77
cssz-64a	Central and South America	284.4144	-14.6482	315.7	13	11.96
cssz-64b	Central and South America	284.0905	-14.9540	315.7	8	5
cssz-65a	Central and South America	285.0493	-15.2554	313.2	15	13.68
cssz-65b	Central and South America	284.7411	-15.5715	313.2	10	5
cssz-66a	Central and South America	285.6954	-15.7816	307.7	14.5	13.68
cssz-66b	Central and South America	285.4190	-16.1258	307.7	10	5
cssz-67a	Central and South America	286.4127	-16.2781	304.3	14	13.68
cssz-67b	Central and South America	286.1566	-16.6381	304.3	10	5
cssz-67z	Central and South America	286.6552	-15.9365	304.3	23	25.78
cssz-68a	Central and South America	287.2481	-16.9016	311.8	14	13.68
cssz-68b	Central and South America	286.9442	-17.2264	311.8	10	5
cssz-68z	Central and South America	287.5291	-16.6007	311.8	26	25.78
cssz-69a	Central and South America	287.9724	-17.5502	314.9	14	13.68
cssz-69b	Central and South America	287.6496	-17.8590	314.9	10	5
cssz-69y	Central and South America	288.5530	-16.9934	314.9	29	50.02
cssz-69z	Central and South America	288.2629	-17.2718	314.9	29	25.78
cssz-70a	Central and South America	288.6731	-18.2747	320.4	14	13.25
cssz-70b	Central and South America	288.3193	-18.5527	320.4	9.5	5
cssz-70y	Central and South America	289.3032	-17.7785	320.4	30	50.35
cssz-70z	Central and South America	288.9884	-18.0266	320.4	30	25.35
cssz-71a	Central and South America	289.3089	-19.1854	333.2	14	12.82
cssz-71b	Central and South America	288.8968	-19.3820	333.2	9	5
cssz-71y	Central and South America	290.0357	-18.8382	333.2	31	50.67
cssz-71z	Central and South America	289.6725	-19.0118	333.2	31	24.92
cssz-72a	Central and South America	289.6857	-20.3117	352.4	14	12.54
cssz-72b	Central and South America	289.2250	-20.3694	352.4	8.67	5
cssz-72z	Central and South America	290.0882	-20.2613	352.4	32	24.63
cssz-73a	Central and South America	289.7731	-21.3061	358.9	14	12.24
cssz-73b	Central and South America	289.3053	-21.3142	358.9	8.33	5
cssz-73z	Central and South America	290.1768	-21.2991	358.9	33	24.34
cssz-74a	Central and South America	289.7610	-22.2671	3.06	14	11.96
cssz-74b	Central and South America	289.2909	-22.2438	3.06	8	5

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
cssz-75a	Central and South America	289.6982	-23.1903	4.83	14.09	11.96
cssz-75b	Central and South America	289.2261	-23.1536	4.83	8	5
cssz-76a	Central and South America	289.6237	-24.0831	4.67	14.18	11.96
cssz-76b	Central and South America	289.1484	-24.0476	4.67	8	5
cssz-77a	Central and South America	289.5538	-24.9729	4.3	14.27	11.96
cssz-77b	Central and South America	289.0750	-24.9403	4.3	8	5
cssz-78a	Central and South America	289.4904	-25.8621	3.86	14.36	11.96
cssz-78b	Central and South America	289.0081	-25.8328	3.86	8	5
cssz-79a	Central and South America	289.3491	-26.8644	11.34	14.45	11.96
cssz-79b	Central and South America	288.8712	-26.7789	11.34	8	5
cssz-80a	Central and South America	289.1231	-27.7826	14.16	14.54	11.96
cssz-80b	Central and South America	288.6469	-27.6762	14.16	8	5
cssz-81a	Central and South America	288.8943	-28.6409	13.19	14.63	11.96
cssz-81b	Central and South America	288.4124	-28.5417	13.19	8	5
cssz-82a	Central and South America	288.7113	-29.4680	9.68	14.72	11.96
cssz-82b	Central and South America	288.2196	-29.3950	9.68	8	5
cssz-83a	Central and South America	288.5944	-30.2923	5.36	14.81	11.96
cssz-83b	Central and South America	288.0938	-30.2517	5.36	8	5
cssz-84a	Central and South America	288.5223	-31.1639	3.8	14.9	11.96
cssz-84b	Central and South America	288.0163	-31.1351	3.8	8	5
cssz-85a	Central and South America	288.4748	-32.0416	2.55	15	11.96
cssz-85b	Central and South America	287.9635	-32.0223	2.55	8	5
cssz-86a	Central and South America	288.3901	-33.0041	7.01	15	11.96
cssz-86b	Central and South America	287.8768	-32.9512	7.01	8	5
cssz-87a	Central and South America	288.1050	-34.0583	19.4	15	11.96
cssz-87b	Central and South America	287.6115	-33.9142	19.4	8	5
cssz-88a	Central and South America	287.5309	-35.0437	32.81	15	11.96
cssz-88b	Central and South America	287.0862	-34.8086	32.81	8	5
cssz-88z	Central and South America	287.9308	-35.2545	32.81	30	24.9
cssz-89a	Central and South America	287.2380	-35.5993	14.52	16.67	11.96
cssz-89b	Central and South America	286.7261	-35.4914	14.52	8	5
cssz-89z	Central and South America	287.7014	-35.6968	14.52	30	26.3
cssz-90a	Central and South America	286.8442	-36.5645	22.64	18.33	11.96
cssz-90b	Central and South America	286.3548	-36.4004	22.64	8	5
cssz-90z	Central and South America	287.2916	-36.7142	22.64	30	27.68
cssz-91a	Central and South America	286.5925	-37.2488	10.9	20	11.96
cssz-91b	Central and South America	286.0721	-37.1690	10.9	8	5
cssz-91z	Central and South America	287.0726	-37.3224	10.9	30	29.06

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
cssz-92a	Central and South America	286.4254	-38.0945	8.23	20	11.96
cssz-92b	Central and South America	285.8948	-38.0341	8.23	8	5
cssz-92z	Central and South America	286.9303	-38.1520	8.23	26.67	29.06
cssz-93a	Central and South America	286.2047	-39.0535	13.46	20	11.96
cssz-93b	Central and South America	285.6765	-38.9553	13.46	8	5
cssz-93z	Central and South America	286.7216	-39.1495	13.46	23.33	29.06
cssz-94a	Central and South America	286.0772	-39.7883	3.4	20	11.96
cssz-94b	Central and South America	285.5290	-39.7633	3.4	8	5
cssz-94z	Central and South America	286.6255	-39.8133	3.4	20	29.06
cssz-95a	Central and South America	285.9426	-40.7760	9.84	20	11.96
cssz-95b	Central and South America	285.3937	-40.7039	9.84	8	5
cssz-95z	Central and South America	286.4921	-40.8481	9.84	20	29.06
cssz-96a	Central and South America	285.7839	-41.6303	7.6	20	11.96
cssz-96b	Central and South America	285.2245	-41.5745	7.6	8	5
cssz-96x	Central and South America	287.4652	-41.7977	7.6	20	63.26
cssz-96y	Central and South America	286.9043	-41.7419	7.6	20	46.16
cssz-96z	Central and South America	286.3439	-41.6861	7.6	20	29.06
cssz-97a	Central and South America	285.6695	-42.4882	5.3	20	11.96
cssz-97b	Central and South America	285.0998	-42.4492	5.3	8	5
cssz-97x	Central and South America	287.3809	-42.6052	5.3	20	63.26
cssz-97y	Central and South America	286.8101	-42.5662	5.3	20	46.16
cssz-97z	Central and South America	286.2396	-42.5272	5.3	20	29.06
cssz-98a	Central and South America	285.5035	-43.4553	10.53	20	11.96
cssz-98b	Central and South America	284.9322	-43.3782	10.53	8	5
cssz-98x	Central and South America	287.2218	-43.6866	10.53	20	63.26
cssz-98y	Central and South America	286.6483	-43.6095	10.53	20	46.16
cssz-98z	Central and South America	286.0755	-43.5324	10.53	20	29.06
cssz-99a	Central and South America	285.3700	-44.2595	4.86	20	11.96
cssz-99b	Central and South America	284.7830	-44.2237	4.86	8	5
cssz-99x	Central and South America	287.1332	-44.3669	4.86	20	63.26
cssz-99y	Central and South America	286.5451	-44.3311	4.86	20	46.16
cssz-99z	Central and South America	285.9574	-44.2953	4.86	20	29.06
cssz-100a	Central and South America	285.2713	-45.1664	5.68	20	11.96
cssz-100b	Central and South America	284.6758	-45.1246	5.68	8	5
cssz-100x	Central and South America	287.0603	-45.2918	5.68	20	63.26
cssz-100y	Central and South America	286.4635	-45.2500	5.68	20	46.16
cssz-100z	Central and South America	285.8672	-45.2082	5.68	20	29.06
cssz-101a	Central and South America	285.3080	-45.8607	352.6	20	9.36

