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ABSTRACT

The kinematic method for determining vertical velocity w in pressure coordinates is reviewed. Alternative
objective procedures are derived for obtaining w, and an analytical solution to the pressure-differentiated
continuity equation is found. A variational formulation leads to a generalized objective adjustment for
divergence estimates which yields improved, physically realistic estimates of w. Case studies for intense
mesoscale convection demonstrate the utility of an adjustment scheme based on the simplest hypothesis,
namely, that the errors in divergence estimates are a linear function of pressure.

1. Introduction

A recurring problem in meteorology and oceanogra-
phy is the estimation of the distribution of wvertical
velocity in the fluid. Routine measurements of vertical
velocity are not taken. However, the vertical velocity
pattern is usually inferred from the measurements of
the horizontal velocity, pressure distribution and/or
temperature distribution by one of several methods,
commonly called 1) the kinematic method, 2) the adia-
batic method, and 3) the omega equation (e.g.,
Petterssen, 1956; Haltiner et al., 1963). The solution of
the omega equation requires the specification of con-
ditions at all boundaries. The adiabatic method requires
good data on the temperature structure of the fluid.
The kinematic method requires only boundary condi-
tions at the top and/or bottom of a column within which
we have estimates of the horizontal velocity divergence.

The purpose of this paper is to review the kinematic
method in detail and suggest some new proposals for
estimating the kinematic vertical velocity. It is my con-
jecture that many of the artificial techniques used to
conjure up horizontal boundary conditions for the
omega equation, such as cyclic boundaries, extrapola-
tion away from the region of interest, etc., may not be
appropriate or possible in many investigations. Since
good estimates of the temperature field are not always
available for the adiabatic technique, it becomes neces-
sary to apply the kinematic method as a last resort.

The equation of continuity in pressure coordinates is

0w du 08
=0, )
ap 9x dy

where % and v, the horizontal velocity components, are
measured relative to a constant pressure surface p. In
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oceanography, divV vanishing would be appropriate.
If we assume that we have an independent estimate of
w at the ground or lower reference pressure surface of
interest, (1) may be integrated over a slice Ap of the
atmosphere, i.e.,

o+ 9y Qv
op=tpayt / (—+—)dp. @)
? dx Oy

If wo is the specified value and 2=1(1)K denotes the
levels at which we desire estimates of vertical velocity,

Wy =wk—1+Dk
k , 3

Wi =wo+z D,
=1

where D, is the pressure-weighted, mean horizontal
divergence for the slice Ap of the column. We can esti-
mate Dy, from observations of #, » and thus, in principle,
we can determine w at any higher level in the column
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F1G. 1. Schematic of an arbitrary pressure level k. The vertical
velocities w are separated by a pressure increment Ap; Dy is the
pressure-weighted, mean horizontal divergence for the slice, Ap;
wo and wr are the known estimates of w at the bottom and top of
the column; and wy, are the objectively obtained estimates of wp.
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(see Fig. 1). However, it is well known that the w, be-
come successively less acceptable as £ increases, due to
errors in the estimates of D. The value of w at the top
of any column usually is found to be either too low or
too high when compared with independent, physically
realistic estimates. It is my purpose to describe a modi-
fication of (3) which may be used to obtain physically
acceptable values of w throughout the column.

2. Second-order adjustment

Some authors (e.g., Lateef, 1967) have solved the
discrepancy by forcing w to be zero or some prescribed
value wy at the top of any column. A non-zero estimate
for wp might be the adiabatic w. Eq. (1) is solved after
first differentiating with respect to pressure to obtain

0w a fon Jv

L ®
ap? op\dx 9y
This problem is now second-order in w, and two bound-
ary conditions can be applied. We note, however, that
we are no longer assured that (1) is satisfied at every

point in the fluid.
If Ap is constant for each slice, (4) becomes

E=1(1)K, (5)

7 ! !
W41 + 20" —wp—1 ':Dk—l_Dk,

which is a set of K-coupled unknowns. We might use the
well-known tridiagonal algorithm to effect a solution of
(5); however, in this special case we can actually find
the solution analytically and gain valuable physical in-
sight about the adjustment we are applying to the atmo-
spheric data.

