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Abstract: The main goal in estimating population abundance is to maximize its accuracy and precision. This is diffi-
cult when the survey area is large and resources are limited. We implemented a feasible adaptive sampling survey
applied to an aggregated population in a marine environment and compared its performance with five classical survey
designs. Specifically, larval walleye pollock (Theragra chalcogramma) in the Gulf of Alaska was used as an example
of a widespread aggregated population. The six sampling designs included (i) adaptive cluster, (ii) simple random,
(iii) systematic, (iv) systematic cluster, (v) stratified systematic, and (vi) unequal probability. Of the five different adap-
tive estimators used for the adaptive cluster design, the modified Hansen–Hurwitz performed best overall. Of the six
survey designs, the stratified systematic survey provided the best overall estimator, given there was accurate prior infor-
mation on which to base the strata. If no prior information was available, a systematic survey was best. A systematic
survey using a single random starting point with a simple random estimator performed as well as and sometimes better
than a systematic cluster survey with two starting points (clusters). The adaptive cluster survey showed no advantages
when compared with these two designs and furthermore presented substantial logistical challenges.

Résumé : L’objectif principal poursuivi dans l’estimation de l’abondance d’une population est l’amélioration de
l’exactitude et de la précision. Cela est difficile quand la surface inventoriée est grande et les ressources limitées. Nous
avons mis au point un inventaire adaptatif d’échantillonnage pratique pour une population à distribution contagieuse
dans un environnement marin et nous avons comparé sa performance en fonction de cinq plans d’inventaire classiques.
Nous utilisons, en fait, des larves de goberges (Theragra chalcogramma) de l’Alaska du golfe de l’Alaska comme
exemple spécifique d’une population à large répartition et à distribution contagieuse. Les six plans d’inventaire consis-
tent en (i) un plan adaptatif avec regroupements, (ii) un plan aléatoire simple, (iii) un plan systématique, (iv) un plan
systématique avec regroupements, (v) un plan systématique stratifié et (vi) un plan à probabilités inégales. Des cinq
estimateurs adaptatifs utilisés dans le plan adaptatif avec regroupements, l’estimateur modifié de Hansen–Hurwitz
donne le meilleur résultat global. Des six plans d’inventaire, l’inventaire systémique stratifié fournit le meilleur estima-
teur global, étant donné qu’il existe de l’information préalable précise pour déterminer les strates. Lorsqu’il n’y a pas
de renseignements préalables, l’inventaire systématique fonctionne le mieux. Un inventaire systématique avec un seul
point de départ aléatoire et avec un estimateur aléatoire simple fonctionne aussi bien, et souvent mieux, qu’un inven-
taire systématique avec regroupements avec deux points de départ (regroupements). L’inventaire adaptatif avec regrou-
pements ne présente aucun avantage par rapport aux deux plans précédents et, de plus, il crée de sérieux problèmes de
logistique.
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Introduction

The most common requirement in resource management,
studies of population dynamics, and many other subjects is
to estimate mean abundance of spatially aggregated popula-
tions. The usefulness of these estimates are dependent on
their bias and precision. Yet, in most field studies, traditional
survey procedures are used without much background infor-
mation on how to improve the bias and precision of the

mean and standard error estimators. This can lead to inaccu-
rate fish stock assessments or hypothesis tests and general
misrepresentation of the spatial distribution.

The goal of this project was to compare the effectiveness
of six sampling methods on patchy distributions (i.e., adap-
tive cluster, random, systematic, systematic cluster, stratified
systematic, and unequal probability). The criteria for com-
paring designs were the bias, precision, and mean squared
error (MSE) of the estimates. Because MSE is a measure of
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both bias and precision, it was used as a final criterion for
determining the best estimator. We computed these esti-
mates of the mean density and their standard error (SE) by
simulating many patchily distributed populations with differ-
ent degrees of patchiness and then repeatedly sampling these
populations using each sampling method.

A primary motivation for this study was to decide if using
an adaptive cluster design (Thompson 1990) would yield a
more precise estimate. This design has received much atten-
tion in recent years with studies of patchily distributed popu-
lations, primarily because it allows concentrated sampling
around initial samples that meet a predetermined criterion
(typically areas of high density) and because it is reported to
yield a smaller variance than random sampling. It can be
particularly useful when more individuals of interest need to
be collected for other studies.

In our study, we examine the performance of adaptive
cluster sampling by sampling from realistic, simulated popu-
lations. Other examples of adaptive sampling applied to sim-
ulated patchily distributed populations include Christman
(2000), Brown (2003), and Su and Quinn (2003). Christman
(2000) looked at adaptive cluster sampling of rare, spatially
clustered populations. In contrast, our population of interest
is patchy or clustered, but not rare, and covers a large geo-
graphic extent. Our simulated populations are typical of
many ubiquitous but patchy marine species, such as adult
Pacific hake (Merluccius productus) and shortspine thorny-
head (Sebastolobus alascanus) along the west coast of North
America, adult arrowtooth flounder (Atheresthes stomias),
rex sole (Glyptocephalus zachirus), and Pacific sandlance
(Ammodytes hexapterus) in the Gulf of Alaska, and many
species of ichthyoplankton; hence, our survey design com-
parisons have broad applicability. To further broaden the
scope of our study, we simulated populations with a wide
range of patchiness.

What also sets our paper apart from other simulations is
the focus on a realistic implementation of an adaptive
sampling design where the sampling unit is extremely
small when compared with the entire area to be surveyed,
a scenario that is common in large marine surveys. Our
simulated population contained almost 9000 sampling
units, whereas, for example, Thompson (1991) used a
population with 400 sampling units, and Christman (2000)
used a population with 75 sampling units. Our implemen-
tation includes setting the criterion for initiating adaptive
sampling, controlling sample size, and avoiding negative
variance estimates (which occurs in Horvitz–Thompson
estimates). These issues have not been adequately ad-
dressed in real applications or in simulated samples. Much
of the literature a priori uses species presence to initiate
adaptive sampling, makes no attempt to control sample
size, and seldom yields negative variances due to artifi-
cially simple populations. Those studies that have intro-
duced methods to control sample size include Lo et al.
(1997), Christman (2003), and Su and Quinn (2003). Each
of these methods introduces bias into the estimator, as
does our method. We measured the bias, or systematic er-
ror, by simulating realistic populations and then repeat-
edly sampling from these populations and comparing the
true values to the repeated estimates.

Common estimators used for adaptive cluster sampling in-
clude the modified Hansen–Hurwitz (HH) and Horvitz–
Thompson (HT) estimators of the mean and variance
(Thompson and Seber 1996). In addition to these two, we
also looked at two alternate estimators of the variance of the
HT mean, the Yates–Grundy–Sen (Sen 1953; Yates and
Grundy 1953) and the Brewer–Hanif (Brewer and Hanif
1983), as well as one other estimator of both the mean and
variance, the Hajek–Sarndal (Hajek 1971; Sarndal et al.
1992). Patchy distributions usually yield large variances, re-
gardless of survey design (Andrew and Mapstone 1987), but
several studies suggest that using the modified HT estimator
in an adaptive cluster survey yields the most precise estimate
(Hanselman et al. 2003; Salehi 2003; Su and Quinn 2003).
These conclusions, however, were dependent on the degree
of aggregation, “neighborhood” definition, size of “net-
works”, within-network variance, size of “initial sample”, size
of “sampling unit”, and the “criterion” used to begin adap-
tive sampling (see Appendix A for definitions of terms that
are in quotes).

