National Oceanic and
Atmospheric Administration
United States Department of Commerce


 

FY 2015

Effects of seasonal and interannual variability in along-shelf and cross-shelf transport on groundfish recruitment in the eastern Bering Sea

Vestfals, C., L. Ciannelli, J.T. Duffy-Anderson, and C. Ladd

Deep-Sea Res. II, 109, 190–203, doi: 10.1016/j.dsr2.2013.09.026 (2014)


The Bering Sea responds rapidly to atmospheric perturbations and over the past several decades has experienced extreme variability in both its physical and biological characteristics. These changes can impact organisms that inhabit the region, particularly marine fishes, as normal current patterns to which reproductive habits are tuned can be disrupted, which, in turn, may influence recruitment and population dynamics. To understand the influence of ocean circulation on groundfish recruitment in the eastern Bering Sea, we examined transport along and across the Bering Slope derived from 23 years (1982–2004) of simulations from a Regional Ocean Modeling System (ROMS) ocean circulation model. We expected that changes in the strength and position of the Bering Slope Current (BSC) would affect recruitment in selected species (Pacific cod, walleye pollock, Greenland halibut, Pacific halibut, and arrowtooth flounder), and that circulation features along and across the shelf edge would be strongly influenced by atmospheric forcing. Variability in along-shelf transport at three transects along the path of the BSC, cross-shelf transport across the 100 and 200 m isobaths, and transport through Unimak Pass were examined. Strong seasonal and interannual variations in flow were observed, with transport typically highest during fall and winter months, coinciding with timing of spawning activity in the five species. Significant correlations were found between transport, BSC position, and groundfish recruitment. Pacific cod, in particular, benefitted from decreased along-shelf and on-shelf flow, while Pacific halibut recruitment increased in relation to increased on-shelf transport through southern canyons. The results of this study improve our understanding of variability in circulation and associated effects on groundfish recruitment in the eastern Bering Sea.



Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |