
1 3

DOI 10.1007/s00382-014-2377-0
Clim Dyn

Robustness of the modes of Indo‑Pacific sea level variability

Leela M. Frankcombe · Shayne McGregor · 
Matthew H. England 

Received: 29 June 2014 / Accepted: 13 October 2014 
© Springer-Verlag Berlin Heidelberg 2014

1 Introduction

Reliable projections of future sea level are vital for coastal 
communities. Regional deviations from global mean sea 
level rise are caused primarily by spatial patterns in the 
various components of sea level change (e.g. melting land 
ice, thermal expansion, and so on; see Slangen et al. 2012; 
Perrette et al. 2013; Church et al. 2013) and by wind anom-
alies associated for example with various climate modes. 
Whether and how these climate modes might change in the 
future is an important question, however, understanding 
their current signature in sea level is the first step.

Sea level is observed using both satellite altimeters and 
tide gauges. Altimetry provides excellent spatial coverage 
but the time series is of limited length, meaning that inter-
annual to decadal variability remains difficult to resolve. 
Longer records from tide gauges are available, however, 
these lack spatial resolution as they measure SSH only at a 
few points along the coastline. The sparsity of tide gauges 
along with their uneven spatial distribution makes it diffi-
cult to study the spatial patterns of variability in both the 
empty interiors of the ocean and along the large sections 
of coastlines where tide gauge records are short or alto-
gether absent. This problem is particularly apparent in the 
southern hemisphere, where long tide gauge records are 
extremely sparse. Statistical reconstructions using altim-
etry and tide gauges are of limited use for studying low fre-
quency variability since these time scales are not sampled 
in the short satellite record (Ray and Douglas 2011; Meys-
signac et al. 2012b; Calafat et al. 2014).

The problem of extracting low frequency variability 
from short time series is exacerbated by the presence of the 
trend due to anthropogenic climate change [and vice versa, 
see Cazenave et al. (2014), for example]. Separating the 
forced trend from the natural variability is not as simple as 
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subtracting a linear trend (Mann et al. 2014) or even the long 
term global average since the trend is not necessarily linear 
or spatially uniform. In addition, these procedures to remove 
the anthropogenic trend may also remove part of the low fre-
quency variability in which we are interested, particularly in 
relatively short records. This difficulty in separating the trend 
and low frequency variability is of particular importance in 
the tropical Pacific for example, where SSH has displayed 
extremely large positive trends (shown in Fig. 1) in the last 
few decades caused by a combination of global sea level rise, 
variations in the strength of the trade winds and variations 
in climate modes (Meyssignac et al. 2012a; McGregor et al. 
2012a; Merrifield et al. 2012; England et al. 2014). Tim-
mermann et al. (2010) and Qiu and Chen (2012) found that 
recent rapid sea level variations in this region are caused by 
the thermosteric effect of redistribution of upper ocean water 
masses due to changes in the wind field.

Sea level variability in several other regions of the 
Pacific have also been investigated in detail. Qiu and Chen 
(2006) studied the extra-tropical south Pacific and linked 
sea level increases there to wind-driven baroclinic Rossby 
waves. Roemmich et al. (2007) further explained this 
increase as thermosteric and associated the wind changes 
responsible with the intensification of the Southern Annu-
lar Mode. Many studies have connected variability in the 
Indo-Pacific with ENSO and/or the PDO. Feng et al. (2004) 
correlated Fremantle sea level with the PDO while Cai 
et al. (2005) looked at the propagation of ENSO signals 
along the north-west Australian coast. Earlier, Enfield and 
Allen (1980) studied the propagation of SSH signals along 

the Pacific coast of the Americas and associated these with 
ENSO. More recently, Zhang and Church (2012) looked at 
the relationship between interannual and decadal variability 
of SSH in the Pacific and indices of ENSO and the PDO. 
They found that the high rate of sea level rise in the western 
tropical Pacific over the altimeter era has a significant com-
ponent associated with the PDO.

In this paper we study how interannual to decadal scale 
variability in SSH in the Indian and Pacific Oceans is 
related to the various climate modes which are dominant 
in the region, namely the Pacific Decadal Oscillation/Inter-
decadal Pacific Oscillation (PDO/IPO), the El Niño/South-
ern Oscillation (ENSO), the Indian Ocean Dipole (IOD) 
and the Southern Annular Mode (SAM). To avoid the limi-
tations imposed by the short length of the altimetry record 
and the sparse spatial coverage of the tide gauges we also 
use data from two different ocean models, each forced with 
a different wind product. The use of two models allows us 
to test how robust the relationships between SSH and the 
various climate modes are to changes in the timing and 
length of the interval under consideration, as well as to the 
impact of using different wind forcing products.

2  Data and methods

We use monthly averages of the combined TOPEX/
Poseidon, Jason-1 and Jason-2/OSTM sea level fields 
obtained from the sea level data holdings of the Common-
wealth Scientific and Industrial Research Organisation  

Fig. 1  Linear trend in SSH (in 
mm/year) from altimetry (con-
tours) and tide gauges (circles) 
over the period 1993–2007
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(http://www.cmar.csiro.au/sealevel/sl_data_cmar.html, 
data from January 1993 to December 2012). Data is on 
a 1◦

× 1
◦ grid and the inverse barometer (IB) and glacial 

isostatic adjustment (GIA) corrections have been applied. 
Tide gauges in the Indian and Pacific Oceans were obtained 
from the Permanent Service for Mean Sea Level (PSMSL; 
http://www.psmsl.org/data/). The signals were corrected 
for the IB effect using pressures from HadSLP2 (Allan and 
Ansell 2006) and for the GIA effect using the ICE-5G model 
(Peltier 2004). Tide gauges were included if they had data 
for more than two thirds of months in each time window. 
In order to focus on the variability of SSH, global mean sea 
level has been removed from both altimetry and the tide 
gauges using the time series of Church and White (2011).

For comparison with the observations we use output from 
two models. The first is the 1/4

◦ Australian Community Cli-
mate and Earth System Simulator-Ocean-Eddy Permitting 
(ACCESS-OEP) global ocean-sea ice model (Frankcombe 
et al. 2013; Spence et al. 2014) which is based on the Mod-
ular Ocean Model version 5 (MOM5; Griffies 2012) with 
the ocean–ice configuration from the GFDL CM2.5 climate 
model (Delworth et al. 2012). The ocean model is forced with 
the CORE-IAF_v2 data (Griffies et al. 2009, 2014) which 
uses NCEP winds. This simulation covers the period 1947 to 
2007 and will be referred to here as MOM0.25. The second 
model is the Simple Ocean Data Assimilation version 2.1.6 
(SODA; Carton and Giese 2008; Czeschel et al. 2011), which 
uses ERA-40 winds until 2001 and ERA-interim winds there-
after. The model (which will be referred to here as SODA) 
assimilates hydrographic data but not satellite altimetry and 
covers the period 1958 to 2008. In order to compare SODA 
and MOM0.25 we will use the period 1958 to 2007, while for 
comparisons to altimetry we will use the period 1993 to 2007.

The long-term mean seasonal cycle was removed from 
both observations and model data and all time series were 
smoothed using a 5 month running mean. We use data cov-
ering the Indian and Pacific Oceans, from 65

◦
S to 65

◦
N and 

25
◦
E to 70

◦
W.

Indices of four climate modes (PDO, ENSO, IOD and 
SAM) are used. The PDO index is defined as the lead-
ing principal component of monthly SST in the North 
Pacific (poleward of 20

◦
N) with global average anomalies 

removed (Mantua et al. 1997). The spatial pattern of the 
PDO is calculated over the period 1900–1993 rather than 
individually over each shorter period investigated here to 
allow comparisons between periods. Using the Interdecadal 
Pacific Oscillation (IPO; Power et al. 1999) in place of the 
PDO does not change the results as they are both qualita-
tively similar (Folland et al. 2002). ENSO is represented 
by two timeseries, following Stuecker et al. (2013). The 
first ENSO index (ENSO1) is the Multivariate ENSO Index 
(MEI) of Wolter and Timlin (2011), smoothed as described 
below. The second ENSO index (ENSO2) is constructed by 

multiplying ENSO1 by cos(ωat − θ) where ωa is the angu-
lar frequency of the annual cycle and θ is a 1 month phase 
shift. This second ENSO index describes the nonlinear 
atmospheric response to SST anomalies associated with the 
combination of ENSO and the annual cycle (Stuecker et al. 
2013). Using various other ENSO indices such as Niño3.4 
or the Southern Oscillation Index (SOI) in place of the MEI 
did not significantly affect the results. The IOD is repre-
sented by the Dipole Mode Index (Saji et al. 1999) calcu-
lated from the HadISST dataset. The SAM index is calcu-
lated as described in Marshall (2003).

The PDO can be considered, to first order, to be a low 
pass filter of ENSO variability (Kleeman et al. 1999; 
Newman et al. 2003). As we are interested in separating 
the two time scales, the time series are smoothed follow-
ing the method of Zhang and Church (2012). Namely, the 
high frequency variability is isolated in the ENSO indices 
by smoothing with a 5 month running mean and then sub-
tracting the low frequency component which is estimated 
by smoothing the indices with successive 25 and 37 month 
running means. The PDO index has the high frequency 
component removed by smoothing with successive 25 and 
37 month running means. This separates the high and low 
frequency components as far as possible. For simplicity the 
smoothed indices will be referred to as ENSO for the short 
time scales and PDO for the long time scales. The IOD and 
SAM indices are both smoothed with a 5 month running 
mean. All indices are normalised by their standard devia-
tion and are plotted in Fig. 2a. Correlations between the 
various indices are listed in Table 1. 

To identify the relationships between SSH and the 
(smoothed) climate indices we follow the method of Zhang 
and Church (2012). The multiple variable linear regression 
between SSH and the indices is calculated as follows:

where an are the regression coefficients, t is a residual lin-
ear trend and ǫ is the residual variability. The goodness of 
fit of the regression is measured by the R2 value which is 
defined as the amount of variance explained by the regres-
sion divided by the total variance of the original time series. 
The pattern of regression coefficients an calculated by this 
method may be considered to be the linear part of the pattern 
of SSH variability associated with each climate index. The 
residual linear trend term t is included to capture the compo-
nent of the linear trend not explained by the climate indices. 
It may include trends due to natural or anthropogenically 
induced components. Care must be taken when investigat-
ing the role of the defined climate indices in the trend calcu-
lated over short window lengths as parts of the trend may be 
artificially attributed to a low frequency climate mode (i.e. 
low frequency variability aliased as a trend, see Fig. 2b). The 

(1)

SSHA = a0 + a1t + a2PDO + a3ENSO1

+ a4ENSO2 + a5IOD + a6SAM + ǫ

http://www.cmar.csiro.au/sealevel/sl_data_cmar.html
http://www.psmsl.org/data/
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residual ǫ is SSH variability that is not explained by the mul-
tiple variable linear regression and may be due to stochastic 
processes, modes of variability not included in our calcula-
tions, nonlinearities in external forcing (both natural and 
anthropogenic), or nonlinearities in the relationships between 
SSH and the various climate indices that are included.

3  Results

3.1  Altimetry

Figure 3 shows the coefficients for a multiple variable lin-
ear regression using a residual linear trend, the PDO index, 

the two ENSO indices, the IOD index and the SAM index 
for altimetry as well as tide gauges over the 15-year period 
1993–2007.

The pattern of SSH regressed on to the PDO (Fig. 3b) 
has high sea level in the central and eastern tropical Pacific, 
extending in a band along the coast of North America (and 
to a lesser extent along the coast of South America). There 
is low sea level in the central north Pacific and the western 
tropical Pacific, extending into the eastern Indian Ocean 
and along the coast of Western Australia. There are also 
significant regressions in the Southern Ocean. Comparing 
this PDO-related SSH pattern to the linear trend calcu-
lated directly from altimetry (Fig. 1) we can see that the 
linear altimetry trend resembles the negative PDO-related 
SSH pattern, particularly in the Pacific. This negative PDO-
related SSH pattern corresponds to the negative trend that 
has been observed in the PDO during the altimetry period 
(see Fig. 2b). The part of the linear altimetry trend which is 
not explained by the trend in the PDO index appears as the 
residual trend in Fig. 3a.

The SSH pattern regressed on to the first ENSO index 
(Fig. 3c) resembles the PDO-related SSH pattern in the 
tropics, with the signals decaying rapidly away from the 
equator. Very narrow bands of high regression coefficients 
occur along the coast of the Americas. The PDO and first 

Fig. 2  a Normalised timeseries 
of the climate modes used in 
the regression calculations: 
the Pacific Decadal Oscillation 
(PDO, in blue), the first ENSO 
index (ENSO1, in green), the 
second ENSO index (ENSO2,  
in red), the Indian Ocean 
Dipole (IOD, in cyan) and the 
Southern Annular Mode (SAM, 
in magenta). b 15-year trends 
of the indices in (a), plotted 
against the last year of the 
15-year window
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Table 1  Correlations between the climate indices from 1958 to 2007

Values which are significant at the 95 % level are indicated in bold

Indices PDO ENSO1 ENSO2 IOD SAM

PDO 1 – – – –

ENSO1 0.09 1 – – –

ENSO2 0.01 0.01 1 – –

IOD −0.10 0.40 −0.29 1 –

SAM 0.12 −0.11 −0.18 0.14 1



Robustness of the modes of Indo-Pacific sea level variability

1 3

ENSO-related SSH patterns are similar to those shown by 
Zhang and Church (2012) for the Pacific. The second ENSO-
related SSH pattern (Fig. 3d) is similar to that found by 
Widlansky et al. (2014) for the western tropical Pacific, with 
significance along the equator and in the South Pacific Con-
vergence Zone. The spatial structures of the two ENSO pat-
terns are consistent with the ‘east-west tilting mode’ and the 
‘recharge mode’ (Meinen and McPhaden 2000; McGregor 
et al. 2012b). The IOD-related SSH pattern (Fig. 3e) has the 
largest amplitude in the Indian Ocean with a sea level high 
in the western Indian Ocean and a sea level low along the 
coast of Java and Sumatra. The IOD-related SSH pattern 
also has significant values in the tropical Pacific, as do the 
ENSO-related SSH patterns in the Indian Ocean, indicating 
that these indices are not independent over the short obser-
vational record (see also Table 1). The SAM-related SSH 
pattern has significant values in the equatorial Pacific, which 
may be related to the influence of the tropics on the SAM 

(Ding et al. 2012), as well as significant values in the South-
ern Ocean (although altimetry only extends to 60

◦
S).