If we view (5) as a matrix problem, AW =B, A is tri-
diagonal with diagonal element 2, and off-diagonal
elements —1. It is easily shown (O’Brien, 1969) that
its inverse, A~'=[a,;], is symmetric and has the form

aif = j(k+1—30)/(k+1), if j<i. (6)

The solution to (5) is A" B=W, where WT=[w/, w,’
.., wi’ ] and B is the right-hand side of (5). After some
algebra it can be shown that

wy' =wp——(wg—wr), )
K

where wy, is the value obtained from (3), the usual kine-
matic estimate. The two boundary conditions are satis-
fied by (7), i.e., at k=0, v’ =we, and at k=K, o' =wr.
We observe that, physically, the application of the
second-order equation (4) in preference to (1), implies
that we are changing the vertical velocity at any level
k by an amount which linearly depends on the distance
from the lowest surface. The “‘error” we observe in w
at the top of the column is (wxg—wy). This “error” is
distributed linearly throughout the column. However,
the “error’” is not in w but in our estimates of the
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pressure-weighted divergence D;. What does this imply
about the “correction” to the divergence field?
If we write (7) for £ and £—1 and subtract, we obtain

D) =D;—(wg—wr)/K, (8)

where D, can be considered a corrected D,. Note that
the correction, (wg—wr)/K, is independent of k. As
Lateef points out, the second-order adjustment scheme
is equivalent to adjusting the divergence at every level
by a constant. In the case of evenly spaced data, the
divergence is adjusted by the amount (wg—wr)/(Ap K)
at every level. This physical understanding is important
since, clearly, there must be a better correction hypoth-
esis than a uniform adjustment of the divergence
estimates!

3. Variational formulation

Consider the general problem of determining kine-
matic velocities. Let us presume that we have I esti-
mates, d;, of horizontal divergence at discrete positions
pi. Assume also that we have J estimates of omega, wj,
at levels p;. The coordinate levels, p; and p;, need not be
uniformly spaced; in fact, we expect p;= p,. (In practice,
it may be useful to smooth the vertical distributions of
horizontal divergence by applying objective or subjec-
tive techniques and employ evenly spaced d;.) We wish
to find objectively adjusted values of omega w;” and
divergence d/, which satisfy certain- physical con-
straints. Associated with each datum is an error vari-
ance, g2 or g% of the variable.

The formulation of the problem follows Sasaki (1958)
and Stephens (1965). Let

" fi
0

af: fi
Fl< HT PR
ap ap’ apr

represent a set of constraints desired for certain initial
estimate fields f;. Let the ith objectively modified vari-
able, f;= f;(p), be continuous along with its derivatives
through order 27 in a region u and take on prescribed
values on.S the boundary of u. Let a difference functional
be defined by

B0 = [| Swtr=pras e 00

where T'; are Lagrangian multipliers and «; are the Gauss
precision moduli. These latter are defined (Whittaker
and Robinson, 1944) by

1

Ki=—"

20

(11)

The objectively modified values are determined by re-
quiring the first variation of E to vanish.

In the present problem, f; represents both d; and w;.
The principal constraint is the continuity equation (1).
Anticipating knowledge of the vertical velocity at the
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top and bottom of any column, i.e., wo, wr, we may also
require that these two conditions be constraints on the
data.

__The Gauss precision moduli must be specified as func-
tions of p, d/, w/, which represent relative weights for
each datum. Inherent in (10) is all our data and physical
knowledge of the state of the fluid. We may make the
adjustment as simple or complicated as desired. For ex-
ample, x; might be zero, constant, a linear function of
pressure, or nonlinear; they might be chosen to be a
function of rawinsonde distance from station, a function
of turbulence intensities at some heights, etc. There are
no restrictions whatsoever on choice of . Additional
constraints might be that the maximum or minimum
omega must exist at some specified level.

The remainder of this paper is concerned with a few
formulations that have been successfully used.