We apply these methods to estimating mean density
(number per 10 m2) of larval fish in the ocean, and specifi-
cally to the patchily distributed walleye pollock (Theragra
chalcogramma) (Stabeno et al. 1996). We patterned our
simulated populations on the distribution of walleye
pollock larvae as recorded from ichthyoplankton surveys in
Shelikof Strait, Alaska, conducted by the National Oceanic
and Atmospheric Administration (NOAA) Alaska Fisheries
Science Center (AFSC). We built the framework used in
this study by modeling the spatial distribution in terms of
patches and using parameters that describe these patches
based on actual historical data.

Materials and methods

Population simulations
Artificial populations were generated that have the same

spatial characteristics as walleye pollock larvae in early May
in Shelikof Strait, Alaska. The primary characteristic is the
spatial pattern of its patches, that is, areas of high density
(Stabeno et al. 1996). We examined the observed larval
walleye pollock spatial distributions from nine spring
ichthyoplankton surveys conducted by AFSC between 1986
and 1998 (Table 1). We chose surveys from the time interval
shortly after the eggs hatched into larvae and before the lar-
vae became widely dispersed, so that the patches were still
coherent.

To examine the effect of patchiness on the performance of
the various survey designs, we simulated two sets of popula-
tions: 50 populations that we considered to be very patchy
and 50 populations that were much less patchy. We defined
high-patchy populations to have patches that were small in
geographic extent, but had large maximum densities within
the patch. Conversely, we defined low-patchy populations to
have patches that were large in geographic extent, but with
maximum densities that were less extreme than the high-
patchy population (Fig. 1). We adopted these definitions
both because they are intuitive and because Brown (1996)
found that these factors (along with the number of patches)
were the most important in determining the benefits of adap-
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tive sampling over random sampling. By simulating popula-
tions with a wide range of patchiness, the conclusions drawn
from these populations may be extrapolated to many other
natural populations that have various degrees of patchiness.

The area of the simulated populations was defined by plot-
ting the stations from cruises in Table 1 and delineating the
area that was usually surveyed and contained larvae (Fig. 2).
A grid of 8857 “cells”, where each cell is 1 nautical mile × 1
nautical mile (1 n.mi. = 1.852 km) sea-surface area, was cre-
ated inside this survey area. A density was simulated for each
cell based on patch parameters estimated from historical data.
This density was defined as the number of fish in the water
column below a 10 m2 surface area within the cell. We used
the index i to refer to the ith cell; xi and yi to refer to the east–
west and north–south location of the centroid within cell i,
respectively, in units of meters; and Z(xi, yi) to refer to the
simulated density, in units of number per 10 m2, within cell i.
See Appendix B for details of the simulation of populations.

Survey simulations
The simulated surveys were based on quadrat sampling,

which is common practice in ecological surveys. The geo-
graphic range of the simulated population was divided into a
grid of 1 n.mi. × 1 n.mi. contiguous cells; this was our spa-
tial sampling frame and each cell was a quadrat, the sam-
pling unit. A sample of cells was selected and the population
density within a cell was observed and multiplied by a sam-
pling error term, εi. The density of fish “caught” in the ith
sampled cell (number per 10 m2) was designated as

z x y z Z x yi i i i i i( , ) ( , )= = × ε

where Z(xi, yi) is the simulated density of the population at
that cell (see eq. B1 in Appendix B), and εi is a random
lognormal variate, representing small-scale variability about
the densities within a cell. The variance for the lognormal
error term was obtained from the variance within stations
with multiple hauls in the historic database, that is, where
many samples were taken at the same location on the same
day.

For each of the 100 simulated populations, 100 simulated
samples were generated using each of the six survey designs.
Each survey was designed to have approximately the same
sample size, n, to facilitate the comparisons of the designs.
Mean larval density was estimated from each simulated sam-
ple, and the ability of the survey method to recover the pa-

rameters of the simulated population was examined by mea-
suring bias and precision.

For every survey design except random, we grouped the
grid of 8857 cells into 10 n.mi. × 10 n.mi. “blocks”, so that
each block contained 100 cells (Fig. 3). For the unequal
probability sampling and the stratified systematic sampling,
we calculated the mean densities within each block from all
100 simulated populations and used these to create probabil-
ities for sampling within each block and for creating strata
boundaries. Averaging densities over all 100 populations is
comparable to using data from a time series of previous sur-
veys to set sampling parameters for a future survey, as op-
posed to conducting a pilot survey to determine sampling
parameters.

Graphic examples of each survey design are provided
(Fig. 4). The formulas for the unbiased estimators of the
mean (µ) and variance (σ) are provided for each classic sur-
vey design in Appendix C, Table C1 and for the adaptive
cluster survey design in Appendix D, Table D1. For the sake
of broad applicability, all estimates include the finite popula-
tion correction factor, (N – n)/N, even though this number is
very close to unity because our value of N is so large relative
to n.

For systematic cluster, stratified systematic, and the adap-
tive cluster designs, we used conventional “cluster” sampling
where each of the 100 cells within blocks is a single “primary
unit” or cluster of cells. The cells within a primary unit are
called “secondary units” and have the same position in each
block. This follows Cochran’s aligned or “square grid” sys-
tematic sample in two dimensions (Cochran 1977). A primary
unit, or randomly chosen starting position, was sampled, then
the corresponding secondary units were sampled per primary
unit, in the same relative positions in each block.

Adaptive cluster sampling design
In adaptive cluster sampling, if the density at a sampled

unit satisfies a preset criterion, then further sampling occurs
around that unit (Thompson 1991). We followed Thomp-
son’s terminology, except for his definition of cluster. (Note:
Thompson’s definition of a cluster is a group of adaptively
sampled stations, as opposed to Cochran’s definition of
cluster, as defined above.) The initial sample was a system-
atic cluster sample, similar to what we used for the system-
atic cluster survey; these stations were occupied
independently of what previous observations were made.
The sampling pattern for the additional adaptive stations was
that of a square grid about the initial station, with adaptive
stations 5 n.mi. immediately northeast, southwest, north-
west, and southeast of the initial unit that met the criterion.
These additional four stations comprise the neighborhood of
the initial station. If any of these stations met the criterion,
additional stations were added using the same pattern and
spacing (Fig. 5). We chose this spacing because it (i) was
smaller than the observed patch size (mean patch size was
10 n.mi.2), (ii) helped limit the sample size, and (iii) over-
lapped the initial grid, insuring adjacent neighborhoods had
coincident stations. At this point, our adaptive procedure
ends and the next station on the initial grid is sampled, un-
like Thompson’s procedure, where the adaptive sampling
continues until no more stations meet the criterion. The set
of overlapping neighborhoods all spawned by a single initial
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Cruise Dates No. of stations

2MF86 4–17 May 1986 89
2MF89 26 April – 2 May 1989 45
3MF89 9–16 May 1989 94
2MF90 8–13 May 1990 51
3MF92 3–9 May 1992 64
4MF93 6–11 May 1993 66
5MF94 5–8 May 1994 50
1DI96 30 April – 5 May 1996 73
4MF98 3–5 May 1998 45

Table 1. List of cruises used to describe spatial distri-
bution of larval walleye pollock (Theragra chalco-
gramma).



station, excluding stations within the neighborhoods that do
not meet the criterion, is called a network.