Together the PDO, ENSO1, ENSO2, IOD and SAM 
indices have an R2 of 47.28 %, meaning that they explain 
47.28 % of the SSH variability over the domain shown (65

◦

–65
◦
N, 25

◦
E–70

◦
W). The improvement in R2 (of 7.06 %) 

by including ENSO2, the IOD and SAM over PDO and 
ENSO1 alone is shown in Fig. 4. 

Table 2 lists R
2 values when different indices are 

included in the regression calculation, giving an indication 
of the independence of the indices. For example, ENSO1 
has an R2 value of 13.80 on its own, ENSO2 has a value 
of 1.99 while both together have a value of 15.58, illustrat-
ing that the two are largely independent. The IOD, on the 
other hand, has an R2 value of 6.13 on its own, but only 
increases to an R2 value of 18.73 when combined with the 
two ENSO indices, showing that about half of the SSH 
variability attributed to the IOD could also be explained by 

Fig. 3  Regression patterns for 
SSH from altimetry from 1993 
to 2007 related to a the residual 
trend, b the PDO, c and d two 
ENSO indices, e the IOD and f 
the SAM. Regression coef-
ficients which are not signifi-
cantly different from zero (at 
the 95 % level) are not shown. 
Coloured circles indicate sig-
nificant regression coefficients 
calculated for tide gauges. 
Wherever tide gauge data is 
available but the coefficients are 
not significant a cross symbol 
is used
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ENSO. This is supported by the fact that the correlations 
between the two ENSO indices and the IOD index (shown 
in Table 1) are the highest of all the indices used here. We 
can also see that the filtering used to separate the PDO and 
ENSO time scales is not perfect, since the overlap between 
the two is 2.78 out of a combined R2 value of 36.07, how-
ever the correlations between the PDO and the ENSO indi-
ces are small. Similarly we can see that there is a small 
overlap between the PDO and the residual trend (2.01 out 

of a combined R
2 value of 30.00), while SAM and the 

residual trend seem to be largely independent (0.26 out of 
a combined R

2 value of 14.14). The overlap between the 
PDO and the trend is due to the presence of a trend in the 
PDO index over this time window, such that linear regres-
sion can not distinguish between the trend in SSH caused 
by the trend in the PDO and the trend in SSH due to other 
causes. Thus it remains to be seen whether these regression 
coefficients are robust to changes in window length and the 
period of observation.

3.2  Robustness of regressions in time

The analyses of altimetric SSH is limited by the length of 
the altimetry record. Given that there is low frequency vari-
ability with a period longer than the available observations, 
we have to ask the question: does the short window length 
influence the amount of SSH variability and trend during 
the altimetry period that can be explained by the climate 
indices? For this reason we turn to two models, MOM0.25 
and SODA to identify how robust (or stationary) the climate 
index regression patterns are to the 15-year period used 
in the calculation. Figure 5 shows R2 values for altimetry 
compared to the two models. The three agree reasonably 
well in the equatorial regions, as may be expected due to 
the nature of the equatorial waveguide, as long as the tropi-
cal wind forcing is reasonably accurate in the two models. 
In contrast, the processes controlling sea level in the extra-
tropics are more complex and atmospheric wind-forced 
variability is highly stochastic, requiring the models to be 
both correctly forced and accurate in their representation 
of the ocean circulation. This is reflected in the differences 

Fig. 4  R2 values (variance explained by the regression divided by 
total variance) for altimetry and tide gauges from 1993 to 2007 for 
a regression including the residual trend, the PDO and ENSO1, b 

regression including the residual trend, the PDO, two ENSO indices, 
the IOD and the SAM, and c the improvement achieved by including 
the extra indices

Table 2  R2 values (variance explained by the regression divided 
by total variance) for altimetry when different climate indices are 
included in the regression analysis

Indices R2 (%)

Trend 10.84

PDO 19.16

ENSO1 14.87

ENSO2 2.04

ENSO1+2 16.80

PDO + ENSO1+2 33.18

IOD 9.02

ENSO1+2 + IOD 19.68

SAM 3.30

Residual trend + PDO 27.99

Residual trend + ENSO1+2 27.76

Residual trend + IOD 19.56

Residual trend + SAM 13.88

Residual trend + PDO + ENSO1+2 42.21

Residual trend + ENSO1+2 + IOD 30.60

Residual trend + PDO + ENSO1+2 + IOD + SAM 47.28
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between altimetry and the two models in the extratropical 
regions in Fig. 5. For consistency with altimetry we calcu-
late the regressions with observed indices rather than indi-
ces derived from the models themselves, which may intro-
duce an additional error. The error is, however, expected to 
be small, due to the use of data assimilation in SODA and 
reanalysis surface winds and fluxes to force MOM0.25. 