Let us assume that the Gauss precision moduli are
independent of d; and ;. However, they may depend on
pressure and any other parameter (such as turbulence
intensity, for example). The functional £ becomes

I 7
E(i, d/, 1)) =2 xi(di—d:*+ 2 xiwf —w;)?

=1 j=1

3
+> IvF,  (12)

i=1

where Fy is a finite difference analogue of (1), F,
=w(bottom)—w,, and Fs=w(top)—wr. The adjusted
values are found by setting the first variation of E to
be zero. The resultant equations are a set of coupled
linear equations with unknowns w/, d/, I'; if x; and «;
are independent of w and d. Otherwise they are a non-
linear set of equations which can be solved by standard
iteration procedures. The specific use of this variational
formulation is demonstrated in the next section.

4. Generalized adjustment criteria

Consider the usual problem confronting the analyst.
He has available estimates of pressure-weighted hori-
zontal divergence D; and independent estimates of the
vertical velocity w near the ground and at some great
height in the atmosphere. However, we will assume that
he has no a priori estimates of w at any intermediate
level. For the sake of simplicity we shall assume that
the divergence is given at equally spaced pressure inter-
vals. The error variances ¢? are presupposed to be in-
dependent of D and  but depend in some specified way
on pressure p and some external parameters. The varia-
tional functional (12) can be written as

K
EWD! N =Y xi(D/—D)*+20\F
=1
) (13)
K
F=% D¢+ (wy—or)

k=1
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where wo and wyr are the specified vertical velocities at
the bottom and top of the layer. The equations to be
solved are

Dk’—Dk = —-)\/Kk, k = 1 (1)K
K . (14)
> D=~ (w—wr)

k=1
The solution is

(2

2 K
Dk’-:Dk'— P (—wo—}—wT—Z Di), (15)
1=l
2 o

=1

where (11) has been used. The vertical velocity is given
by

Sk
wk’=wk-——(wK—wT>, (16)
K
where w; and wx are given by (3) and,
k
Si=Y. o a7

i=1

The equations (15)~(17) are used to calculate the objec-
tively adjusted divergence and vertical velocity. It is
instructive to look at some special examples.

5. Special adjustment criteria

Consider the case when o, is independent of pressure,
i.e., a constant; (15) reduces to (8) and (16) to (7). In
other words, the ‘“‘error” is distributed uniformly over
all divergence estimates.

Consider the case when o2 is a linear function of % or
pressure; (15) and (16) may then be written as

k
Dk'=Dk——— WK —wr), 18
M( ) (18)
k(1)
wk'=wk-—(wK—w7)|:——-:|. (19)
K(K+1)

Why would we consider these adjustments? It is well
known and documented (Duvedal, 1962) that wind
maeasurements from a GMD-1A system deteriorate with
decreasing elevation angles which may be the combined
consequence of strong winds and sounding duration
(indirectly altitude). If we use (18) and (19), the correc-
tion is a linear function of the pressure. Near the ground
the correction is essentially zero; the maximum correc-
tion occurs high in the atmosphere. The weighted cor-
rection for w is now almost quadratic, with essentially no
correction in the lower part of the atmosphere and a
large correction in the upper atmosphere. Note that
the boundary conditions are satisfied.
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F1c. 2. Vertical motion [ub sec?] at 500 mb at 1530 CST 28
May 1967 as obtained from (3). Intensity contours of PPY radar
echo configuration are shown. The vertical profiles for grid points
A and B are shown in Figs. 3 and 4.

This adjustment procedure has been applied in several
actual atmospheric problems, and has given very accept-
able results. An example is shown from Fankhauser
(1969) in Figs. 2-5. This study was concerned with a
mesoscale convective regime in Oklahoma, where several
strong, active thunderstorms developed within a net-
work of rawinsonde stations. The carefully analyzed
data gave poor estimates of the kinematic vertical veloc-
ity at 100 mb. The choice of wr=0 or the independent
adiabatic value gave much more physically realistic
results.