To control the sample size, we employed three methods:
(i) restrict the number of iterations of testing for the crite-
rion, (ii) use noncontiguous sampling units to form neigh-

borhoods, and (iii) stop adaptive sampling and finish sam-
pling the survey area with a systematic design in a second
strata. In the first method, for each station in the initial sam-
ple, we allowed only two iterations of adding adaptive sta-
tions, that is, if an “A” station (initial sample) met the
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Fig. 1. Simulated populations of (a) high patchiness and (b) low patchiness. Single simulated patch of (c) high patchiness and (d) low
patchiness based on bivariate normal probability distribution (see Appendix B for details of simulating a single patch).



criterion, then the four stations in the neighborhood of A
were sampled (called “B” stations). If any B station met the
criterion, then the stations in the neighborhood of B stations
were sampled (called “C” stations). Then we stopped the
adaptive sampling and continued with the initial sampling
plan. Quinn et al. (1999) called this a stopping rule with two
iterations. This yielded possible sampling of 12 additional
stations per A station (4 possible B stations plus 8 possible
C stations). We called this a “district” (Fig. 5).

The second method we used to reduce sample size was to
define the neighborhood to be noncontiguous grid cells. The
spacing of the adaptive stations five cells apart allowed net-
works to grow beyond the extent of a single district, that is,

C stations overlapped A stations, therefore allowing net-
works to overlap and become one large network (Fig. 5).

The third method for controlling sample size, that is
dividing the survey area into two strata, was accomplished
by not fixing the strata boundary before the survey; instead,
we ceased adaptive sampling when the number of stations
left to sample before reaching the desired sample size
equaled the number of blocks yet to be sampled. This is a
form of poststratification; therefore, the appropriate stratified
estimator was used.

The criterion value used to initiate adaptive sampling was
a density greater than the 85th percentile of the densities
from the 100 simulated populations. This is equivalent to
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Fig. 2. Map of Shelikof Strait in Alaska, USA, showing stations with 0 catch (shown with × symbols) and stations with positive
catches (shown with solid dots), with boundary of simulated population.



using order statistics as recommended by Thompson and
Seber (1996). Basing the criterion on all 100 simulated pop-
ulations is equivalent, in practice, to using past survey data,
as opposed to conducting a pilot survey, to compute the cri-
terion, similar to how we computed the sampling parameters
for unequal probability sampling and stratified systematic
sampling. We determined this percentile by calculating the
proportion of A stations that we could allow to be adaptively
sampled to meet the desired sample size.

The estimators commonly used for adaptive sampling are
the Hansen–Hurwitz (HH) and the Horvitz–Thompson (HT)
estimators. We considered three additional estimators, and
all five are described in Appendix D. Each of the five adap-
tive estimators was applied to stratum 1 only. The final esti-
mate for each sample was computed by combining the two
strata estimates using the usual stratified estimators (see Ap-
pendix C, Table C1). The variance of stratum 2 was esti-
mated using the estimator from systematic sampling, treated
as random, because it had only one cluster.

Classic sampling designs
Random sampling is sampling with equal probability,

while unequal probability sampling assigns different selec-
tion probabilities to the individual sampling units. Sampling
with probability proportional to a measure of size is a spe-
cial type of unequal probability sampling (Jessen 1978). In
our case, the probability was proportional to the mean den-
sity within each 10 n.mi. × 10 n.mi. block, averaged over all

100 simulated populations. This mean density was our mea-
sure of size.

The systematic survey design had only one primary unit
(starting point) to demonstrate a very common survey de-
sign, because multiple starting points for systematic sam-
pling are seldom used in practice. Traditionally, the AFSC
ichthyoplankton surveys use a modified systematic sampling
design. It is common in marine science to sample systemati-
cally along a grid rather than randomly to get even coverage
of the survey area and to make the most efficient use of ship
time. This is often done with a single random start, which
theoretically would yield a “cluster” of one sample. Because
no variance can be calculated from a sample of one cluster
(Cochran 1977), a simple random sample estimator is used
with this design, where each station is considered a sampling
unit, with the assumption that there is no spatial periodicity
in the data that coincides with the systematic spacing of the
sample (Stehman and Overton 1994). Any deviation from
this assumption will appear as bias in the estimates of the
mean and variance. If one uses more than one random start-
ing point, resulting in multiple clusters, then a variance can
be calculated (Cochran 1977). We call this systematic cluster
design, and we simulated this design using two random
starting points.

Stratified systematic survey designs are obtained by divid-
ing the elements of the sampling frame into groups, or
strata, such that the variability within strata is believed to be
less than the variability between strata. For simplicity, we
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Fig. 3. Map showing the survey area gridded into 10 nautical mile (1 n.mi. = 1.852 km) × 10 n.mi. blocks, labeled 1–98, each of
which is divided into 1 n.mi. × 1 n.mi. cells, labeled 1–100.
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Fig. 4. Maps showing examples of the spatial arrangement of six different survey designs: (a) adaptive cluster (adaptive stratum is
dark gray, nonadaptive stratum is light gray, and dots of same shade represent clusters), (b) random, (c) unequal probability (intensity
of shading indicates sampling probability within the block), (d) systematic using single cluster, (e) systematic cluster (dots of same
shade represent clusters), (f) stratified systematic showing two strata (dots of same shade represent clusters; blocks of same shade indi-
cate strata).



chose to use just two strata. Appropriate strata boundaries
were chosen using the mean densities within each 10 n.mi. ×
10 n.mi. block, averaged over all 100 simulated populations.
Blocks with means larger than the grand mean of all cells in
all 100 populations were assigned to stratum 1 and the other
blocks to stratum 2. Allocation of number of sampled cells
to the strata was proportional to the standard deviation of the

simulated densities within each stratum, averaged over the
100 simulated populations; thus, more stations were sampled
in strata with higher average standard deviations.