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
cssz-101b	Central and South America	284.7067	-45.9152	352.6	5	5
cssz-101y	Central and South America	286.5089	-45.7517	352.6	20	43.56
cssz-101z	Central and South America	285.9088	-45.8062	352.6	20	26.46
cssz-102a	Central and South America	285.2028	-47.1185	17.72	5	9.36
cssz-102b	Central and South America	284.5772	-46.9823	17.72	5	5
cssz-102y	Central and South America	286.4588	-47.3909	17.72	5	18.07
cssz-102z	Central and South America	285.8300	-47.2547	17.72	5	13.72
cssz-103a	Central and South America	284.7075	-48.0396	23.37	7.5	11.53
cssz-103b	Central and South America	284.0972	-47.8630	23.37	7.5	5
cssz-103x	Central and South America	286.5511	-48.5694	23.37	7.5	31.11
cssz-103y	Central and South America	285.9344	-48.3928	23.37	7.5	24.58
cssz-103z	Central and South America	285.3199	-48.2162	23.37	7.5	18.05
cssz-104a	Central and South America	284.3440	-48.7597	14.87	10	13.68
cssz-104b	Central and South America	283.6962	-48.6462	14.87	10	5
cssz-104x	Central and South America	286.2962	-49.1002	14.87	10	39.73
cssz-104y	Central and South America	285.6440	-48.9867	14.87	10	31.05
cssz-104z	Central and South America	284.9933	-48.8732	14.87	10	22.36
cssz-105a	Central and South America	284.2312	-49.4198	0.25	9.67	13.4
cssz-105b	Central and South America	283.5518	-49.4179	0.25	9.67	5
cssz-105x	Central and South America	286.2718	-49.4255	0.25	9.67	38.59
cssz-105y	Central and South America	285.5908	-49.4236	0.25	9.67	30.2
cssz-105z	Central and South America	284.9114	-49.4217	0.25	9.67	21.8
cssz-106a	Central and South America	284.3730	-50.1117	347.5	9.25	13.04
cssz-106b	Central and South America	283.6974	-50.2077	347.5	9.25	5
cssz-106x	Central and South America	286.3916	-49.8238	347.5	9.25	37.15
cssz-106y	Central and South America	285.7201	-49.9198	347.5	9.25	29.11
cssz-106z	Central and South America	285.0472	-50.0157	347.5	9.25	21.07
cssz-107a	Central and South America	284.7130	-50.9714	346.5	9	12.82
cssz-107b	Central and South America	284.0273	-51.0751	346.5	9	5
cssz-107x	Central and South America	286.7611	-50.6603	346.5	9	36.29
cssz-107y	Central and South America	286.0799	-50.7640	346.5	9	28.47
cssz-107z	Central and South America	285.3972	-50.8677	346.5	9	20.64
cssz-108a	Central and South America	285.0378	-51.9370	352	8.67	12.54
cssz-108b	Central and South America	284.3241	-51.9987	352	8.67	5
cssz-108x	Central and South America	287.1729	-51.7519	352	8.67	35.15
cssz-108y	Central and South America	286.4622	-51.8136	352	8.67	27.61
cssz-108z	Central and South America	285.7505	-51.8753	352	8.67	20.07
cssz-109a	Central and South America	285.2635	-52.8439	353.1	8.33	12.24
cssz-109b	Central and South America	284.5326	-52.8974	353.1	8.33	5

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
cssz-109x	Central and South America	287.4508	-52.6834	353.1	8.33	33.97
cssz-109y	Central and South America	286.7226	-52.7369	353.1	8.33	26.73
cssz-109z	Central and South America	285.9935	-52.7904	353.1	8.33	19.49
cssz-110a	Central and South America	285.5705	-53.4139	334.2	8	11.96
cssz-110b	Central and South America	284.8972	-53.6076	334.2	8	5
cssz-110x	Central and South America	287.5724	-52.8328	334.2	8	32.83
cssz-110y	Central and South America	286.9081	-53.0265	334.2	8	25.88
cssz-110z	Central and South America	286.2408	-53.2202	334.2	8	18.92
cssz-111a	Central and South America	286.1627	-53.8749	313.8	8	11.96
cssz-111b	Central and South America	285.6382	-54.1958	313.8	8	5
cssz-111x	Central and South America	287.7124	-52.9122	313.8	8	32.83
cssz-111y	Central and South America	287.1997	-53.2331	313.8	8	25.88
cssz-111z	Central and South America	286.6832	-53.5540	313.8	8	18.92
cssz-112a	Central and South America	287.3287	-54.5394	316.4	8	11.96
cssz-112b	Central and South America	286.7715	-54.8462	316.4	8	5
cssz-112x	Central and South America	288.9756	-53.6190	316.4	8	32.83
cssz-112y	Central and South America	288.4307	-53.9258	316.4	8	25.88
cssz-112z	Central and South America	287.8817	-54.2326	316.4	8	18.92
cssz-113a	Central and South America	288.3409	-55.0480	307.6	8	11.96
cssz-113b	Central and South America	287.8647	-55.4002	307.6	8	5
cssz-113x	Central and South America	289.7450	-53.9914	307.6	8	32.83
cssz-113y	Central and South America	289.2810	-54.3436	307.6	8	25.88
cssz-113z	Central and South America	288.8130	-54.6958	307.6	8	18.92
cssz-114a	Central and South America	289.5342	-55.5026	301.5	8	11.96
cssz-114b	Central and South America	289.1221	-55.8819	301.5	8	5
cssz-114x	Central and South America	290.7472	-54.3647	301.5	8	32.83
cssz-114y	Central and South America	290.3467	-54.7440	301.5	8	25.88
cssz-114z	Central and South America	289.9424	-55.1233	301.5	8	18.92
cssz-115a	Central and South America	290.7682	-55.8485	292.7	8	11.96
$\mathrm{cssz} ext{-}115\mathrm{b}$	Central and South America	290.4608	-56.2588	292.7	8	5
cssz-115x	Central and South America	291.6714	-54.6176	292.7	8	32.83
cssz-115y	Central and South America	291.3734	-55.0279	292.7	8	25.88
cssz-115z	Central and South America	291.0724	-55.4382	292.7	8	18.92

Figure B3: Eastern Philippines Subduction Zone unit sources.

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
epsz-0a	Eastern Philippines	128.5264	1.5930	180	44	26.92
epsz-0b	Eastern Philippines	128.8496	1.5930	180	26	5
epsz-1a	Eastern Philippines	128.5521	2.3289	153.6	44.2	27.62
epsz-1b	Eastern Philippines	128.8408	2.4720	153.6	26.9	5
epsz-2a	Eastern Philippines	128.1943	3.1508	151.9	45.9	32.44
epsz-2b	Eastern Philippines	128.4706	3.2979	151.9	32.8	5.35
epsz-3a	Eastern Philippines	127.8899	4.0428	155.2	57.3	40.22
epsz-3b	Eastern Philippines	128.1108	4.1445	155.2	42.7	6.31
epsz-4a	Eastern Philippines	127.6120	4.8371	146.8	71.4	48.25
epsz-4b	Eastern Philippines	127.7324	4.9155	146.8	54.8	7.39
epsz-5a	Eastern Philippines	127.3173	5.7040	162.9	79.9	57.4
epsz-5b	Eastern Philippines	127.3930	5.7272	162.9	79.4	8.25
epsz-6a	Eastern Philippines	126.6488	6.6027	178.9	48.6	45.09
epsz-6b	Eastern Philippines	126.9478	6.6085	178.9	48.6	7.58
epsz-7a	Eastern Philippines	126.6578	7.4711	175.8	50.7	45.52
epsz-7b	Eastern Philippines	126.9439	7.4921	175.8	50.7	6.83
epsz-8a	Eastern Philippines	126.6227	8.2456	163.3	56.7	45.6
epsz-8b	Eastern Philippines	126.8614	8.3164	163.3	48.9	7.92
epsz-9a	Eastern Philippines	126.2751	9.0961	164.1	47	43.59
epsz-9b	Eastern Philippines	126.5735	9.1801	164.1	44.9	8.3
epsz-10a	Eastern Philippines	125.9798	9.9559	164.5	43.1	42.25
epsz-10b	Eastern Philippines	126.3007	10.0438	164.5	43.1	8.09
epsz-11a	Eastern Philippines	125.6079	10.6557	155	37.8	38.29
epsz-11b	Eastern Philippines	125.9353	10.8059	155	37.8	7.64
epsz-12a	Eastern Philippines	125.4697	11.7452	172.1	36	37.01
epsz-12b	Eastern Philippines	125.8374	11.7949	172.1	36	7.62
epsz-13a	Eastern Philippines	125.2238	12.1670	141.5	32.4	33.87
epsz-13b	Eastern Philippines	125.5278	12.4029	141.5	32.4	7.08
epsz-14a	Eastern Philippines	124.6476	13.1365	158.2	23	25.92
epsz-14b	Eastern Philippines	125.0421	13.2898	158.2	23	6.38
epsz-15a	Eastern Philippines	124.3107	13.9453	156.1	24.1	26.51
epsz-15b	Eastern Philippines	124.6973	14.1113	156.1	24.1	6.09
epsz-16a	Eastern Philippines	123.8998	14.4025	140.3	19.5	21.69
epsz-16b	Eastern Philippines	124.2366	14.6728	140.3	19.5	5
epsz-17a	Eastern Philippines	123.4604	14.7222	117.6	15.3	18.19
epsz-17b	Eastern Philippines	123.6682	15.1062	117.6	15.3	5
epsz-18a	Eastern Philippines	123.3946	14.7462	67.4	15	17.94
epsz-18b	Eastern Philippines	123.2219	15.1467	67.4	15	5
epsz-19a	Eastern Philippines	121.3638	15.7400	189.6	15	17.94
epsz-19b	Eastern Philippines	121.8082	15.6674	189.6	15	5
epsz-20a	Eastern Philippines	121.6833	16.7930	203.3	15	17.94
epsz-20b	Eastern Philippines	122.0994	16.6216	203.3	15	5
- epsz-21a	Eastern Philippines	121.8279	17.3742	184.2	15	17.94
epsz-21b	Eastern Philippines	122.2814	17.3425	184.2	15	5

 Table B3: Earthquake parameters for Eastern Philippines Subduction Zone unit sources.

Figure B4: Kamchatka–Bering Subduction Zone unit sources.

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
kbsz-1a	Kamchatka-Bering	161.8374	57.5485	201.5	29	26.13
kbsz-1b	Kamchatka-Bering	162.5162	57.4030	202.1	25	5
kbsz-2a	Kamchatka-Bering	162.4410	58.3816	201.7	29	26.13
kbsz-2b	Kamchatka-Bering	163.1344	58.2343	202.3	25	5
kbsz-2z	Kamchatka-Bering	161.7418	58.5249	201.1	29	50.37
kbsz-3a	Kamchatka-Bering	163.5174	59.3493	218.9	29	26.13
kbsz-3b	Kamchatka-Bering	164.1109	59.1001	219.4	25	5
kbsz-3z	Kamchatka-Bering	162.9150	59.5958	218.4	29	50.37
kbsz-4a	Kamchatka-Bering	164.7070	60.0632	222.2	29	26.13
kbsz-4b	Kamchatka-Bering	165.2833	59.7968	222.7	25	5
kbsz-4z	Kamchatka-Bering	164.1212	60.3270	221.7	29	50.37
kbsz-5a	Kamchatka-Bering	165.8652	60.7261	220.5	29	26.13
kbsz-5b	Kamchatka-Bering	166.4692	60.4683	221	25	5

 Table B4: Earthquake parameters for Kamchatka–Bering Subduction Zone unit sources.