To test the robustness of the regression patterns in time 
we look at regression coefficients for SSH calculated for 
three different 15-year periods (1963–1977, 1978–1992 
and 1993–2007) in the two models. Figures 6 and 7 show 
how the regression patterns change between the three dif-
ferent time windows. For the most recent period the pat-
terns are similar to those obtained from altimetry for most 
of the indices (compare to Fig. 3), the largest differences 
being in the residual trend. Differences between altimetry 
and the models as well as differences between the two 
models may be explained by differences in the surface forc-
ing used in each model, as suggested by Chepurin et al. 
(2014). In addition there may be differences in model phys-
ics as well as the impact of the hydrographic data which is 
assimilated into SODA. There are differences in the regres-
sions calculated over the three periods in both the models. 
For most of the indices included in the regression calcula-
tion the earliest period (1963–1977) more closely resem-
bles the later period (1993–2007) while the middle period 
(1978–1992) shows very little SSH variability related to 
ENSO2 and the IOD in particular. The PDO-related SSH 
variability in the three periods looks quite different, with 
the later period closer to the earlier than the middle period, 
however the magnitude of the regressions is largest in the 
latest period. Residual SSH trends in the three periods are 
both large and inconsistent. Part of this inconsistency may 
be due to spurious model trends (related to incomplete 

spinup, for example), however the tide gauges also show 
similar differences in the residual trend patterns between 
periods, indicating that the model residual trends are at 
least partly due to observed climatic variability not repre-
sented by our selection of climate indices. There are also 
differences in the SSH regression on to the SAM, particu-
larly in the equatorial Pacific, indicating that the equato-
rial Pacific SSH response to the SAM may not be robust. 
In general SODA shows lower R2 values than MOM0.25. 
Both show R2 values decreasing from the late 60s and early 
70s before increasing again after the late 90s.

There are several reasons why the regressions may be 
different between the different periods:

1. The window length is too short to fully capture/sepa-
rate the modes of variability. Short window length 
is most likely to be a problem when trying to distin-
guish between the trend and SSH anomalies due to 
low frequency variability such as the PDO (Lee and 
McPhaden 2008), where the period of the variability is 
longer than the window length. It should also be taken 
into consideration for ENSO and IOD-related SSH var-
iability, since the two climate modes are not independ-
ent (Kug and Kang 2006; Santoso et al. 2012).

2. The modes are not symmetric. For example El Niño and 
La Niña are not mirror images of each other. Such non-
linearities are not captured by linear regression analy-
sis, therefore if one time period contains more El Niño 
events then the regression coefficients will be different 
from another time period which contains more La Niña 
events. This may also be true for SSH regressions on to 
the PDO, for which the time series of observations is 
too short to robustly determine if the positive and nega-
tive PDO phases are symmetric or not.

Fig. 5  R2 values for a 15-year window (1993–2007) for different products a altimetry and tide gauges, b SODA and c MOM0.25
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3. Low frequency modulation of high frequency vari-
ability. ENSO, for example, exhibits multi-decadal 
modulations in both amplitude and spatial pattern, 
some of which may be linked to the PDO (McGregor 

et al. 2010, 2013; Santoso et al. 2013; Wittenberg et al. 
2014). Linear regression analysis is unable to capture 
this, and thus the regression coefficients of SSH with 
ENSO would appear to be different depending on the 

Fig. 6  Comparison of regressions with MOM0.25 for three different 
15-year periods, 1963–1977 (left column), 1978–1992 (middle col-
umn) and 1993–2007 (right column) for the residual trend, PDO, two 
ENSO indices, IOD and SAM. Regression coefficients which are not 

significantly different from zero (at the 95 % level) are not shown. 
Regression coefficients for tide gauges in each period are shows as 
coloured circles. Crosses indicate tide gauges where data was avail-
able but the regressions were not significant
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phase of the PDO. Low frequency modulation of the 
IOD and SAM would be similarly affected.

The apparent non-stationarity of the regression coefficients 
with time also applies to EOFs of SSH, such as those used 
in long reconstructions of sea level by Church and White 

(2011), Meyssignac et al. (2012a) and others. This limits 
the usefulness of these reconstructions outside of the altim-
etry period (as discussed by Calafat et al. 2014).

The analysis of the changes of regression coefficients 
may be extended to other time periods. Figure 8 shows Tay-
lor diagrams (Taylor 2001) comparing the model regression 

Fig. 7  As in Fig. 6 but for SODA
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coefficients to those derived from altimetry for the differ-
ent regression terms for overlapping 15-year windows. The 
residual trends in the two models show low correlations 
and considerable spread compared to altimetry (Fig. 8a). 
Some of this spread can be attributed to processes which 
are not well represented by the models as well as to spuri-
ous model trends. A part of the spread, however, may be 
linked to incomplete separation of the trend and low fre-
quency variability, which is confirmed by the large spread 
of points for the SSH regression on to the PDO (Fig. 8b). 
This spread indicates that a 15-year window is not long 
enough to properly capture the low frequency SSH vari-
ability and separate it from the trend. The inability to dis-
tinguish between trend and low frequency variability may 

be the reason that the 1993–2007 PDO-related SSH regres-
sion coefficients in Figs. 6 and 7 have larger variance than 
the earlier two periods. From Fig. 8b we can see that even 
higher variances were found for PDO-related SSH variabil-
ity in the models from the late 1960s to the early 1980s. 
During these decades the PDO index displayed a signifi-
cant trend (see Fig. 2b) which would be indistinguishable, 
in a short window, from the long term trend.