Survey design comparisons
In our simulation, we based our comparison of survey de-

signs on the bias, precision, and MSE of the estimated mean
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Fig. 5. Adaptive sampling design. Map shows a “neighborhood” (i.e., an A station with four surrounding B stations) and a “district” (i.e.,
13 A, B, and C stations) for the adaptive survey. This is the result of using a stopping rule of s0 = 2 (2 iterations of adaptive sampling).



population density, �µ , and its estimated SE, �σ, for each sur-
vey design. The MSE is often used to compare estimators
having different amounts of bias and precision, that is

MSE 2 2= − = − + −E z E zi i( ) [( �) ( � )]µ µ µ µ

= − + −E zi( �) ( � )µ µ µ2 2

= +( ) ( )Variance of Bias 2zi

where µ is the true mean of the population, and �µ is the
mean of the sampled values of zi (Cochran 1977). For ease
of comparison, we put all these parameters in the same units
as the population mean, that is, for precision we used SE in-
stead of variance and we took the square root of the MSE.
All measures of survey performance were expressed as a
percentage of the population mean density (Table 2), thus
making them relative. Results were reported for two separate
groups, i.e., 50 populations with a high level of patchiness
and 50 populations with a low level of patchiness. Note that
the true mean population density, µ l, is the average value of
all cell densities for the lth population; however, the “true”
population SE for the lth population, σl, is actually an ap-
proximation, because it is the square root of the variance
about the 100 sample means for the lth population rather
than the variance about sample means from all possible sam-
ples. The relative bias, precision, and MSE for a particular
survey design were computed for each population and then

averaged over the L = 50 populations within each population
group (high patchiness and low patchiness).

Hypothesis testing was performed to detect if relative bias
of the mean differed significantly between survey designs
within each population group (high patchiness and low
patchiness) by performing a one-way analysis of variance
(ANOVA), where the dependent variable was the absolute
value of the relative bias for each population, the single
fixed factor was survey design, and populations were repli-
cates. If the survey design factor was significant, then
Fisher’s LSD (least significant difference) multiple compari-
sons (Milliken and Johnson 1992) were performed to see
which were different. This testing was done for all six per-
formance measures, that is, the relative bias, SE, and MSE
for estimates of both the mean and SE for both the high- and
low-patchy populations.

Results

Simulated populations
We simulated two sets of 50 populations: one set had a

high level of patchiness and the other exhibited a low level
of patchiness. Examples of simulated populations with high
and low patchiness are provided (Fig. 1). The simulated pop-
ulations had values of Lloyd’s index of patchiness (Lloyd
1967; Pielou 1969) that ranged between 6.2 and 7.7 and be-
tween 2.0 and 2.2 for the high- and low-patchy populations,

© 2008 NRC Canada

184 Can. J. Fish. Aquat. Sci. Vol. 65, 2008

Mean SE

True population µ l

l
i

N

i iZ x y

N
= =

∑
1

( , )

σ µ
µ µ

l l
s

S

sl l

S
= =

−
=
∑

Var

2

( � )

( � )
1

where µ µl sl
s

S

S
=

=
∑1

�

1

Relative bias
1

100
L

l l

ll

L ( )µ µ
µ
−







 ×

=
∑

1

1
100

L
l l

ll

L ( )σ σ
µ
−







 ×

=
∑

1

where σ σl sl
s

S

S
=

=
∑1

�

1

Relative imprecision
1 Var

100
L

l

ll

L ( � )µ
µ













×
=
∑

1

where Var( � )µ σl l=

1 Var
100

L
l

ll

L ( � )σ
µ













×
=
∑

1

where Var

2

( � )

(� )

σ
σ σ

l
s

S

sl l

S
=

−
=
∑

1

Relative MSE
1

1

100

2

L

S s

S

sl l

ll

L
( � )

=

=

∑
∑

−




















×1

1

µ µ

µ
1

1

100

2

L

S s

S

sl l

ll

L
(� )

=

=

∑
∑

−




















×1

1

σ σ

µ

Note: Zl (xi, yi) = density at the ith cell of the lth population; �µ sl and �σ sl are the estimated mean and SE of
the mean from the sth sample of the lth population, respectively; N = total number of cells; L = total number
of populations; S = total number of samples per population; and MSE = mean squared error.

Table 2. Formulas used to compare properties of estimators among different survey designs.



respectively. The range of Lloyd’s index for our nine histori-
cal cruises was 1.6–3.3, with most of these falling within the
range of the low-patchy simulated populations. We wanted
to examine the performance of the survey designs on popu-
lations even more patchy than our historical cruises, so we
used values for each of the individual population parameters,
such as patch size and maximum patch density, that were at
the extreme of the observed range of values from the histori-
cal cruises to simulate the more patchy populations. This re-
sulted in populations with a higher Lloyd’s index than the
historical data because none of the observed cruises had ex-
treme values for all of the population parameters, whereas
the simulated high-patchy populations did. Thus, the results
from sampling the low-patchy populations are relevant to
populations with spatial distributions similar to larval
walleye pollock, while the results from sampling the high-
patchy populations apply to populations with more exagger-
ated patchiness.

After simulating the populations, we then sampled the
populations to obtain estimates using both adaptive estima-
tors and classical estimators. We first looked at the results of
the adaptive cluster sampling, chose the best adaptive esti-
mator, then compared this with the classical estimators to
determine which was the best overall survey design.

Comparison of adaptive cluster estimators
Detailed results of the comparison of the five adaptive

cluster estimators are provided in Appendix D. We con-
cluded that HH and HT perform equally well and better than
the other three estimators considered. However, we recom-
mend the HH estimator over HT because the HH estimator
never produces a negative variance estimate and it is much
easier computationally.

Comparison of survey designs
We compared the six survey designs using the HH estimator

for the adaptive cluster survey. In general, the estimators for
high-patchy populations performed worse than the low-patchy
populations, with the difference being most pronounced in the
imprecision and MSE of both the mean and SE (Fig. 6).

Although the adaptive cluster estimator (HH) had the great-
est bias of the mean compared with the other survey designs,
it still underestimated the mean by less than 0.8% of the mean
for high-patchy and 1.4% for low-patchy populations (Fig. 6).
The biases of the other estimators were considered negligible
according to Cochran (1977), because they fall below 10% of
the SE. Comparing precision about the mean, the random es-
timator performed significantly worse than all others (Table 3)
for high-patchy populations (at about 18%).

Looking at the MSE values of the mean, the differentia-
tion amongst the estimators was greatest for the high-patchy
populations, with random being significantly higher than all
others and systematic and stratified systematic being signifi-
cantly lower (Table 3). Within low-patchy populations, the

MSE of the mean for the random estimator was again the
largest, but not significantly higher than that of unequal
probability. The MSE values of the systematic and system-
atic cluster means were significantly lower than those of all
others (Table 3).

The bias in the SE was greatest for the systematic estimator
at about 7.5% for high-patchy populations and 3.5% for low-

patchy populations (Fig. 6). The bias about the SE for the
adaptive cluster design was significantly lower than that of
the systematic and systematic cluster but significantly higher
than that of the rest of the estimators for the high- patchy
populations (Table 3). For low-patchy populations, the adap-
tive cluster bias about the SE was not significantly different
from the stratified systematic bias and was significantly lower
than the systematic, but significantly higher than all others.

The systematic cluster and adaptive cluster estimates of
the SE were significantly the least precise for both high- and
the low-patchy populations (Fig. 6, Table 3). The MSE val-
ues of the SE indicated that the stratified systematic and un-
equal probability survey designs delivered the best
estimators of SE for high-patchy population groups, and the
unequal probability and random survey designs produced the
best estimators of SE for the low-patchy populations.