Figure B5: Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zone unit sources.

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
kisz-0a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	162.8200	56.3667	194.4	29	26.13
kisz-0b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	163.5057	56.2677	195	25	5
kisz-0z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	162.1309	56.4618	193.8	29	50.37
kisz-1a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	162.4318	55.5017	195	29	26.13
kisz-1b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	163.1000	55.4000	195	25	5
kisz-1y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.0884	55.7050	195	29	74.61
kisz-1z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.7610	55.6033	195	29	50.37
kisz-2a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.9883	54.6784	200	29	26.13
kisz-2b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	162.6247	54.5440	200	25	5
kisz-2y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.7072	54.9471	200	29	74.61
kisz-2z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.3488	54.8127	200	29	50.37
kisz-3a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.4385	53.8714	204	29	26.13
kisz-3b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	162.0449	53.7116	204	25	5
kisz-3y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.2164	54.1910	204	29	74.61
kisz-3z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.8286	54.0312	204	29	50.37
kisz-4a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.7926	53.1087	210	29	26.13
kisz-4b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.3568	52.9123	210	25	5
kisz-4y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	159.6539	53.5015	210	29	74.61
kisz-4z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.2246	53.3051	210	29	50.37
kisz-5a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.0211	52.4113	218	29	26.13
kisz-5b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.5258	52.1694	218	25	5
kisz-5y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	159.0005	52.8950	218	29	74.61
kisz-5z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	159.5122	52.6531	218	29	50.37
kisz-6a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	159.1272	51.7034	218	29	26.13
kisz-6b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	159.6241	51.4615	218	25	5
kisz-6y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	158.1228	52.1871	218	29	74.61
kisz-6z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	158.6263	51.9452	218	29	50.37
kisz-7a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	158.2625	50.9549	214	29	26.13
kisz-7b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	158.7771	50.7352	214	25	5
kisz-7y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	157.2236	51.3942	214	29	74.61
kisz-7z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	157.7443	51.1745	214	29	50.37
kisz-8a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	157.4712	50.2459	218	31	27.7
kisz-8b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	157.9433	50.0089	218	27	5
kisz-8y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	156.5176	50.7199	218	31	79.2
kisz-8z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	156.9956	50.4829	218	31	53.45
kisz-9a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	156.6114	49.5583	220	31	27.7
kisz-9b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	157.0638	49.3109	220	27	5
kisz-9y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	155.6974	50.0533	220	31	79.2
kisz-9z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	156.1556	49.8058	220	31	53.45

 Table B5: Earthquake parameters for Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zone unit sources.

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
kisz-10a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	155.7294	48.8804	221	31	27.7
kisz-10b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	156.1690	48.6278	221	27	5
kisz-10y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	154.8413	49.3856	221	31	79.2
kisz-10z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	155.2865	49.1330	221	31	53.45
kisz-11a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	154.8489	48.1821	219	31	27.7
kisz-11b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	155.2955	47.9398	219	27	5
kisz-11y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.9472	48.6667	219	31	79.2
kisz-11z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	154.3991	48.4244	219	31	53.45
kisz-11c	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	156.0358	47.5374	39	57.89	4.602
kisz-12a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.9994	47.4729	217	31	27.7
kisz-12b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	154.4701	47.2320	217	27	5
kisz-12y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.0856	47.9363	217	31	79.2
kisz-12z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.5435	47.7046	217	31	53.45
kisz-12c	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	155.2208	46.8473	37	57.89	4.602
kisz-13a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.2239	46.7564	218	31	27.7
kisz-13b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.6648	46.5194	218	27	5
kisz-13y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	152.3343	47.2304	218	31	79.2
kisz-13z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	152.7801	46.9934	218	31	53.45
kisz-13c	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	154.3957	46.1257	38	57.89	4.602
kisz-14a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	152.3657	46.1514	225	23	24.54
kisz-14b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	152.7855	45.8591	225	23	5
kisz-14y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	151.5172	46.7362	225	23	63.62
kisz-14z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	151.9426	46.4438	225	23	44.08
kisz-14c	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.4468	45.3976	45	57.89	4.602
kisz-15a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	151.4663	45.5963	233	25	23.73
kisz-15b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	151.8144	45.2712	233	22	5
kisz-15y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	150.7619	46.2465	233	25	65.99
kisz-15z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	151.1151	45.9214	233	25	44.86
kisz-16a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	150.4572	45.0977	237	25	23.73
kisz-16b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	150.7694	44.7563	237	22	5
kisz-16y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	149.8253	45.7804	237	25	65.99
kisz-16z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	150.1422	45.4390	237	25	44.86
kisz-17a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	149.3989	44.6084	237	25	23.73
kisz-17b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	149.7085	44.2670	237	22	5
kisz-17y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	148.7723	45.2912	237	25	65.99
kisz-17z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	149.0865	44.9498	237	25	44.86
kisz-18a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	148.3454	44.0982	235	25	23.73
kisz-18b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	148.6687	43.7647	235	22	5
kisz-18y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.6915	44.7651	235	25	65.99

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
kisz-18z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	148.0194	44.4316	235	25	44.86
kisz-19a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.3262	43.5619	233	25	23.73
kisz-19b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.6625	43.2368	233	22	5
kisz-19y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.6463	44.2121	233	25	65.99
kisz-19z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.9872	43.8870	233	25	44.86
kisz-20a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.3513	43.0633	237	25	23.73
kisz-20b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.6531	42.7219	237	22	5
kisz-20y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.7410	43.7461	237	25	65.99
kisz-20z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.0470	43.4047	237	25	44.86
kisz-21a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.3331	42.5948	239	25	23.73
kisz-21b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.6163	42.2459	239	22	5
kisz-21y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.7603	43.2927	239	25	65.99
kisz-21z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.0475	42.9438	239	25	44.86
kisz-22a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.3041	42.1631	242	25	23.73
kisz-22b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.5605	41.8037	242	22	5
kisz-22y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.7854	42.8819	242	25	65.99
kisz-22z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.0455	42.5225	242	25	44.86
kisz-23a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.2863	41.3335	202	21	21.28
kisz-23b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.8028	41.1764	202	19	5
kisz-23v	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.6816	42.1189	202	21	110.9
kisz-23w	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.2050	41.9618	202	21	92.95
kisz-23x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.7273	41.8047	202	21	75.04
kisz-23y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.2482	41.6476	202	21	57.12
kisz-23z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.7679	41.4905	202	21	39.2
kisz-24a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.9795	40.3490	185	21	21.28
kisz-24b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.5273	40.3125	185	19	5
kisz-24x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.3339	40.4587	185	21	75.04
kisz-24y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.8827	40.4221	185	21	57.12
kisz-24z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.4312	40.3856	185	21	39.2
kisz-25a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.8839	39.4541	185	21	21.28
kisz-25b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.4246	39.4176	185	19	5
kisz-25y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.8012	39.5272	185	21	57.12
kisz-25z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.3426	39.4907	185	21	39.2
kisz-26a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.7622	38.5837	188	21	21.28
kisz-26b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.2930	38.5254	188	19	5
kisz-26x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.1667	38.7588	188	21	75.04
kisz-26y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.6990	38.7004	188	21	57.12
kisz-26z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.2308	38.6421	188	21	39.2
kisz-27a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.5320	37.7830	198	21	21.28

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
kisz-27b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.0357	37.6534	198	19	5
kisz-27x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.0142	38.1717	198	21	75.04
kisz-27y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.5210	38.0421	198	21	57.12
kisz-27z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.0269	37.9126	198	21	39.2
kisz-28a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.1315	37.0265	208	21	21.28
kisz-28b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.5941	36.8297	208	19	5
kisz-28x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.7348	37.6171	208	21	75.04
kisz-28y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.2016	37.4202	208	21	57.12
kisz-28z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.6671	37.2234	208	21	39.2
kisz-29a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.5970	36.2640	211	21	21.28
kisz-29b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.0416	36.0481	211	19	5
kisz-29y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.7029	36.6960	211	21	57.12
kisz-29z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.1506	36.4800	211	21	39.2
kisz-30a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.0553	35.4332	205	21	21.28
kisz-30b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.5207	35.2560	205	19	5
kisz-30y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.1204	35.7876	205	21	57.12
kisz-30z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.5883	35.6104	205	21	39.2
kisz-31a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.6956	34.4789	190	22	22.1
kisz-31b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.1927	34.4066	190	20	5
kisz-31v	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	138.2025	34.8405	190	22	115.8
kisz-31w	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	138.7021	34.7682	190	22	97.02
kisz-31x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	139.2012	34.6958	190	22	78.29
kisz-31y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	139.6997	34.6235	190	22	59.56
kisz-31z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.1979	34.5512	190	22	40.83
kisz-32a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.0551	33.0921	180	32	23.48
kisz-32b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.5098	33.0921	180	21.69	5
kisz-33a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.0924	32.1047	173.8	27.65	20.67
kisz-33b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.5596	32.1473	173.8	18.27	5
kisz-34a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.1869	31.1851	172.1	25	18.26
kisz-34b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.6585	31.2408	172.1	15.38	5
kisz-35a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.4154	30.1707	163	25	17.12
kisz-35b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.8662	30.2899	163	14.03	5
kisz-36a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.6261	29.2740	161.7	25.73	18.71
kisz-36b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.0670	29.4012	161.7	15.91	5
kisz-37a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.0120	28.3322	154.7	20	14.54
kisz-37b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.4463	28.5124	154.7	11	5
kisz-38a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.2254	27.6946	170.3	20	14.54
kisz-38b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.6955	27.7659	170.3	11	5
kisz-39a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.3085	26.9127	177.2	24.23	17.42