Fig. 2 shows the network of stations and the area of
maximum convection for a particular time as indicated
by radar echo intensity contours. Figs. 3 and 4 show the
vertical profiles of divergence, kinematic vertical veloc-
ity [Eq. (3)], and the adjusted profiles [ Egs. (18), (19)]
for two selected grid points (A and B) indicated on
Fig. 2. Note that the adjustment in the heavy convec-
tive case (A) is appreciable. For the column outside of
the convective regime, the change is slight. The maxi-
mum adjustment of the divergence profiles is equivalent
to a wind speed discrepancy of 1 m sec™.

As noted, the overall adjustment to w demonstrated
in Figs. 3 and 4 is appreciable; however, the distribu-
tion of ' shown in Fig. 5 is relatively unchanged and
«’ continues to effectively mirror the convective regime
as seen by radar. Using energy aspects associated with
latent heat release, Fankhauser has thus demonstrated
that o’ is a physically improved evaluation of the verti-
cal motion in his case.

Our studies indicate that the objective adjustment
given by (18) and (19) yields very significant physical
improvement in the vertical velocity estimates for the

JOURNAL OF APPLIED METEOROLOGY

VOLUME 9

entire column. The improvement is judged by the cor-
relation of convective intensity, as measured by radar,
with the resultant “corrected” vertical velocity distri-
butions for all atmospheric levels in many case studies.
The physical insight gained by studying the results
obtained in the previous sections enables us to consider
alternative adjustment procedures. Suppose, for ex-
ample, we were confident that the errors in horizontal
divergence estimates were directly related to the mag-
nitude of the wind velocity at a particular level, ie., if
the wind speed V is large, we would expect a larger
error in our divergence estimate. It appears that there
are many physical situations under which this would be
very likely. Duvedal (1962) documents this possibility.
From our previous results we relate o2 to V,; and write
“corrected” divergence and vertical velocity fields as

k

Dy =D ——(wg—wr), (20)
K
o

i =wp——(wr —wr), (21)
K

where V; and D are the measured wind speed and
pressure-weighted divergence at level &, w;’ is given by

(3), and

Qk=§0 V. (22)

Under this hypothesis, the divergence Dy is corrected by
a factor proportional to the wind speed at level k2. Note
that the vertical velocity ws is corrected by a factor Qx
which is the sum of the wind speeds for every level
below &.

In general, if we conclude the divergence to be in
error due to any criterion f which can depend in any
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F16. 3. Vertical profiles of unadjusted (dashed) D and w from
Eq. (3) and objectively adjusted (solid) D’ and w’ from Egs. (18)
and (19), for grid point A near strongest convection.
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way on the physical or geometrical properties of the
fluid configuration, then the best estimates of the actual
divergence and vertical velocity, if we know wy and wr,
are given by

fx
Dk’=Dk——(wK-—wT), (23)
K
Ry
w;c’=wk—-—~—(wK—wT), (24:)
K
where
k
Ri=Y fa (25)
a=0

These latter formulas enable us to construct objectively
consistent profiles of D}’ and w,’ under any hypothesis
available. The resultant w will be consistent with the
principle of conservation of mass and will satisfy the
boundary conditions at the top and bottom of any
column.

6. The global adjustment scheme

In many severe convection studies, there is no assur-
ance that « should be zero at the top of any column, say
at the 100-mb level. However, over a very large region
the average w should be zero by conservation of mass.
An objective technique is derived which can determine
w from (3), with the added constraint that the mean w
at the top is a predetermined value (usually zero). In
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F16. 4. Same as Fig. 3 except for grid point B in subsiding air.
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F16. 5. Objectively adjusted vertical motion [ub sec™] at 500
mb at 1530 CST 28 May 1967 as obtained from Eq. (19).

this case the boundary condition is “global’” in the
mathematical sense. At the top of any one column, w is
not specified, but over the entire region of interest wr
has a prescribed mean.

The basic procedure is to apply a Lagrangian multi-
plier, e.g., Gruber and O’Brien (1968), to force the
numerical result to conform to the global boundary
condition.

Let us construct the function

N M K

Swijn, =22 2 2 (wik—wi, k—1+Dip)?

=1 j=1 k=1

N M

AN T wijr—a).