The highest correlations between models and altimetry 
occur for the first ENSO index (Fig. 8c), indicating that the 
models are doing a reasonable job of simulating SSH vari-
ability associated with ENSO and that the window length is 
long enough to capture that variability. Similarly the mod-
els appear to adequately capture the SSH variability associ-
ated with the second ENSO index (Fig. 8d).

Increased IOD variance (Abram et al. 2008) and a 
strengthening of (multi-) decadal equatorial Pacific SSH 
and wind variability (Han et al. 2013; England et al. 2014) 
have been observed during the late 20th Century. There is 
some hint of this change in IOD behaviour in Fig. 8e, where 
IOD-related SSH variance increases after the early 1990s. 
Correlations between both IOD and SAM-related SSH var-
iability in altimetry and models remain low, however.

Comparing the behaviour of the two models we can see 
that both models have similar correlations with altimetry 
for ENSO, IOD and SAM-related SSH variability, although 
SODA (squares) has higher variance than MOM0.25 (cir-
cles). For the PDO-related SSH variability SODA and 
MOM0.25 agree with each other more closely during earlier 
periods, after the mid-1980s SODA shows higher variance.

3.3  Differences in wind products

Part of the differences between SODA and MOM0.25 can 
be explained by differences in the winds used to force the 
two models. SODA uses ERA-40 wind stresses from 1958 
to 2001 and ERA-interim from 2002 to 2008 (Czeschel 
et al. 2011) while MOM0.25 uses corrected NCEP winds 
(Griffies et al. 2009). There have been several studies 
examining the differences between these (and other) wind 
products. Both McGregor et al. (2012a) and Nidheesh et al. 
(2013) found broad agreement between the wind prod-
ucts on interannual to decadal time scales but differences 
in longer term trends. These product differences were also 
highlighted by Wittenberg (2004), who found that wind 
stress anomalies are weaker and less noisy in NCEP than 
in ERA-40. 

The influence of the different wind products used to 
force MOM0.25 and SODA can be estimated by compar-
ing the response of a shallow water model (SWM) to each 
wind product. We use a linear shallow water model (1.5 
layer reduced gravity model) in which the interface separat-
ing the upper and lower model layers represents the tropical 
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Fig. 8  Taylor diagrams of regression coefficients for different prod-
ucts and time periods compared to altimetry (represented by the black 
star) for the different climate indices. Coloured symbols represent 
overlapping 15-year windows, coloured by the last year of the win-
dow. Squares represent SODA and circles MOM0.25
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thermocline. The thermocline depth is then translated into 
SSH using linear regression coefficients between mod-
elled thermocline depth anomalies and observed SSH, as 
described by McGregor et al. (2012a). Shallow water mod-
els have already been used to study ENSO-related SSH var-
iability (Timmermann et al. 2010; Widlansky et al. 2014) 
so we focus on the residual trend and PDO-related com-
ponents of the wind. Figure 9 shows the results when the 
shallow water model is forced with the residual wind trend 
from three different periods from MOM0.25 and SODA, 
Fig. 10 shows the results for the PDO-related component 
of the wind. Only the area between 30

◦
S and 30

◦
N is plot-

ted, since outside of this region the relationship between 
model thermocline depth and SSH is not robust (Timmer-
mann et al. 2010). For both the residual trend and the PDO-
related SSH variability, the shallow water model does a 
reasonable job of reproducing the large-scale patterns seen 
in the two models. Note that the SWM shows less small-
scale SSH variability than the other two models, due to the 

fact that it is missing many of the processes which create 
variability on small scales. For this reason we focus on the 
large-scale SSH patterns associated with the various pat-
terns of wind forcing, which the SWM is able to simulate. 
The ability of the SWM to reproduce the SSH patterns 
from SODA and MOM0.25 indicates that, when it comes 
to model differences in SSH patterns, data assimilation in 
SODA and model drift (in both models) may not be first 
order effects and that most of the trend and low frequency 
variability in SSH may in fact be due to the trend and low 
frequency variability in the wind. The SWM results thus 
suggest that a large part of the differences in trend and low 
frequency variability between the two models can be attrib-
uted to differences in the wind products used to force them.