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
kisz-39b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.7674	26.9325	177.2	14.38	5
kisz-40a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.2673	26.1923	189.4	26.49	22.26
kisz-40b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.7090	26.1264	189.4	20.2	5
kisz-41a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.1595	25.0729	173.7	22.07	19.08
kisz-41b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.6165	25.1184	173.7	16.36	5
kisz-42a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.7641	23.8947	143.5	21.54	18.4
kisz-42b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.1321	24.1432	143.5	15.54	5
kisz-43a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.5281	23.0423	129.2	23.02	18.77
kisz-43b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.8128	23.3626	129.2	15.99	5
kisz-44a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.2230	22.5240	134.6	28.24	18.56
kisz-44b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.5246	22.8056	134.6	15.74	5
kisz-45a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.0895	21.8866	125.8	36.73	22.79
kisz-45b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.3171	22.1785	125.8	20.84	5
kisz-46a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.6972	21.3783	135.9	30.75	20.63
kisz-46b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.9954	21.6469	135.9	18.22	5
kisz-47a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.0406	20.9341	160.1	29.87	19.62
kisz-47b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.4330	21.0669	160.1	17	5
kisz-48a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.3836	20.0690	158	32.75	19.68
kisz-48b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.7567	20.2108	158	17.07	5
kisz-49a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.6689	19.3123	164.5	25.07	21.41
kisz-49b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.0846	19.4212	164.5	19.16	5
kisz-50a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.9297	18.5663	172.1	22	22.1
kisz-50b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.3650	18.6238	172.1	20	5
kisz-51a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.9495	17.7148	175.1	22.06	22.04
kisz-51b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.3850	17.7503	175.1	19.93	5
kisz-52a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.9447	16.8869	180	25.51	18.61
kisz-52b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.3683	16.8869	180	15.79	5
kisz-53a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.8626	16.0669	185.2	27.39	18.41
kisz-53b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.2758	16.0309	185.2	15.56	5
kisz-54a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.7068	15.3883	199.1	28.12	20.91
kisz-54b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.0949	15.2590	199.1	18.56	5
kisz-55a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.4717	14.6025	204.3	29.6	26.27
kisz-55b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.8391	14.4415	204.3	25.18	5
kisz-56a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.1678	13.9485	217.4	32.04	26.79
kisz-56b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.4789	13.7170	217.4	25.84	5
kisz-57a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.6515	13.5576	235.8	37	24.54
kisz-57b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.8586	13.2609	235.8	23	5
kisz-58a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.9648	12.9990	237.8	37.72	24.54
kisz-58b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.1589	12.6984	237.8	23	5
Table B5: (continued)

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
kisz-59a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.1799	12.6914	242.9	34.33	22.31
kisz-59b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.3531	12.3613	242.9	20.25	5
kisz-60a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.3687	12.3280	244.9	30.9	20.62
kisz-60b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.5355	11.9788	244.9	18.2	5
kisz-61a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.7051	12.1507	261.8	35.41	25.51
kisz-61b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.7582	11.7883	261.8	24.22	5
kisz-62a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.6301	11.8447	245.7	39.86	34.35
kisz-62b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.7750	11.5305	245.7	35.94	5
kisz-63a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.8923	11.5740	256.2	42	38.46
kisz-63b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.9735	11.2498	256.2	42	5
kisz-64a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.1387	11.6028	269.6	42.48	38.77
kisz-64b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.1410	11.2716	269.6	42.48	5
kisz-65a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	139.4595	11.5883	288.7	44.16	39.83
kisz-65b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	139.3541	11.2831	288.7	44.16	5
kisz-66a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	138.1823	11.2648	193.1	45	40.36
kisz-66b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	138.4977	11.1929	193.1	45	5
kisz-67a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	137.9923	10.3398	189.8	45	40.36
kisz-67b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	138.3104	10.2856	189.8	45	5
kisz-68a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	137.7607	9.6136	201.7	45	40.36
kisz-68b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	138.0599	9.4963	201.7	45	5
kisz-69a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	137.4537	8.8996	213.5	45	40.36
kisz-69b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	137.7215	8.7241	213.5	45	5
kisz-70a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	137.0191	8.2872	226.5	45	40.36
kisz-70b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	137.2400	8.0569	226.5	45	5
kisz-71a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	136.3863	7.9078	263.9	45	40.36
kisz-71b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	136.4202	7.5920	263.9	45	5
kisz-72a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	135.6310	7.9130	276.9	45	40.36
kisz-72b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	135.5926	7.5977	276.9	45	5
kisz-73a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	134.3296	7.4541	224	45	40.36
kisz-73b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	134.5600	7.2335	224	45	5
kisz-74a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	133.7125	6.8621	228.1	45	40.36
kisz-74b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	133.9263	6.6258	228.1	45	5
kisz-75a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	133.0224	6.1221	217.7	45	40.36
kisz-75b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	133.2751	5.9280	217.7	45	5

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
mosz-1a	Manus-Oceanic Convergent Boundary	154.0737	-4.8960	140.2	15	15.88
mosz-1b	Manus-Oceanic Convergent Boundary	154.4082	-4.6185	140.2	15	2.94
mosz-2a	Manus-Oceanic Convergent Boundary	153.5589	-4.1575	140.2	15	15.91
mosz-2b	Manus-Oceanic Convergent Boundary	153.8931	-3.8800	140.2	15	2.97
mosz-3a	Manus-Oceanic Convergent Boundary	153.0151	-3.3716	143.9	15	16.64
mosz-3b	Manus-Oceanic Convergent Boundary	153.3662	-3.1160	143.9	15	3.7
mosz-4a	Manus-Oceanic Convergent Boundary	152.4667	-3.0241	127.7	15	17.32
mosz-4b	Manus-Oceanic Convergent Boundary	152.7321	-2.6806	127.7	15	4.38
mosz-5a	Manus-Oceanic Convergent Boundary	151.8447	-2.7066	114.3	15	17.57
mosz-5b	Manus-Oceanic Convergent Boundary	152.0235	-2.3112	114.3	15	4.63
mosz-6a	Manus-Oceanic Convergent Boundary	151.0679	-2.2550	115	15	17.66
mosz-6b	Manus-Oceanic Convergent Boundary	151.2513	-1.8618	115	15	4.72
mosz-7a	Manus-Oceanic Convergent Boundary	150.3210	-2.0236	107.2	15	17.73
mosz-7b	Manus-Oceanic Convergent Boundary	150.4493	-1.6092	107.2	15	4.79
mosz-8a	Manus-Oceanic Convergent Boundary	149.3226	-1.6666	117.8	15	17.83
mosz-8b	Manus-Oceanic Convergent Boundary	149.5251	-1.2829	117.8	15	4.89
mosz-9a	Manus-Oceanic Convergent Boundary	148.5865	-1.3017	112.7	15	17.84
mosz-9b	Manus-Oceanic Convergent Boundary	148.7540	-0.9015	112.7	15	4.9
mosz-10a	Manus-Oceanic Convergent Boundary	147.7760	-1.1560	108	15	17.78
mosz-10b	Manus-Oceanic Convergent Boundary	147.9102	-0.7434	108	15	4.84
mosz-11a	Manus-Oceanic Convergent Boundary	146.9596	-1.1226	102.5	15	17.54
mosz-11b	Manus-Oceanic Convergent Boundary	147.0531	-0.6990	102.5	15	4.6
mosz-12a	Manus-Oceanic Convergent Boundary	146.2858	-1.1820	87.48	15	17.29
mosz-12b	Manus-Oceanic Convergent Boundary	146.2667	-0.7486	87.48	15	4.35
mosz-13a	Manus-Oceanic Convergent Boundary	145.4540	-1.3214	83.75	15	17.34
mosz-13b	Manus-Oceanic Convergent Boundary	145.4068	-0.8901	83.75	15	4.4
mosz-14a	Manus-Oceanic Convergent Boundary	144.7151	-1.5346	75.09	15	17.21
mosz-14b	Manus-Oceanic Convergent Boundary	144.6035	-1.1154	75.09	15	4.27
mosz-15a	Manus-Oceanic Convergent Boundary	143.9394	-1.8278	70.43	15	16.52
mosz-15b	Manus-Oceanic Convergent Boundary	143.7940	-1.4190	70.43	15	3.58
mosz-16a	Manus-Oceanic Convergent Boundary	143.4850	-2.2118	50.79	15	15.86
mosz-16b	Manus-Oceanic Convergent Boundary	143.2106	-1.8756	50.79	15	2.92
mosz-17a	Manus-Oceanic Convergent Boundary	143.1655	-2.7580	33	15	16.64
mosz-17b	Manus-Oceanic Convergent Boundary	142.8013	-2.5217	33	15	3.7

Table B6: Earthquake parameters for Manus–Oceanic Convergent Boundary Subduction Zone unit sources.

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
ngsz-1a	New Guinea	143.6063	-4.3804	120	29	25.64
ngsz-1b	New Guinea	143.8032	-4.0402	120	29	1.4
ngsz-2a	New Guinea	142.9310	-3.9263	114	27.63	20.1
ngsz-2b	New Guinea	143.0932	-3.5628	114	21.72	1.6
ngsz-3a	New Guinea	142.1076	-3.5632	114	20.06	18.73
ngsz-3b	New Guinea	142.2795	-3.1778	114	15.94	5
ngsz-4a	New Guinea	141.2681	-3.2376	114	21	17.76
ngsz-4b	New Guinea	141.4389	-2.8545	114	14.79	5
ngsz-5a	New Guinea	140.4592	-2.8429	114	21.26	16.14
ngsz-5b	New Guinea	140.6296	-2.4605	114	12.87	5
ngsz-6a	New Guinea	139.6288	-2.4960	114	22.72	15.4
ngsz-6b	New Guinea	139.7974	-2.1175	114	12	5
ngsz-7a	New Guinea	138.8074	-2.1312	114	21.39	15.4
ngsz-7b	New Guinea	138.9776	-1.7491	114	12	5
ngsz-8a	New Guinea	138.0185	-1.7353	113.1	18.79	15.14
ngsz-8b	New Guinea	138.1853	-1.3441	113.1	11.7	5
ngsz-9a	New Guinea	137.1805	-1.5037	111	15.24	13.23
ngsz-9b	New Guinea	137.3358	-1.0991	111	9.47	5
ngsz-10a	New Guinea	136.3418	-1.1774	111	13.51	11.09
ngsz-10b	New Guinea	136.4983	-0.7697	111	7	5
ngsz-11a	New Guinea	135.4984	-0.8641	111	11.38	12.49
ngsz-11b	New Guinea	135.6562	-0.4530	111	8.62	5
ngsz-12a	New Guinea	134.6759	-0.5216	110.5	10	13.68
ngsz-12b	New Guinea	134.8307	-0.1072	110.5	10	5
ngsz-13a	New Guinea	133.3065	-1.0298	99.5	10	13.68
ngsz-13b	New Guinea	133.3795	-0.5935	99.5	10	5
ngsz-14a	New Guinea	132.4048	-0.8816	99.5	10	13.68
ngsz-14b	New Guinea	132.4778	-0.4453	99.5	10	5
ngsz-15a	New Guinea	131.5141	-0.7353	99.5	10	13.68
ngsz-15b	New Guinea	131.5871	-0.2990	99.5	10	5

 Table B7: Earthquake parameters for New Guinea Subduction Zone unit sources.