=1 j=1

(26)

In (26), w: ;. is the value at the point (4,5,k); k=K is
the top of the column under study; w; ;, is prescribed;
A is the Lagrangian multiplier; and « is the preset value
of mean vertical velocity (usually zero) at the top of the
model atmosphere. It is important to realize that if the
quantities in the two parentheses are zero, then (3) is
satisfied everywhere and the mean velocity at the top
has the prescribed value a. If we minimize S, we will
obtain an estimate that is as close as possible to the
data, D; ; 1.

We differentiate S with respect to its variables, w3
and A to obtain

aS
—_“'=2<wl'rq—wlr‘ q—1+Dqu)

awlw

—2{wwr, gr1—wirg+Dir, g41)

I=1,N;r=1,M;q=1, K—1, (27)
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oS which is unity. Q is thus of the form
=2(wHK_'wlr, K——J.+DHK)+>\, (28)
i, g I o @ J
e I o J
9IS u A=|: 35
L S o os=|! A
N | I’ 0

In these equations, there are NMK unknowns w;,;,,+A,
i.e., (27) is NM (K —1) equations, (28) is NM equations,
and (29) is one equation.

If we let (27)-(29) equal zero, we have a set of
NMK 1 equations with NM K41 unknowns. This set,
unfortunately, is not easily solved with the usual matrix
subroutines because the number of equations will be
very large in most practical cases. However, this diffi-
culty can be obviated.

Let us consider the equations in matrix form, i.e.,

AW=B, (30)
where

W7T=[wi11, w113, « . ., @11k, 0121, - ., Nk, NJ;  (31)

B contains the terms including Dy, ;5 for each equation,
but whose last element is zero. We can now write A as

’C11 o - - . ™
['4 C12
©

A:
. . .. CNM T
rr 17 | )

The square matrices, C;;, are tridiagonal and identical,
and of order K ; thus

2-10 - -+ 0O
-1 20 .
Ci,‘=2 0 e (32)
. 2 -1
0 - =1 1
and
rr=[0,0, ..., 1], (33)

where T is of order K. Note that C;; is symmetric and
independent of 7,7. It can be easily shown that the in-
verse of € is symmetric and is given by

~=[dy
N (34)
Cre’ =37, if r<s

We then define a new matrix Q which is block-diagonal,
with diagonal element C* except for gnargs1, NuE+1,

and is completely inverted in the Gaussian sense except
that T'7 is in the lowest row. JT=1[1,2,3, ..., K], I is
the identity matrix and ¢ is the null matrix,

If we apply Gaussian elimination to the last row, we
have

6 o - - 7
I .
QA—Q'= , (36)
@ I

0 « -« « + . —NMK

where Q' is upper triangular and is easily solved by
back substitution if we also alter the right-hand side of
AW=B,

With some rearrangement, it can be shown that the
estimate of w; ;1 is given by

k N M
Wik =@ — 2 2 wir—a). 37
NMK =1 =1

Again we observe that, physically, we are applying a
linear-weighted correction to w. Also, the stated bound-
ary conditions are met, i.e., o’ =wo, and, if we sum over
(3,7) for k=K, v’ =a at the top. Clearly, the corrections
to w in (37) are quite small since, in general, we expect
NMK tobelarge. If we find at level K that the patterns
of w; ; x are intense (several maxima and minima), we
would expect w;;x’ to reflect the same patterns. Only
the mean w will be changed at any level. The distribu-
tion will remain the same.

This alternative approach to the kinematic velocity
problem seems to have promise for specialized numerical
studies where “global”” boundary conditions need to be
applied but outflow and inflow might be allowed along
some horizontal pressure surface.

7. Conclusion

It has been shown that many alternative objective
methods are available for determining kinematic verti-
cal velocities. An analytic solution is found for the
second-order adjustment technique. Based on the form
of this solution, the simplest realistic correction hypoth-
esis is proposed, i.e., the horizontal divergence esti-
mates are in error by a factor proportional to their
distance from the bottom of the atmospheric column.
This correction procedure yields excellent results in the
practical case of intense mesoscale convection.

The adjustment procedure can be generalized for the
case when only global boundary conditions are to be
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applied or when any alternative error proposal is sus-
pected for the atmospheric data.
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