Clearly, there is no obvious best design for both high and
low-patchy populations. Based on the MSE of the mean,
the random design was a very poor choice for all popula-
tions and the systematic, systematic cluster, and stratified
systematic designs’ performances were superior for all popu-
lations. Looking at the MSE of the SE, the two systematic
designs produced the worst estimates of the SE for both pop-
ulation groups, while stratified systematic, unequal probabil-
ity, and random all performed admirably. We conclude that
the stratified systematic survey design was the best overall
estimator, regardless of the level of patchiness. This conclu-
sion is well supported by examining Fig. 6. Even though the
hypothesis tests in Table 3 do not clearly show superior per-
formance of the stratified systematic design for the low-
patchy populations, it performs consistently better in terms
of the MSE of the mean and SE.

Another important observation is that using a single clus-
ter with a systematic design did not significantly decrease
the performance, based on MSE of the mean, when com-
pared with a systematic survey with two clusters (when they
have the same sample size); in fact, the systematic was sig-
nificantly better for the high-patchy populations. Only in the
case of the MSE values of the SE for low-patchy popula-
tions did the systematic cluster perform significantly better
than the systematic (Table 3). This observation contradicts
what Christman (2000) found; her simulated systematic sur-
veys had a much higher bias in the variance, perhaps be-
cause her populations contained fewer primary units, and the
probability of missing a cluster was large.

A valid concern with using a single cluster is that the SE
estimator will be biased, and indeed it was, but the precision
of the SE was sufficiently better for the single cluster sys-
tematic design than for the two-cluster design so that these
two effects balanced each other out. As the number of clus-
ters increase in the systematic cluster design, we expect the
recision of the SE to improve, but this benefit would be
tempered by the reduced number of samples within each
cluster, given the total sample size did not change.

Discussion

Choosing the best survey design to sample a patchy distri-
bution should be based on minimizing bias and maximizing
precision of the estimates of both the mean and the SE, for a
given cost, which we equated to sample size. Bias, or the
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difference between an estimate and the true value, is distin-
guished from precision, which is the differences among re-
peated measures (Sokal and Rohlf 1995). Precision is
measured by the variance, that is, the smaller the variance,
the more precise the estimator (we used SE instead of vari-
ance of the mean to keep all performance measures in the
same units). The MSE is a measure of both precision and
bias combined. Our results showed that the MSE of the
mean of a patchily distributed population is determined
more from precision (variance) than from bias.

The consequences of an inaccurate estimate of the mean
are obvious, but the consequences of an inaccurate estimate of
the SE are also important. If the estimated SE is inaccurate

(i.e., overestimated or underestimated because of either bias
or lack of precision or both), then the researcher will have
less (if overestimated) or more (if underestimated) confidence
in the estimate of the mean than warranted. This impacts the
decisions based on the mean. If the mean is used in hypothe-
sis testing, then the test will have incorrect power, resulting in
incorrect test results. If the mean is used to set harvest rates
(e.g., fishing quotas) and the SE is overestimated, then the re-
source manager may be cautious and set the quota lower than
necessary. Conversely, if the SE is underestimated, then the
resource manager may be less cautious and set the quota
higher than the stock can support, potentially leading to over-
fishing.
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There are factors other than bias and precision that influ-
ence which survey design is used. One is the availability of
prior information on the spatial distribution of a population.
Of the six designs that we considered, three require prior
information (stratified systematic, unequal probability, and
adaptive cluster), and the other three do not (random, sys-
tematic, and systematic cluster). One might expect that de-
signs that require prior information will perform better, but
this is dependent on how well the prior knowledge applies to
the present survey. Another factor that directly impacts the
survey design choice is whether there is a single target spe-
cies or whether many species are involved. If there is no sin-
gle target species, there most likely will not be a single best
design for all species, in which case designs that do not re-
quire prior information are the best compromise.

Our study shows that of the three applicable designs that
require no prior knowledge (random, systematic, and sys-
tematic cluster), the random survey design was the least ef-
fective, that is, the MSE of the mean was the poorest of all
the survey designs, although the MSE of the SE was mod-
erate. Random sampling has inherent disadvantages as well,
including (i) no way to deal with high variability in the data
and its effect on the estimators other than increasing the
sample size, (ii) difficult implemention in the field because
of irregular spacing of sampled units, (iii) missed patches
because of uneven spatial coverage, and (iv) data are poorly
suited for spatial analysis, such as interpolation. Systematic
sampling is much easier to implement and provides even
coverage; however, multiple starting points (clusters) are sel-
dom used in practice. Rather, each station sampled is consid-
ered to be a separate sampling unit, instead of part of a
single cluster, and the sample is treated as if it were random
(Schopka 1994; Wertheimer and Celewycz 1996; Edgar et
al. 1997). From our simulation, we conclude that there was
very little difference in bias, precision, and MSE between
the use of a systematic design with a single cluster and using
a systematic cluster with two clusters. Although the SE is

slightly overestimated by the systematic design, this is miti-
gated by the improved precision of the SE. Therefore, our
simulation shows that the convenience of sampling a single
cluster does not seriously impact the bias and precision of
the estimates.

Our interest in adaptive cluster sampling is primarily due
to advantages reported in the literature. For example, adap-
tive cluster sampling (i) is reported to yield more precise
estimates for patchy distributions (Brown 2003; Hanselman
et al. 2003; Turk and Borkowski 2005), (ii) allows for in-
creased observations of interest by concentrating additional
sampling effort in those areas where there is higher density,
and (iii) makes more efficient use of ship time by adding
samples that are near the initial sample (Turk and Borkowski
2005).

The first two advantages mentioned above also apply to
stratified systematic and unequal probability sampling. Un-
equal probability sampling is more precise if the selection
probabilities are proportional to the values being observed
and allows for concentration of sampling in areas of histori-
cally high fish densities. An example of unequal probability
sampling in fisheries can be found in Dressel and Norcross
(2005). Stratified systematic surveys yield more precise esti-
mators if the strata create more homogeneous areas and may
reduce the cost per observation by sampling more conve-
nient groups. Stratified systematic sampling has the added
advantage of providing separate estimates for each stratum
without having to take another sample. However, if the strata
are not appropriately chosen, the precision of the estimator
may decrease. An example where a stratified systematic sur-
vey is used in fisheries can be found in Pennington et al.
(2002).

In comparing adaptive cluster sampling with stratified
systematic and unequal probability survey designs, the adap-
tive cluster survey is more stringent in that it requires abso-
lute abundance information to determine the criterion that
initiates adaptive sampling, and it requires information on
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Adaptive
(HH)

Unequal
probability Random

Stratified
systematic

Systematic
cluster Systematic

High-patchy
Bias of mean B B B A A A
SE of mean B C D A B A
MSE of mean* B C D A B A
Bias of SE B A A A C D
SD of SE D A C B D B
MSE of SE* C A B A D D

Low-patchy
Bias of mean D C B A A A
SE of mean C D D B A A
MSE of mean* C D D B A A
Bias of SE C A A C B D
SD of SE E C B D F A
MSE of SE* BC A A B C D

Note: The adaptive estimator is the Hansen–Hurwitz (HH) estimator. Estimators with the same letters indicate no
significant difference.