3.4  Regressions over a longer time window

It is clear that a 15-year window is not long enough to reli-
ably separate trend and low frequency variability. So how 

Fig. 9  Residual SSH trend (in mm/year) in three different time windows from MOM0.25 and from a shallow water model forced by the residual 
trend in the MOM0.25 winds (upper panels) and the same from SODA (lower panels)
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long does the window need to be? Figure 11 shows R2 val-
ues averaged over the domain for a range of window lengths 
from 15 to 50 years for both MOM0.25 and SODA. As the 
window length increases the average R

2 values decrease, 

due to the fact that as the window length is increased there 
is a wider range of variability (i.e. more events) that must 
be explained by the regression coefficients, preventing the 
regression from overfitting to one particular event. Taking 

Fig. 10  SSH regressed on to the PDO index in three different time windows from MOM0.25 and from a shallow water model forced by the 
PDO winds (upper panels) and the same from SODA (lower panels)

Fig. 11  R2 values for window 
lengths from 15 to 45 years 
(colours) for MOM0.25 (solid 
lines) and SODA (dashed lines), 
plotted against the last year 
included in the sliding window. 
The average R2 value for each 
window length is plotted as 
circles (for MOM0.25) and 
squares (for SODA) with the 
50-year window plotted as a 
black symbol. Note that the 
y-axis does not start from zero
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ENSO as an example, a short window which includes the 
large 1997–1998 El Niño will be able to describe that par-
ticular large event accurately. However, when the window 
is expanded to include other, smaller ENSO events (and 
La Niñas as well as El Niños) then the regression coeffi-
cients calculated over the shorter window may not be able 
to describe a particular individual event so well.

For MOM0.25 the R
2 values appear to be converging 

for window lengths above 30 years, but for SODA the R2 

values are still decreasing with increasing window length 
up to the maximum window length of 50 years. In the 
absence of a longer dataset to more thoroughly test conver-
gence of the regressions, we will use the maximum window 
length of 50 years.

In addition to the change of average R2 value with win-
dow length, Fig. 11 shows that there are particular years 
whose inclusion in the window have a marked effect on the 
R

2 value. The 15-year windows (dark blue curves) show 

Fig. 12  Regression coefficients 
calculated using 50-years 
(1958–2007) of SSH (left col-
umn) and wind (right column) 
from MOM0.25. Tide gauges 
are shown as coloured circles, 
crosses indicate where the 
tide gauge regressions are not 
significant. Every eighth wind 
vector is plotted, red vectors 
indicate significance at the 95 % 
level
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the largest R2 values for windows ending in the early 2000s 
and around 1980 and the lowest values in windows end-
ing in the early 1990s, which matches the results shown in 
Figs. 6 and 7. Windows ending in the early 2000s have the 
highest R2 values across all window lengths, illustrating the 
importance of particular events/periods in influencing the 
regression patterns even for long window lengths. 

In Figs. 12 and 13 we show regression coefficients cal-
culated for both SSH and winds over a 50-year window 

(1958–2007) from MOM0.25 and SODA. For both models 
the regression patterns for ENSO2, IOD and SAM-related 
SSH variability resemble those in 1993–2007 and 1963–
1977. The PDO-related SSH pattern is also more simi-
lar to the 1993–2007 and 1963–1977 patterns than to the 
1978–1992 pattern, but with smaller amplitudes than the 
1993–2007 pattern. The models have quite different resid-
ual trend patterns (both to each other and to the residual 
trend patterns calculated over the shorter windows).

Fig. 13  As in Fig. 12 but for 
SODA
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Figure 14a shows the skill of the regression at capturing 
the SSH variability in each model over both long and short 
windows. There are large spikes in the RMS error coincid-
ing with the El Niño events of 1982–1983 and 1997–1998, 
indicating the inability of the linear regression to capture 
the nonlinear parts of the variability, which is particularly 
evident for large ENSO events. Regression coefficients cal-
culated over the 15-year window 1993–2007 show lower 
errors when used to reconstruct SSH during that window, 

but large errors outside of it. The regression coefficients 
calculated using a 50-year window have a consistent level 
of skill at explaining the SSH variability in their respective 
models, at least until the last decade or so, when there is an 
increase in the RMS error for SODA. This increased error 
indicates that there has been a change in the model SSH 
variability such that the same set of regression coefficients 
cannot explain both pre- and post-2000s variability. The 
fact that a similar shift is not present in MOM0.25 indicates 

Fig. 14  RMS error for recon-
structed a sea level and b wind 
stress curl using regression 
coefficients calculated over the 
50-year window (dark blue/
red) and the 1993–2007 window 
(cyan/orange) for MOM0.25 
(blue/cyan) and SODA 
(red/orange). Note that the 
y-axis does not start from zero
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Fig. 15  SSH trend (in mm/year) over 1993–2007 attributed to the PDO when using a 15-year window rather than a 50-year window in (a) 
MOM0.25 and (b) SODA. Tide gauges are shown in circles
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that once again it may be due to the different wind products 
used by each model. Figure 14b shows that using regres-
sion coefficients to reconstruct the wind stress curl used in 
SODA undergoes a similar change in skill in the 2000s as 
the reconstructed SSH, indicating that the wind stress curl 
has undergone a similar shift. In particular, there appears to 
be a change in seasonality. The winds used in SODA have 
larger trends and low frequency variability towards the end 
of the model run compared to the MOM0.25 winds, which 
may be related to the switch from ERA-40 to ERA-interim 
in 2001 in SODA.