Figure B8: New Zealand–Kermadec–Tonga Subduction Zone unit sources.

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
ntsz-1a	New Zealand–Kermadec–Tonga	174.0985	-41.3951	258.6	24	25.34
ntsz-1b	New Zealand–Kermadec–Tonga	174.2076	-41.7973	258.6	24	5
ntsz-2a	New Zealand–Kermadec–Tonga	175.3289	-41.2592	260.6	29.38	23.17
ntsz-2b	New Zealand–Kermadec–Tonga	175.4142	-41.6454	260.6	21.31	5
ntsz-3a	New Zealand–Kermadec–Tonga	176.2855	-40.9950	250.7	29.54	21.74
ntsz-3b	New Zealand–Kermadec–Tonga	176.4580	-41.3637	250.7	19.56	5
ntsz-4a	New Zealand–Kermadec–Tonga	177.0023	-40.7679	229.4	24.43	18.87
ntsz-4b	New Zealand–Kermadec–Tonga	177.3552	-41.0785	229.4	16.1	5
ntsz-5a	New Zealand–Kermadec–Tonga	177.4114	-40.2396	210	18.8	19.29
ntsz-5b	New Zealand–Kermadec–Tonga	177.8951	-40.4525	210	16.61	5
ntsz-6a	New Zealand–Kermadec–Tonga	177.8036	-39.6085	196.7	18.17	15.8
ntsz-6b	New Zealand–Kermadec–Tonga	178.3352	-39.7310	196.7	12.48	5
ntsz-7a	New Zealand–Kermadec–Tonga	178.1676	-38.7480	197	28.1	17.85
ntsz-7b	New Zealand–Kermadec–Tonga	178.6541	-38.8640	197	14.89	5
ntsz-8a	New Zealand–Kermadec–Tonga	178.6263	-37.8501	201.4	31.47	18.78
ntsz-8b	New Zealand–Kermadec–Tonga	179.0788	-37.9899	201.4	16	5
ntsz-9a	New Zealand–Kermadec–Tonga	178.9833	-36.9770	202.2	29.58	20.02
ntsz-9b	New Zealand–Kermadec–Tonga	179.4369	-37.1245	202.2	17.48	5
ntsz-10a	New Zealand–Kermadec–Tonga	179.5534	-36.0655	210.6	32.1	20.72
ntsz-10b	New Zealand–Kermadec–Tonga	179.9595	-36.2593	210.6	18.32	5
ntsz-11a	New Zealand–Kermadec–Tonga	179.9267	-35.3538	201.7	25	16.09
ntsz-11b	New Zealand–Kermadec–Tonga	180.3915	-35.5040	201.7	12.81	5
ntsz-12a	New Zealand–Kermadec–Tonga	180.4433	-34.5759	201.2	25	15.46
ntsz-12b	New Zealand–Kermadec–Tonga	180.9051	-34.7230	201.2	12.08	5
ntsz-13a	New Zealand–Kermadec–Tonga	180.7990	-33.7707	199.8	25.87	19.06
ntsz-13b	New Zealand–Kermadec–Tonga	181.2573	-33.9073	199.8	16.33	5
ntsz-14a	New Zealand–Kermadec–Tonga	181.2828	-32.9288	202.4	31.28	22.73
ntsz-14b	New Zealand–Kermadec–Tonga	181.7063	-33.0751	202.4	20.77	5
ntsz-15a	New Zealand–Kermadec–Tonga	181.4918	-32.0035	205.4	32.33	22.64
ntsz-15b	New Zealand–Kermadec–Tonga	181.8967	-32.1665	205.4	20.66	5
ntsz-16a	New Zealand–Kermadec–Tonga	181.9781	-31.2535	205.5	34.29	23.59
ntsz-16b	New Zealand–Kermadec–Tonga	182.3706	-31.4131	205.5	21.83	5
ntsz-17a	New Zealand–Kermadec–Tonga	182.4819	-30.3859	210.3	37.6	25.58
ntsz-17b	New Zealand–Kermadec–Tonga	182.8387	-30.5655	210.3	24.3	5
ntsz-18a	New Zealand–Kermadec–Tonga	182.8176	-29.6545	201.6	37.65	26.13
ntsz-18b	New Zealand–Kermadec–Tonga	183.1985	-29.7856	201.6	25	5
ntsz-19a	New Zealand–Kermadec–Tonga	183.0622	-28.8739	195.7	34.41	26.13
ntsz-19b	New Zealand–Kermadec–Tonga	183.4700	-28.9742	195.7	25	5
ntsz-20a	New Zealand–Kermadec–Tonga	183.2724	-28.0967	188.8	38	26.13
ntsz-20b	New Zealand–Kermadec–Tonga	183.6691	-28.1508	188.8	25	5

 Table B8: Earthquake parameters for New Zealand–Kermadec–Tonga Subduction Zone unit sources.

continued on next page

Table B8: (continued)

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
ntsz-21a	New Zealand–Kermadec–Tonga	183.5747	-27.1402	197.1	32.29	24.83
ntsz-21b	New Zealand–Kermadec–Tonga	183.9829	-27.2518	197.1	23.37	5
ntsz-22a	New Zealand–Kermadec–Tonga	183.6608	-26.4975	180	29.56	18.63
ntsz-22b	New Zealand–Kermadec–Tonga	184.0974	-26.4975	180	15.82	5
ntsz-23a	New Zealand–Kermadec–Tonga	183.7599	-25.5371	185.8	32.42	20.56
ntsz-23b	New Zealand–Kermadec–Tonga	184.1781	-25.5752	185.8	18.13	5
ntsz-24a	New Zealand–Kermadec–Tonga	183.9139	-24.6201	188.2	33.31	23.73
ntsz-24b	New Zealand–Kermadec–Tonga	184.3228	-24.6734	188.2	22	5
ntsz-25a	New Zealand–Kermadec–Tonga	184.1266	-23.5922	198.5	29.34	19.64
ntsz-25b	New Zealand–Kermadec–Tonga	184.5322	-23.7163	198.5	17.03	5
ntsz-26a	New Zealand–Kermadec–Tonga	184.6613	-22.6460	211.7	30.26	19.43
ntsz-26b	New Zealand–Kermadec–Tonga	185.0196	-22.8497	211.7	16.78	5
ntsz-27a	New Zealand–Kermadec–Tonga	185.0879	-21.9139	207.9	31.73	20.67
ntsz-27b	New Zealand–Kermadec–Tonga	185.4522	-22.0928	207.9	18.27	5
ntsz-28a	New Zealand–Kermadec–Tonga	185.4037	-21.1758	200.5	32.44	21.76
ntsz-28b	New Zealand–Kermadec–Tonga	185.7849	-21.3084	200.5	19.58	5
ntsz-29a	New Zealand–Kermadec–Tonga	185.8087	-20.2629	206.4	32.47	20.4
ntsz-29b	New Zealand–Kermadec–Tonga	186.1710	-20.4312	206.4	17.94	5
ntsz-30a	New Zealand–Kermadec–Tonga	186.1499	-19.5087	200.9	32.98	22.46
ntsz-30b	New Zealand–Kermadec–Tonga	186.5236	-19.6432	200.9	20.44	5
ntsz-31a	New Zealand–Kermadec–Tonga	186.3538	-18.7332	193.9	34.41	21.19
ntsz-31b	New Zealand–Kermadec–Tonga	186.7339	-18.8221	193.9	18.89	5
ntsz-32a	New Zealand–Kermadec–Tonga	186.5949	-17.8587	194.1	30	19.12
ntsz-32b	New Zealand–Kermadec–Tonga	186.9914	-17.9536	194.1	16.4	5
ntsz-33a	New Zealand–Kermadec–Tonga	186.8172	-17.0581	190	33.15	23.34
ntsz-33b	New Zealand–Kermadec–Tonga	187.2047	-17.1237	190	21.52	5
ntsz-34a	New Zealand–Kermadec–Tonga	186.7814	-16.2598	182.1	15	13.41
ntsz-34b	New Zealand–Kermadec–Tonga	187.2330	-16.2759	182.1	9.68	5
ntsz-34c	New Zealand–Kermadec–Tonga	187.9697	-16.4956	7.62	57.06	6.571
ntsz-35a	New Zealand–Kermadec–Tonga	186.8000	-15.8563	149.8	15	12.17
ntsz-35b	New Zealand–Kermadec–Tonga	187.1896	-15.6384	149.8	8.24	5
ntsz-35c	New Zealand–Kermadec–Tonga	187.8776	-15.6325	342.4	57.06	6.571
ntsz-36a	New Zealand–Kermadec–Tonga	186.5406	-15.3862	123.9	40.44	36.72
ntsz-36b	New Zealand–Kermadec–Tonga	186.7381	-15.1025	123.9	39.38	5
ntsz-36c	New Zealand–Kermadec–Tonga	187.3791	-14.9234	307	57.06	6.571
ntsz-37a	New Zealand–Kermadec–Tonga	185.9883	-14.9861	102	68.94	30.99
ntsz-37b	New Zealand–Kermadec–Tonga	186.0229	-14.8282	102	31.32	5
ntsz-38a	New Zealand–Kermadec–Tonga	185.2067	-14.8259	88.4	80	26.13
ntsz-38b	New Zealand–Kermadec–Tonga	185.2044	-14.7479	88.4	25	5
ntsz-39a	New Zealand–Kermadec–Tonga	184.3412	-14.9409	82.55	80	26.13
ntsz-39b	New Zealand–Kermadec–Tonga	184.3307	-14.8636	82.55	25	5