*MSEs capture both bias and precision.

Table 3. Results of multiple comparison tests showing significant differences (at 5% significance level)
among survey design estimators for both (i) high-patchy and (ii) low-patchy populations.



the spatial distribution to specify the spacing of the added
adaptive samples. Stratified systematic and unequal proba-
bility surveys only require relative abundance, which may be
more constant from year-to-year than absolute abundance.
For all three of these survey designs, we used the average
absolute abundances and average spatial distributions, aver-
aged over the 100 simulated populations. One possible rea-
son that the adaptive cluster survey did not show marked
improvement over the other designs is that the criterion that
initiated adaptive sampling was the same for every popula-
tion, that is, the 85th percentile of population densities from
all 8857 cells, averaged over the 100 populations. This is
equivalent in practice to using historical data to specify the
criterion, as opposed to conducting a pilot survey. The con-
sequence of this is that populations with a high mean abun-
dance would exhaust the quota of adaptive samples early in
the survey and leave much of the area to be systematically
sampled, thus diluting the benefit of adaptive sampling. In
practice, if we were to choose a percentile of a presurvey as
the criterion for adaptively sampling, the adaptive estimator
might perform better. However, the number of sampling
units in the adaptive survey would have to be reduced by the
number of units sampled in the presurvey, which would ob-
viously worsen the adaptive estimator’s performance.

One of the greatest weaknesses in adaptive sampling is
the inability to control the sample size, and this is especially
critical in marine surveys over large areas employing ships
on a fixed project schedule and budget, which accrue large
costs per sample. We modified Thompson’s adaptive cluster
design in three ways to limit sample size and allow for the
greatest coverage: (1) we stopped adaptive sampling after
two iterations, (2) we skipped four sampling units when
adaptive stations were sampled, allowing networks to over-
lap, and (3) we divided the survey area into two strata and
only adaptively sampled one stratum. Methods 1 and 3 intro-
duce bias into the estimates, the more serious of which is
method 1, the restriction of adaptive iterations. Using a stop-
ping rule (s0 = 2) is a significant deviation from Thompson’s
design, and as a result our networks were incomplete. How-
ever, the second method for controlling sample size, that is,
spacing the adaptive stations five cells apart, helped to coun-
teract this bias by allowing for overlapping districts. We
think that our very small negative bias (less than 1%) for the
HT estimator compared with Su and Quinn’s (2003) positive
bias of 6%–8% (with or without a stopping rule) and Cabral
and Murta’s (2004) extreme bias is due to our overlapping
neighborhood structure that allowed the formation of large
networks. This obviously produces smaller sample sizes than
contiguous neighborhoods, but is only viable if the patch
size is sufficiently large relative to the area spanned by the
neighborhood. Our procedure of skipping over units is simi-
lar to adaptively sampling only cells midway between sec-
ondary units (Woodby 1998). Although Woodby applies this
“neighborhood restriction” to a one-dimensional systematic
adaptive cluster sample design, he mentions that it could be
extended to two dimensions, as we did. A two-dimensional
example where one unit is skipped in all four directions
when sampling adaptively is given by Christman (1997).

By stopping the adaptive sampling when we reached a
predetermined sample size limit minus the number of initial

secondary units yet to be sampled, we successfully covered
the entire survey area and kept the sample size approxi-
mately equal to that of the other survey designs. As a result,
we poststratified our sample into an adaptively sampled
strata and a nonadaptively sampled strata, which resulted in
a biased estimate of the variance, but this bias decreases as
the average sample size for each strata increases (Jessen
1978), and it had a negligible effect in our case.

Other approaches in the literature deal with these chal-
lenges in adaptive sampling, that is, choosing the criterion for
initiation of adaptive sampling, and limiting sample size. In
Hanselman et al. (2003), three different strategies for specify-
ing the criterion were investigated. One strategy used the 80th
percentile of historical data, which is similar to using the 85th
percentile of all 100 simulated populations in this paper. This
avoids the need for a presurvey and the introduction of bias
by the criterion value being dependent on the sampling. How-
ever, using a percentile of historical data would only be useful
for populations with low interannual variability.

In a simulation study, Su and Quinn (2003) used both or-
der statistics and a stopping rule (s0 = 3) to help limit the
size of the sample. They conducted a presurvey and adap-
tively sampled the stations with highest density, where the
number of these (r) was dictated by the time available for
sampling. They found that the HH estimator had relatively
high positive bias if the level of aggregation was high, the
stopping rule (s0) was small, and r was large. The bias of the
HT estimator was not affected much by the stopping rule un-
less r was small, in which case the bias was reduced.

Lo et al. (1997) used a stratified, two-stage adaptive clus-
ter design, which also restricted the number of adaptively
sampled stations. Instead of a presurvey, an iterative method
based on past cruises was used to determine the criterion
value that would provide the right number of stations that
time and resources would allow. However, this value proved
to be too high and had to be changed during the survey, re-
quiring the sample to be poststratified, as we did. Their re-
sults indicated that a simple stratified estimator, using all
stations sampled in a restricted adaptive cluster survey de-
sign, was more precise than the stratified HT estimator.

Christman (2003) controls sample size with a Markov
chain one-per-stratum design, i.e., a two-stage sampling de-
sign where the area is first divided into strata, a random-start
systematic sample of one is taken, then wherever the sam-
pled unit satisfies the specified criterion, a secondary sys-
tematic sample is taken within that stratum. For the designs
that she describes, the HT estimator can only be evaluated
when the criterion is zi > 0 (rather than zi > c, where c is a
value other than 0).

Brown (1996, 2003) states that to have an efficient adap-
tive survey, one must design the survey in such a way as to
balance the network size (not too big) with the within-
network variance (not too small), because the within-
network variance generally decreases with network size.
Brown’s simulations found adaptive sampling to be most
efficient with networks containing two to four units. She rec-
ommends using neighborhood definitions and the criterion
value to limit the network size, as was done in this paper.

Another important consideration in sampling is cost. Sev-
eral papers address this issue. Brown (1996) found that the

© 2008 NRC Canada

188 Can. J. Fish. Aquat. Sci. Vol. 65, 2008



average distance traveled for adaptive sampling was less
than that for random sampling for all simulated populations,
regardless of the degree of patchiness. Hanselman et al.
(2003) measured travel time efficiency and found that adap-
tive sampling was more efficient than random sampling for
sampling patchily distributed Pacific ocean perch (Sebastes
alutus). We did not specifically compare distance traveled
between our survey designs, but any survey design with a
grid pattern (i.e., systematic, systematic cluster, stratified
systematic, and adaptive cluster) has logistical advantages
over unevenly spaced stations (i.e., random and unequal
probability). Typically, time is required to process a sample
after collection, and a grid pattern provides a consistent
amount of time before collecting the next sample.