A large part of the error when calculating PDO-related 
SSH variations using a window that is too short is due to the 
false attribution of trends in the SSH to short term trends in 
the PDO index during the window. This false attribution is 
called trend aliasing. We can use the regression coefficients 
calculated using the 50-year window to find the aliasing 
that occurs during the 1993–2007 window in both SODA 
and MOM0.25, as shown in Fig. 15. This figure shows the 
part of the trend in SSH that is attributed to the PDO in 
the 15-year window, but which remains unexplained when 
using a more robust measure of the SSH regression on to 
the PDO (calculated over the 50-year window). This unex-
plained part of the trend could be due to either a trend in 
another climate index not included here (anthropogenic 
forcing, for example), or to a change in behaviour of the 
SSH regression on to the PDO during the recent period. A 
similar result was found by Han et al. (2013), who found 
that changes in the PDO/IPO cannot explain recent sea 
level rise in the western tropical Pacific and by England 
et al. (2014), who showed that the PDO/IPO only accounts 
for approximately half of the 1992–2011 acceleration in the 
trade winds. Instead, the large SSH changes in the tropi-
cal Pacific may have also been influenced by warming in 
the Indian (Han et al. 2013) and Atlantic (McGregor et al. 
2014) Oceans.

4  Conclusions

Sea level variability during the 15-year altimeter period 
can be associated with various climate indices, such as the 
PDO, ENSO, IOD and SAM. Two ENSO indices, the first 
an ENSO index such as the MEI and the second represent-
ing the combination mode of ENSO and the annual cycle, 
can be used to explain more SSH variance in the central 
equatorial Pacific than the single ENSO index alone. The 
ENSO indices have significant regressions with SSH in the 
Indian Ocean, as does the IOD in the Pacific Ocean, indi-
cating that ENSO and the IOD are not independent. How-
ever, the inclusion of the IOD explains more SSH variance 
in the Indian Ocean than ENSO alone. Regression of SSH 
with SAM does have a significant signal in the Southern 

Ocean as expected, however there are also signals of simi-
lar magnitude in the equatorial Indian and Pacific. It is 
likely, given the short length of the time series, that there 
is significant cross contamination between the low fre-
quency variability and the trend, thus a longer time series 
is required to test the robustness of the SAM-related SSH 
signals.

Patterns of wind variability can also be associated with 
the climate indices. Using a shallow water model we 
find that a large part of the trend and low frequency vari-
ability of SSH in the SODA and MOM0.25 models can be 
explained by the trend and low frequency components of 
the wind forcing, suggesting that model drift is not a domi-
nant factor. Some of the differences in SSH variability in 
SODA and MOM0.25 can be attributed to the different 
wind products used to force them. The MOM0.25 wind 
forcing has lower variance than the SODA wind forcing on 
all time scales and the two also exhibit significantly differ-
ent 15-year residual trends, this difference between the two 
models is greatest in the most recent period.

Using the two models we can also test the robustness of 
the regression patterns to the length of the time series used 
to calculate them. Window lengths of 15 years appear to be 
sufficient for shorter period variability such as ENSO, how-
ever it is not sufficient for distinguishing between ENSO- 
and IOD-related SSH variability (which may in fact be 
impossible using this method due to the nonlinear nature 
of their interaction). Anomalously large events (such as 
the 1997–1998 El Niño) can still dominate due to overfit-
ting when short window lengths are used, such that there 
is a dependence of the regressions on the time window 
chosen. The residual trend and the PDO-related SSH pat-
terns are particularly sensitive to the length and position of 
the window. Indications are that a 15-year window is not 
enough to reliably separate the trend from the PDO-related 
SSH variability, which is reflected in the fact that R2 val-
ues for regressions calculated using 15-year windows were 
lower during the 1980s and 1990s than during the earlier 
and later periods. Window lengths on the order of 50 years 
(or longer) are required for robust regressions of SSH on to 
low frequency variability such as the PDO.

Comparing the amplitude of the regression of SSH on 
to the PDO during the altimetry record to the pattern and 
amplitude calculated over the 50-year window suggests that 
the more recent SSH–PDO relationship is not representa-
tive of the longer term record. This lack of robustness when 
using short window lengths also means that when estimat-
ing long term trends in spatial patterns of SSH (associated 
with anthropogenic climate change, for example) from the 
altimetry record we must take into account the fact that the 
patterns of 15-year trends vary considerably depending on 
the window and are influenced by low frequency modes of 
variability such as the PDO.
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