		- · · ·	T . 1	a . n		D 11
Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
nvsz-1a	New Britain–Solomons–Vanuatu	148.6217	-6.4616	243.2	32.34	15.69
nvsz-1b	New Britain–Solomons–Vanuatu	148.7943	-6.8002	234.2	12.34	5
nvsz-2a	New Britain–Solomons–Vanuatu	149.7218	-6.1459	260.1	35.1	16.36
nvsz-2b	New Britain–Solomons–Vanuatu	149.7856	-6.5079	260.1	13.13	5
nvsz-3a	New Britain–Solomons–Vanuatu	150.4075	-5.9659	245.7	42.35	18.59
nvsz-3b	New Britain–Solomons–Vanuatu	150.5450	-6.2684	245.7	15.77	5
nvsz-4a	New Britain–Solomons–Vanuatu	151.1095	-5.5820	238.2	42.41	23.63
nvsz-4b	New Britain–Solomons–Vanuatu	151.2851	-5.8639	238.2	21.88	5
nvsz-5a	New Britain–Solomons–Vanuatu	152.0205	-5.1305	247.7	49.22	32.39
nvsz-5b	New Britain–Solomons–Vanuatu	152.1322	-5.4020	247.7	33.22	5
nvsz-6a	New Britain–Solomons–Vanuatu	153.3450	-5.1558	288.6	53.53	33.59
nvsz-6b	New Britain–Solomons–Vanuatu	153.2595	-5.4089	288.6	34.87	5
nvsz-7a	New Britain–Solomons–Vanuatu	154.3814	-5.6308	308.3	39.72	19.18
nvsz-7b	New Britain–Solomons–Vanuatu	154.1658	-5.9017	308.3	16.48	5
nvsz-8a	New Britain–Solomons–Vanuatu	155.1097	-6.3511	317.2	45.33	22.92
nvsz-8b	New Britain–Solomons–Vanuatu	154.8764	-6.5656	317.2	21	5
nvsz-9a	New Britain–Solomons–Vanuatu	155.5027	-6.7430	290.5	48.75	22.92
nvsz-9b	New Britain–Solomons–Vanuatu	155.3981	-7.0204	290.5	21	5
nvsz-10a	New Britain–Solomons–Vanuatu	156.4742	-7.2515	305.9	36.88	27.62
nvsz-10b	New Britain–Solomons–Vanuatu	156.2619	-7.5427	305.9	26.9	5
nvsz-11a	New Britain–Solomons–Vanuatu	157.0830	-7.8830	305.4	32.97	29.72
nvsz-11b	New Britain–Solomons–Vanuatu	156.8627	-8.1903	305.4	29.63	5
nvsz-12a	New Britain–Solomons–Vanuatu	157.6537	-8.1483	297.9	37.53	28.57
nvsz-12b	New Britain–Solomons–Vanuatu	157.4850	-8.4630	297.9	28.13	5
nvsz-13a	New Britain–Solomons–Vanuatu	158.5089	-8.5953	302.7	33.62	23.02
nvsz-13b	New Britain–Solomons–Vanuatu	158.3042	-8.9099	302.7	21.12	5
nvsz-14a	New Britain–Solomons–Vanuatu	159.1872	-8.9516	293.3	38.44	34.06
nvsz-14b	New Britain–Solomons–Vanuatu	159.0461	-9.2747	293.3	35.54	5
nvsz-15a	New Britain–Solomons–Vanuatu	159.9736	-9.5993	302.8	46.69	41.38
nvsz-15b	New Britain–Solomons–Vanuatu	159.8044	-9.8584	302.8	46.69	5
nvsz-16a	New Britain–Solomons–Vanuatu	160.7343	-10.0574	301	46.05	41
nvsz-16b	New Britain–Solomons–Vanuatu	160.5712	-10.3246	301	46.05	5
nvsz-17a	New Britain–Solomons–Vanuatu	161.4562	-10.5241	298.4	40.12	37.22
nvsz-17b	New Britain–Solomons–Vanuatu	161.2900	-10.8263	298.4	40.12	5
nvsz-18a	New Britain–Solomons–Vanuatu	162.0467	-10.6823	274.1	40.33	29.03
nvsz-18b	New Britain–Solomons–Vanuatu	162.0219	-11.0238	274.1	28.72	5
nvsz-19a	New Britain–Solomons–Vanuatu	162.7818	-10.5645	261.3	34.25	24.14
nvsz-19b	New Britain–Solomons–Vanuatu	162.8392	-10.9315	261.3	22.51	5
nvsz-20a	New Britain-Solomons-Vanuatu	163.7222	-10.5014	262.9	50.35	26.3

Table B9: Earthquake parameters for New Britain-Solomons-Vanuatu Subduction Zone unit sources.

continued on next page

Table B9: (continued)

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
nvsz-20b	New Britain–Solomons–Vanuatu	163.7581	-10.7858	262.9	25.22	5
nvsz-21a	New Britain–Solomons–Vanuatu	164.9445	-10.4183	287.9	40.31	23.3
nvsz-21b	New Britain–Solomons–Vanuatu	164.8374	-10.7442	287.9	21.47	5
nvsz-22a	New Britain–Solomons–Vanuatu	166.0261	-11.1069	317.1	42.39	20.78
nvsz-22b	New Britain–Solomons–Vanuatu	165.7783	-11.3328	317.1	18.4	5
nvsz-23a	New Britain–Solomons–Vanuatu	166.5179	-12.2260	342.4	47.95	22.43
nvsz-23b	New Britain–Solomons–Vanuatu	166.2244	-12.3171	342.4	20.4	5
nvsz-24a	New Britain–Solomons–Vanuatu	166.7236	-13.1065	342.6	47.13	28.52
nvsz-24b	New Britain–Solomons–Vanuatu	166.4241	-13.1979	342.6	28.06	5
nvsz-25a	New Britain–Solomons–Vanuatu	166.8914	-14.0785	350.3	54.1	31.16
nvsz-25b	New Britain–Solomons–Vanuatu	166.6237	-14.1230	350.3	31.55	5
nvsz-26a	New Britain–Solomons–Vanuatu	166.9200	-15.1450	365.6	50.46	29.05
nvsz-26b	New Britain–Solomons–Vanuatu	166.6252	-15.1170	365.6	28.75	5
nvsz-27a	New Britain–Solomons–Vanuatu	167.0053	-15.6308	334.2	44.74	25.46
nvsz-27b	New Britain–Solomons–Vanuatu	166.7068	-15.7695	334.2	24.15	5
nvsz-28a	New Britain–Solomons–Vanuatu	167.4074	-16.3455	327.5	41.53	22.44
nvsz-28b	New Britain–Solomons–Vanuatu	167.1117	-16.5264	327.5	20.42	5
nvsz-29a	New Britain–Solomons–Vanuatu	167.9145	-17.2807	341.2	49.1	24.12
nvsz-29b	New Britain–Solomons–Vanuatu	167.6229	-17.3757	341.2	22.48	5
nvsz-30a	New Britain–Solomons–Vanuatu	168.2220	-18.2353	348.6	44.19	23.99
nvsz-30b	New Britain–Solomons–Vanuatu	167.8895	-18.2991	348.6	22.32	5
nvsz-31a	New Britain–Solomons–Vanuatu	168.5022	-19.0510	345.6	42.2	22.26
nvsz-31b	New Britain–Solomons–Vanuatu	168.1611	-19.1338	345.6	20.2	5
nvsz-32a	New Britain–Solomons–Vanuatu	168.8775	-19.6724	331.1	42.03	21.68
nvsz-32b	New Britain–Solomons–Vanuatu	168.5671	-19.8338	331.1	19.49	5
nvsz-33a	New Britain–Solomons–Vanuatu	169.3422	-20.4892	332.9	40.25	22.4
nvsz-33b	New Britain–Solomons–Vanuatu	169.0161	-20.6453	332.9	20.37	5
nvsz-34a	New Britain–Solomons–Vanuatu	169.8304	-21.2121	329.1	39	22.73
nvsz-34b	New Britain–Solomons–Vanuatu	169.5086	-21.3911	329.1	20.77	5
nvsz-35a	New Britain–Solomons–Vanuatu	170.3119	-21.6945	311.9	39	22.13
nvsz-35b	New Britain–Solomons–Vanuatu	170.0606	-21.9543	311.9	20.03	5
nvsz-36a	New Britain–Solomons–Vanuatu	170.9487	-22.1585	300.4	39.42	23.5
nvsz-36b	New Britain–Solomons–Vanuatu	170.7585	-22.4577	300.4	21.71	5
nvsz-37a	New Britain–Solomons–Vanuatu	171.6335	-22.3087	281.3	30	22.1
nvsz-37b	New Britain–Solomons–Vanuatu	171.5512	-22.6902	281.3	20	5

Figure B10: New Zealand–Puysegur Subduction Zone unit sources.

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
nzsz-1a	New Zealand–Puysegur	168.0294	-45.4368	41.5	15	17.94
nzsz-1b	New Zealand–Puysegur	167.5675	-45.1493	41.5	15	5
nzsz-2a	New Zealand–Puysegur	167.3256	-46.0984	37.14	15	17.94
nzsz-2b	New Zealand–Puysegur	166.8280	-45.8365	37.14	15	5
nzsz-3a	New Zealand–Puysegur	166.4351	-46.7897	39.53	15	17.94
nzsz-3b	New Zealand–Puysegur	165.9476	-46.5136	39.53	15	5
nzsz-4a	New Zealand–Puysegur	166.0968	-47.2583	15.38	15	17.94
nzsz-4b	New Zealand–Puysegur	165.4810	-47.1432	15.38	15	5
nzsz-5a	New Zealand–Puysegur	165.7270	-48.0951	13.94	15	17.94
nzsz-5b	New Zealand–Puysegur	165.0971	-47.9906	13.94	15	5
nzsz-6a	New Zealand–Puysegur	165.3168	-49.0829	22.71	15	17.94
nzsz-6b	New Zealand–Puysegur	164.7067	-48.9154	22.71	15	5
nzsz-7a	New Zealand–Puysegur	164.8017	-49.9193	23.25	15	17.94
nzsz-7b	New Zealand–Puysegur	164.1836	-49.7480	23.25	15	5

Table B10: Earthquake parameters for New Zealand–Puysegur Subduction Zone unit sources.