In conclusion, our simulation suggests that of the adap-
tive cluster estimators, HH and HT were the best overall,
and because HH was easier to compute than HT and never
yields a negative variance, the HH estimator is preferred.
Christman (1997) also states that although her simulation
study showed that the HT estimator was often more effi-
cient, HH was less sensitive to changes in population. Nev-
ertheless, our adaptive cluster survey design did not
perform as well as the stratified systematic design and in-
troduced many logistical problems compared with other de-
signs. If prior information is available for a population, a
stratified systematic survey design produces the best
estimator. Without any information on the spatial distribu-
tion, a systematic survey design is best, and sampling a sin-
gle cluster (using a simple random estimator) rather than
multiple clusters does not appreciably impact the bias or
precision of the estimated SE. These conclusions apply
only to populations with spatial structure similar to the
populations that we simulated, that is, populations that are
widespread throughout the survey area with a few patches
with a broad range of size and density and with consider-
able small-scale patchiness. However, both Christman
(2000) and Cabral and Murta (2004) found that stratified
designs out-performed adaptive sampling, and because
there were fundamental differences in our simulated popu-
lations compared with theirs, these conclusions apparently
apply to a broader range of clustered populations.
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Appendix A. Definitions and notations

Subscripts
i = cell, 1 through N
j = primary unit, 1 through Ns
p = patch, 1 through P
k = network, 1 through κ
h = stratum, 1 through H
l = simulated population, 1 through L
s = simulated sample, 1 through S
b = block, 1 through 98

All survey designs
cell i = 1 nautical mile (n.mi.) × 1 n.mi. of surface

area (1 n.mi. = 1.852 km); the simulated pop-
ulation covers 8857 cells, i = 1,2,…,8857

sampling unit = station = a sampling event at the center of
each cell = column of water under the sur-
face area of the bongo sampler frame, that
is, a circle of 60 cm diameter or 0.283 m2

N = total number of cells = 8857
L = number of populations = 100
S = number of samples per population = 100

(xi, yi) = location of the centroid of cell i; xi is the
east–west position and yi is the north–south
position

block = 10 n.mi. × 10 n.mi. square containing 100 of
the 1 n.mi. × 1 n.mi. cells; there are 98
blocks in the population

Zi = Z(xi, yi) = simulated average number of lar-
vae in a column of water under 10 m2 of
surface area, averaged over area of cell i;
the simulated population consists of N =
8857 population units

µ = Z = population average = average number of
larvae per 10 m2 of surface area; this is the
parameter to be estimated by each survey

zi = z(xi, yi) = simulated population unit, Zi, multi-
plied by a sampling error term; this simulates
the density of larvae, that is, number of larvae
in the water column below a 10 m2 of surface
area, sampled somewhere within cell i

ε i = sampling error around mean density in cell
i, which is a random lognormal variate

P = number of patches in population
� p = (µx p, , µ y p, ) = location of the centroid of

patch p

� p
x p p

p y p

2
2

2=












σ ρ
ρ σ

,

,

= parameters controlling the size and shape of
patch p

f x yp i i p p( , | , )� �2 = proportion of patch p that occurs in cell i

Mp = maximum density of larvae (number per
10 m2) in patch p

B(xi, yi) = number of larvae at location (xi, yi) that are
not part of any patch

η = random lognormal variate multiplied to the
simulated density for every cell to incorpo-
rate variability about the modeled densities

LI = Lloyd’s index of patchiness
n = number of cells sampled = number of sta-

tions in the sample

Unequal probability sampling
πi = probability that cell i is sampled
zb′ = the mean density of larvae in block b, averaged over all

100 simulated populations
zi′ = zb′ for every cell i that is in block b, this assigning the

same value to each cell within each block

Systematic cluster sampling
primary unit = observations that are systematically selected

based on the same starting point within each
block, also called clusters in the literature. For
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systematic sampling, the simulated population
is partitioned into 100 primary units.

Ns = number of primary units in population
ns = number of primary units in sample

secondary unit = each cell within a primary unit. Each primary
unit has on average 89 secondary units.

Mj = number of secondary units in primary unit j

M j
j

Ns

=
∑

1

= total number of secondary units in population
(Thompson’s MN) = 8857

zj = average observed density of larvae in primary
unit j

zij = density at ith sampling unit in primary unit j

Stratified sampling
H = number of strata

Nh = number of cells in stratum h
Ns = number of primary units, same value for all strata
nh = number of primary units sampled in stratum h

Mhj = number of secondary units in primary unit j in stratum h
zhij = density at ith sampling unit in primary unit j in stratum h
zhj = average observed density of larvae in primary unit j in

stratum h
zh = average observed density of larvae in stratum h

Adaptive cluster sampling
(These definitions are generally consistent with those

given in Thompson (1991), where he uses a systematic sam-
pling design for the initial sample.)

criterion = rule for initiating adaptive sampling. We used the
criterion that the observed density is greater than
85% of all densities in all 100 simulated popula-
tions.

initial sample = systematic sample with ns starting points.
neighborhood = the neighborhood of a sampling unit consists of

itself and a group of stations around the initial
sampling unit following a prespecified pattern.
For our simulated adaptive survey, the neighbor-
hood is a systematic grid of four units around the
initial unit. The distance between the central unit
and each of its four neighbors is 5 n.mi. (Fig. 5).

district = In this application of adaptive sampling, we re-
strict the number of iterations of testing for the
criterion of interest and adding more neighbor-
hoods to two. The district for a unit consists of the
initial station, labeled A, and two possible levels
of neighborhoods, labeled B and C. Specifically,
the district for a secondary unit in the initial sam-
ple (an A unit) consists of itself, its neighborhood
of four B units, and each B unit’s neighborhood of
three C units. (Note that there are only three C
units in each B unit’s neighborhood because the A
unit is at the same location as one of B’s four
neighbors.) We stop with the C units because each
C unit’s neighborhood includes an adjacent A unit
that is already sampled (Fig. 5).

network = the subset of stations within a cluster (as defined
by Thompson 1991) that satisfies the criterion.

κ = number of networks
zk = the total density in the kth network

nk = the number of primary units that intersect the kth
network (Thompson (1991) uses xk)

Ijk = 1 if the jth primary unit in the initial sample in-
tersects the kth network and 0 otherwise

Ik = 1 if the initial sample intersects the kth network
and 0 otherwise

πk = probability that the initial sample intersects the
kth network, that is, P(Ik = 1)

πk k1 2, = probability that the initial sample intersects both
networks k1 and k2

s0 = stopping rule = number of iterations of adaptive
sampling before stopping. This paper uses a stop-
ping rule of s0 = 2.

Ns, ns, and Mj have the same definitions as for systematic
cluster sampling.

Appendix B. Simulation of populations

Estimating patch parameters
A patch was defined for our purposes as a region that has

densities greater than one standard deviation (SD) above the
grand mean over all densities (Fig. B1) (Stabeno et al.
1996). The large-scale spatial distribution (on the order of
tens of nautical miles) of larvae was characterized by a few
large patches close to the spawning area and lower densities
of larvae distributed more homogeneously over the rest of
the survey area. The small-scale distribution (on the order of
metres) of larvae was characterized by a large, multiplicative
variance due to small-scale patchiness.