Segment	Description	Longitude (°E)	Latitude (°N)	Strike (°)	Dip (°)	Depth (km)
rnsz-1a	Ryukyu–Kyushu–Nankai	122.6672	23.6696	262	14	11.88
rnsz-1b	Ryukyu–Kyushu–Nankai	122.7332	23.2380	262	10	3.2
rnsz-2a	Ryukyu–Kyushu–Nankai	123.5939	23.7929	259.9	18.11	12.28
rnsz-2b	Ryukyu–Kyushu–Nankai	123.6751	23.3725	259.9	10	3.6
rnsz-3a	Ryukyu–Kyushu–Nankai	124.4604	23.9777	254.6	19.27	14.65
rnsz-3b	Ryukyu–Kyushu–Nankai	124.5830	23.5689	254.6	12.18	4.1
rnsz-4a	Ryukyu–Kyushu–Nankai	125.2720	24.2102	246.8	18	20.38
rnsz-4b	Ryukyu–Kyushu–Nankai	125.4563	23.8177	246.8	16	6.6
rnsz-5a	Ryukyu–Kyushu–Nankai	125.9465	24.5085	233.6	18	20.21
rnsz-5b	Ryukyu–Kyushu–Nankai	126.2241	24.1645	233.6	16	6.43
rnsz-6a	Ryukyu–Kyushu–Nankai	126.6349	25.0402	228.7	17.16	19.55
rnsz-6b	Ryukyu–Kyushu–Nankai	126.9465	24.7176	228.7	15.16	6.47
rnsz-7a	Ryukyu–Kyushu–Nankai	127.2867	25.6343	224	15.85	17.98
rnsz-7b	Ryukyu–Kyushu–Nankai	127.6303	25.3339	224	13.56	6.26
rnsz-8a	Ryukyu–Kyushu–Nankai	128.0725	26.3146	229.7	14.55	14.31
rnsz-8b	Ryukyu–Kyushu–Nankai	128.3854	25.9831	229.7	9.64	5.94
rnsz-9a	Ryukyu–Kyushu–Nankai	128.6642	26.8177	219.2	15.4	12.62
rnsz-9b	Ryukyu–Kyushu–Nankai	129.0391	26.5438	219.2	8	5.66
rnsz-10a	Ryukyu–Kyushu–Nankai	129.2286	27.4879	215.2	17	12.55
rnsz-10b	Ryukyu–Kyushu–Nankai	129.6233	27.2402	215.2	8.16	5.45
rnsz-11a	Ryukyu–Kyushu–Nankai	129.6169	28.0741	201.3	17	12.91
rnsz-11b	Ryukyu–Kyushu–Nankai	130.0698	27.9181	201.3	8.8	5.26
rnsz-12a	Ryukyu–Kyushu–Nankai	130.6175	29.0900	236.7	16.42	13.05
rnsz-12b	Ryukyu–Kyushu–Nankai	130.8873	28.7299	236.7	9.57	4.74
rnsz-13a	Ryukyu–Kyushu–Nankai	130.7223	29.3465	195.2	20.25	15.89
rnsz-13b	Ryukyu–Kyushu–Nankai	131.1884	29.2362	195.2	12.98	4.66
rnsz-14a	Ryukyu–Kyushu–Nankai	131.3467	30.3899	215.1	22.16	19.73
rnsz-14b	Ryukyu–Kyushu–Nankai	131.7402	30.1507	215.1	17.48	4.71
rnsz-15a	Ryukyu–Kyushu–Nankai	131.9149	31.1450	216	15.11	16.12
rnsz-15b	Ryukyu–Kyushu–Nankai	132.3235	30.8899	216	13.46	4.48
rnsz-16a	Ryukyu–Kyushu–Nankai	132.5628	31.9468	220.9	10.81	10.88
rnsz-16b	Ryukyu–Kyushu–Nankai	132.9546	31.6579	220.9	7.19	4.62
rnsz-17a	Ryukyu–Kyushu–Nankai	133.6125	32.6956	239	10.14	12.01
rnsz-17b	Ryukyu–Kyushu–Nankai	133.8823	32.3168	239	8.41	4.7
rnsz-18a	Ryukyu–Kyushu–Nankai	134.6416	33.1488	244.7	10.99	14.21
rnsz-18b	Ryukyu–Kyushu–Nankai	134.8656	32.7502	244.5	10.97	4.7
rnsz-19a	Ryukyu–Kyushu–Nankai	135.6450	33.5008	246.5	14.49	14.72
rnsz-19b	Ryukyu–Kyushu–Nankai	135.8523	33.1021	246.5	11.87	4.44
rnsz-20a	Ryukyu–Kyushu–Nankai	136.5962	33.8506	244.8	15	14.38
rnsz-20b	Ryukyu–Kyushu–Nankai	136.8179	33.4581	244.8	12	3.98
rnsz-21a	Ryukyu–Kyushu–Nankai	137.2252	34.3094	231.9	15	15.4
rnsz-21b	Ryukyu–Kyushu–Nankai	137.5480	33.9680	231.9	12	5
rnsz-22a	Ryukyu–Kyushu–Nankai	137.4161	34.5249	192.3	15	15.4
rnsz-22b	Ryukyu–Kyushu–Nankai	137.9301	34.4327	192.3	12	5

 Table B11: Earthquake parameters for Ryukyu–Kyushu–Nankai Subduction Zone unit sources.

Appendix C. Synthetic Testing: Kihei, Hawaii^{*}

C1. Purpose

An effective forecast model must provide reliable and stable data for several hours of simulation. The is accomplished by testing the model with a set of synthetic tsunami events covering a range of tsunami source locations and magnitudes. Testing is also done with selected historical tsunami events when available.

The purpose of forecast model testing is three-fold. The first objective is to assure that the results obtained with NOAA's tsunami forecast system, which has been released to the Tsunami Warning Centers for operational use, are consistent with those obtained by the researcher during the development of the forecast model. The second objective is to test the forecast model for consistency, accuracy, time efficiency, and quality of results over a range of possible tsunami locations and magnitudes. The third objective is to identify bugs and issues in need of resolution by the researcher who developed the forecast model or by the forecast software development team before the next version release to NOAA's two Tsunami Warning Centers.

Local hardware and software applications are used with tools familiar to the researcher(s) to run the Method of Splitting Tsunami (MOST) model during the forecast model development. The test results presented in this report lend confidence that the model performs as developed and produces the same results when initiated within the forecast application in an operational setting as those produced by the researcher during the forecast model development. The test results assure those who rely on the tsunami forecast model for Kihei, Hawaii, that consistent results are produced irrespective of system.

C2. Testing procedure

The general procedure for forecast model testing is to run a set of synthetic tsunami scenarios and a selected set of historical tsunami events through the forecast system application, and to compare the results with those obtained by the researcher during the forecast model development (as presented in the Tsunami Forecast Model Series report). Specific steps taken to test the model include:

- 1. Identification of testing scenarios, including the standard set of synthetic events, appropriate historical events, and customized synthetic scenarios that may have been used by the researcher(s) in the development of the forecast model.
- 2. Creation of new events to represent customized synthetic scenarios used by the researcher(s) in the development of the forecast model, if any.

^{*} Authors: Edison Gica, Lindsey Wright

- 3. Submission of test model runs with the forecast system, and export of the results from A, B, and C grids, along with time series.
- 4. Recording applicable metadata, including the specific version of the forecast system used for testing.
- 5. Examination of forecast system model results for instabilities in both time series and plot results.
- 6. Comparison of forecast model results obtained through the forecast system with those obtained during the forecast model development.
- 7. Summarization of results with specific mention of quality, consistency, and time efficiency.
- 8. Reporting of issues identified to modeler and forecast software development team.
- 9. Retesting the forecast models in the forecast system when reported issues have been addressed or explained.

Synthetic model runs were tested on a DELL PowerEdge R510 computer equipped with two Xeon E5670 processors at 2.93 GHz, each with 12 MBytes of cache and 32 GB memory. The processors are hex core and support hyperthreading, resulting in the computer performing as a 24 processor core machine. Additionally, the testing computer supports 10 Gigabit Ethernet for fast network connections. This computer configuration is similar or the same as the configurations of the computers installed at the Tsunami Warning Centers so the compute times should only vary slightly.

C3. Results

The Kihei forecast model was tested using NOAA's tsunami forecast system version 3 with MOST version 2. Four synthetic scenarios and one historical tsunami event were included in this testing. Test results from the forecast system and comparisons with the results obtained during forecast model development are shown numerically in **Table C1** and graphically in **Figures C1–C5**.

The results show that the forecast model is stable and robust, with consistent and high-quality results across geographically distributed tsunami sources and mega-tsunami event magnitudes. The model run time (wall-clock time) was under 21.5 min for 8 hr of simulation time, and under 10.7 min for 4 hr, close to satisfying the time efficiency criterion of 10 min run time for 4 hr of simulation time.

For direct comparison purposes, a slip of 30 m is used rather than the standard 25 m for the four synthetic events run on the Kihei forecast model. The modeled scenarios are stable for all cases tested, with no instabilities or ringing. Amplitudes greater than 100 cm were recorded for all test sources. The largest modeled amlitude, at 533 cm, originated within the Kamchatka-Yap-Mariana-Izu-Bonin source KISZ 22–31. The smallest signal of 184 cm was recorded at the Aleutian-Alaska-Cascadia source ACSZ 56–65. The largest modeled tsunami wave amplitude noted here is based only on four synthetic events (**Table C1**) and does not represent the largest tsunami wave amplitude from the 62 events tested during development.

The maximum and minimum tsunami amplitudes obtained during the forecast model development differ from those tested with the tsunami forecast system. This is primarily attributed to the output time step increment. During development, an output time step of 60 sec was used, while the tsunami forecast system uses a time step of 30 sec. Additionally, there are possible changes in the propagation unit sources used since the Kihei model was developed in 2011. Overall, direct comparisons of output from the forecast model with results of both the 2011 Tohoku event and available synthetic events demonstrate that the wave patterns at the selected warning point are nearly identical.

and obtained (during development.		•	2)
				Μ	ax (cm)	M	in (cm)
Scenarios	Source Zone	Tsunami Source	α [m]	SIFT	Development	SIFT	Development
Mega-tsunar	ni Scenarios						
KISZ 22–31	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	A22-31, B22-31	30	532.1	530.7	-157.0	-157.2
ACSZ 56–65	Aleutian-Alaska-Cascadia	A56-65, B56-65	30	184.9	184.9	-135.8.	-135.5
CSSZ 91-100	Central and South America	A91–100, B91–100	30	218.7	215.0	-155.6	-155.9
NTSZ $30-39$	New Zealand-Kermadec-Tonga	A30-39, B30-39	30	307.3	345.2	-150.6	-152.0
Historical E	vent						
2011 Tohoku	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	$\begin{array}{c} 4.66 \times b24 + 12.23 \\ 26.31 \ a26 + 21.27 \ b \\ 292 \ 75 \ a27 + 4 \ 98 \end{array}$	b25 + 26 + b27	162.0	161.6	-143.1	-143.1

Table C1: Maximum and minimum amplitudes (cm) at the Kihei, Hawaii, warning point for synthetic and historical events tested using SIFT 3.2 and obtained during development.

Figure C3: Response of the Kihei, Hawaii, forecast model to synthetic scenario CSSZ 91–100 (a=30). Maximum sea surface elevation for (a) A grid, (b) B grid, and (c) C grid. Sea surface elevation time series at the C-grid warning point (d). The lower time series plot displays the result obtained during model development, shown for comparison with test results.

NS'ZZ

S0.5N

NS'LZ

NS-61

NS.81

⁽a) A-grid, (b) B-grid, and (c) C-grid. Sea surface elevation time series at the C-grid warning point (d). The lower time series plot displays the result obtained during model development, shown for comparison with test results. Figure C5: Response of the Kihei, Hawaii, forecast model to the 2011 Tohoku tsunami. Maximum sea surface elevation for

Glossary

- **Arrival time** The time when the first tsunami wave is observed at a particular location, typically given in local and/or universal time, but also commonly noted in minutes or hours relative to the time of the earthquake.
- **Bathymetry** The measurement of water depth of an undisturbed body of water.
- **Cascadia Subduction Zone** Fault that extends from Cape Mendocino in Northern California northward to mid-Vancouver Island, Canada. The fault marks the convergence boundary where the Juan de Fuca tectonic plate is being subducted under the margin of the North America plate.
- **Current speed** The scalar rate of water motion measured as distance/time.
- **Current velocity** Movement of water expressed as a vector quantity. Velocity is the distance of movement per time coupled with direction of motion.
- **Deep-ocean Assessment and Reporting of Tsunamis** (DART[®]) Tsunami detection and transmission system that measures the pressure of an overlying column of water and detects the passage of a tsunami.
- **Digital Elevation Model (DEM)** A digital representation of bathymetry or topography based on regional survey data or satellite imagery. Data are arrays of regularly spaced elevations referenced to a map projection of the geographic coordinate system.
- **Epicenter** The point on the surface of the earth that is directly above the focus of an earthquake.
- **Far-field** Region outside of the source of a tsunami where no direct observations of the tsunami-generating event are evident, except for the tsunami waves themselves.
- **Focus** The point beneath the surface of the earth where a rupture or energy release occurs due to a buildup of stress or the movement of Earth's tectonic plates relative to one another.
- **Inundation** The horizontal inland extent of land that a tsunami penetrates, generally measured perpendicularly to a shoreline.
- **Marigram** Tide gauge recording of wave level as a function of time at a particular location. The instrument used for recording is termed a marigraph.
- **Method of Splitting Tsunami (MOST)** A suite of numerical simulation codes used to provide estimates of the three processes of tsunami evolution: tsunami generation, propagation, and inundation.

- **Moment magnitude (Mw)** The magnitude of an earthquake on a logarithmic scale in terms of the energy released. Moment magnitude is based on the size and characteristics of a fault rupture as determined from long-period seismic waves.
- **Near-field** Region of primary tsunami impact near the source of a tsunami. The near-field is defined as the region where non-tsunami effects of the tsunami-generating event have been observed, such as earth shaking from the earthquake, visible or measured ground deformation, or other direct (non-tsunami) evidences of the source of the tsunami wave.
- **Propagation database** A basin-wide database of precomputed water elevations and flow velocities at uniformly spaced grid points throughout the world oceans. Values are computed from tsunamis generated by earthquakes with a fault rupture at any one of discrete 100×50 km unit sources along worldwide subduction zones.
- **Runup** Vertical difference between the elevation of tsunami inundation and the sea level at the time of a tsunami. Runup is the elevation of the highest point of land inundated by a tsunami as measured relative to a stated datum, such as mean sea level.
- **Short-term Inundation Forecasting for Tsunamis (SIFT)** A tsunami forecast system that integrates tsunami observations in deep ocean with numerical models to provide an estimate of tsunami wave arrival and amplitude at specific coastal locations while a tsunami propagates across an ocean basin.
- **Subduction zone** A submarine region of the earth's crust at which two or more tectonic plates converge to cause one plate to sink under another, overriding plate. Subduction zones are regions of high seismic activity.
- **Synthetic event** Hypothetical events based on computer simulations or theory of possible or even likely future scenarios.
- **Tele-tsunami** or **distant tsunami** or **far-field tsunami** Most commonly, a tsunami originating from a source greater than 1000 km away from a particular location. In some contexts, a tele-tsunami is one that propagates through deep ocean before reaching a particular location without regard to distance separation.
- **Tidal wave** Term frequently used incorrectly as a synonym for tsunami. A tsunami is unrelated to the predictable periodic rise and fall of sea level due to the gravitational attractions of the moon and sun; see **Tide**, below.
- **Tide** The predictable rise and fall of a body of water (ocean, sea, bay, etc.) due to the gravitational attractions of the moon and sun.
- **Tide gauge** An instrument for measuring the rise and fall of a column of water over time at a particular location.
- **Travel time** The time it takes for a tsunami to travel from the generating source to a particular location.

- **Tsunameter** An oceanographic instrument used to detect and measure tsunamis in the deep ocean. Tsunami measurements are typically transmitted acoustically to a surface buoy that in turn relays them in real time to ground stations via satellite.
- **Tsunami** A Japanese term that literally translates to "harbor wave." Tsunamis are a series of long-period shallow water waves that are generated by the sudden displacement of water due to subsea disturbances such as earthquakes, submarine landslides, or volcanic eruptions. Less commonly, meteoric impact to the ocean or meteorological forcing can generate a tsunami.
- **Tsunami hazard assessment** A systematic investigation of seismically active regions of the world oceans to determine their potential tsunami impact at a particular location. Numerical models are typically used to characterize tsunami generation, propagation, and inundation, and to quantify the risk posed to a particular community from tsunamis generated in each source region investigated.
- **Tsunami propagation** The directional movement of a tsunami wave outward from the source of generation. The speed at which a tsunami propagates depends on the depth of the water column in which the wave is traveling. Tsunamis travel at a speed of 700 km/hr (450 mi/hr) over the average depth of 4000 m in the open deep Pacific Ocean.
- **Tsunami source** Location of tsunami origin, most typically an underwater earthquake epicenter. Tsunamis are also generated by submarine landslides, underwater volcanic eruptions, or, less commonly, by meteoric impact of the ocean.
- **Wall-clock time** The time that passes on a common clock or watch between the start and end of a model run, as distinguished from the time needed by a CPU or computer processor to complete the run, typically less than wall-clock time.
- **Wave amplitude** The maximum vertical rise or drop of a column of water as measured from wave crest (peak) or trough to a defined mean water level state.
- **Wave crest or peak** The highest part of a wave or maximum rise above a defined mean water level state, such as mean lower low water.
- **Wave height** The vertical difference between the highest part of a specific wave (crest) and its corresponding lowest point (trough).
- **Wavelength** The horizontal distance between two successive wave crests or troughs.
- **Wave period** The length of time between the passage of two successive wave crests or troughs as measured at a fixed location.
- **Wave trough** The lowest part of a wave or the maximum drop below a defined mean water level state, such as mean lower low water.

PMEL Tsunami Forecast Series Locations

Adak, AK Apra Harbor, Guam Arecibo, Puerto Rico Arena Cove, CA — Vol. 10 Atka, AK Atlantic City, NJ Bar Harbor, ME Cape Hatteras, NC Charlotte Amalie, U.S. Virgin Islands Chignik, AK Christiansted, U.S. Virgin Islands Cordova, AK Craig, AK Crescent City, CA — Vol. 2 Daytona Beach, FL Elfin Cove, AK Eureka, CA Fajardo, PR Florence, OR Garibaldi, OR Haleiwa, HI Hilo, HI — Vol. 1 Homer, AK Honolulu, HI Kahului, HI Kailua-Kona, HI Kawaihae, HI Keauhou, HI Key West, FL Kihei, HI — Vol. 11 King Cove, AK Kodiak, AK — Vol. 4 Lahaina, HI La Push, WA Los Angeles, CA Mayaguez, PR Midway Atoll — Vol. 7 Montauk, NY

Monterey, CA Morehead City, NC Myrtle Beach, SC Nantucket, MA — Vol. 8 Nawiliwili, HI Neah Bay, WA Newport, OR - Vol. 5 Nikolski, AK Ocean City, MD Pago Pago, American Samoa Palm Beach, FL Pearl Harbor, HI Point Reyes, CA — Vol. 6 Ponce, PR Port Alexander, AK Port Angeles, WA Port Orford, OR Port San Luis, CA Port Townsend, WA Portland, ME San Diego, CA San Francisco, CA — Vol. 3 San Juan, Puerto Rico Sand Point, AK Santa Barbara, CA Santa Monica, CA — Vol. 9 Savannah, GA Seaside, OR Seward, AK Shemya, AK Sitka, AK Toke Point, WA Unalaska, AK Virginia Beach, VA Wake Island, U.S. Territory Westport, WA Yakutat, AK