Large-scale patchiness was defined by the number, loca-
tion, size, and shape of the patches; maximum densities in-
side the patches; and densities outside of the patches. These
characteristics were observed from the historical data and in-
corporated into the simulation model as parameters that each
have a stochastic component.

The spatial patterns for all nine historical cruises were
summarized individually by first interpolating densities over
the survey area and then standardizing within years (sub-
tracting the mean and dividing by the SD) so that each
cruise had a mean of 0 and SD of 1. The interpolation
method used was the inverse distance weighted method in
the Spatial Analyst extension of ArcGIS (version 8.3, Envi-
ronmental Systems Research Institute, 2002). The inter-
polated densities from each cruise were mapped, and the
patches were identified and delineated. Irregularly shaped
patches were conceptualized as two or more slightly over-
lapping elliptical patches (Fig. B1). The nine spatial distri-
butions of standardized densities were then analyzed to
determine values or probability distributions that best de-
scribed each of the following parameters: (i) number of
patches, (ii) location of the patches, and (iii) size and shape
of the patches; the untransformed densities were used to de-
termine (iv) maximum densities inside the patches and
(v) densities outside of the patches. These parameters are de-
fined as follows (all symbols are defined in Appendix A):
(i) The number of patches, P, was simulated by a random

variable from a uniform probability distribution, ranging
between three and six patches to be consistent with the
observed number of patches in the historical data.

(ii) The location of each patch was simulated by selecting
the location of the center of the patch. A center location
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for each patch was randomly chosen with predetermined
selection probabilities based on the total number of
times that each cell was inside a patch in any of the
cruises. Once a patch location was selected, subsequent
patches within the population were located so that they
did not substantially overlap the previous patches.

(iii) The size and shape of the P patches were modeled by
letting the portion of the pth patch (i.e., fp(xi, yi)) that
occurs at a location be proportional to the probability
density of a bivariate normal probability distribution at
xi and yi, where the density has been rescaled so that the
maximum density has the value of 1.0, that is
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This function was chosen because of its three-
dimensional bell shape (Figs. 1c, 1d). Note that we used
this function to describe the number of fish at each loca-
tion, xi and yi; we did not use it as a frequency distribu-
tion of the number of fish, which definitely does not
have a Gaussian probability distribution. Instead, the xi,
yi locations were modeled with a bivariate normal distri-
bution where the probability density at each location
was proportional to the number of fish at the location.
The bivariate mean of the bivariate normal density func-
tion, µ x p, and µ y p, , is the location of the cell at the cen-
ter of the pth patch, which was determined in the
previous step. The other parameters of the function are
SDs in the x and y direction, σx p, and σy p, , respectively,
and correlation between x and y, ρ p . The values for
σx p, , σy p, , and ρ p determined the size, shape, and orien-
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Fig. B1. Historical distribution of patch size and shape. Irregularly shaped patches were conceptualized as two or more slightly over-
lapping elliptical patches, outlined in white.



tation of the patch and were simulated to mimic the gen-
eralized patches (Fig. B1). The simulated values for
σx p, and σy p, were small for the high-patchy
populations and large for the low-patchy populations,
with the constraint that all simulated values resulted in
patch sizes that were within the range of the observed
patch sizes in the historical data.

(iv) Mp is the maximum density within the pth patch. The
observed values of Mp were correlated between patches
within the historical cruises but varied widely between
cruises. To replicate this, we simulated Mp for every
patch within a population using a lognormal random
variable with the same mean, but allowed this mean to
vary between populations. The high-patchy populations
had simulated values of Mp that were over an order of
magnitude higher than the values for the low-patchy
populations, again with the constraint that all simulated
values were within the range of observed values in the
historical data.

(v) Background numbers of fish, B(xi, yi), at locations xi
and yi that do not belong to any patch were simulated
by a constant value for each population. The observed
mean density outside of a patch in the historical data
varied widely between cruises but was highly corre-
lated with the mean of the maximum patch densities
within the cruise (r = 0.90). The constant, B, was simu-
lated for each population as a linear function of the
mean of the maximum patch densities for that popula-
tion.

Simulating density at each location
The simulated density of fish, Z(xi, yi), or number per

10 m2 at each location (xi, yi), was the sum of the densities
at that location from all overlapping simulated patches, with
the added background density level, that is

(B1) Z x y f x y M B x yi i p
p

P

i i p p p i i( , ) ( , | , ) ( , )= +










=

∑
1

� �2 η

where P is the total number of patches, f x yp i i p p( , | ,� �2) is
the simulated relative density within the pth patch, Mp is the
maximum density within a patch, and B(xi, yi) is the back-
ground density, all as defined above. A random lognormal
variate, η, was then multiplied to the simulated density for
every cell to incorporate variability about the modeled densi-
ties.

Measuring high and low patchiness
Our populations were classified as high-patchy or low-

patchy based on the values of the parameters used to simu-
late them. In an attempt to quantify the patchiness with a
single metric, we computed Lloyd’s index of patchiness (LI)
(Lloyd 1967; Pielou 1969):

LI 1
Var
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Examples of simulated high- and low-patchy populations
are shown in Figs. 1a and 1b.

Appendix C

Appendix C appears on following page.
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Appendix D. Estimators for adaptive cluster
sampling

Methods
The estimators commonly used for adaptive sampling are

the Hansen–Hurwitz (HH) and the Horvitz–Thompson (HT)
estimators. These estimators divide each observation by the
draw-by-draw selection probability or the inclusion probabil-
ity, respectively. Because these probabilities are not known
for every unit in the sample, a modified HH estimator is of-
ten used, based on the number of times a unit in the initial
sample intersects the kth network (all terms are defined in
Appendix A). In contrast, a modified HT estimator is based
on the partial inclusion probability, that is the probability
that the initial sample intersects the kth network (Table D1)
(Thompson and Seber 1996). One problem with the HT esti-
mator is that the formula can yield a negative variance.
Therefore, we also computed two other modifications of the
HT variance estimator. The Yates–Grundy–Sen (YGS) esti-
mator of the variance of the HT mean is usually nonnegative
(Raj 1956; Thompson and Seber 1996), but is unbiased only
for fixed sample sizes (Sarndal et al. 1992). Although our
sample sizes were not fixed, they vary little because of our
stopping rule and our stratification. Another estimator of the
variance of the HT mean is the Brewer–Hanif (BH) estima-

tor. It is conservative (slightly greater than the actual vari-
ance) and invariably nonnegative (Thompson 1992). The last
estimators of the mean and variance that we considered were
the Hajek–Sarndal (HS) estimators. Hajek’s estimation of
the mean is recommended when πk is not proportional to zk.
Sarndal et al. (1992) derived the equation for the variance of
this estimator (Table D1).

Results
In looking at the bias of the mean of the three adaptive

cluster estimators of the mean, the HS estimator has a posi-
tive bias of about 12% and 8% for high- and low-patchy
populations, respectively, whereas HH and HT have a nega-
tive bias of less than 2% (Fig. D1). The bias in the HS esti-
mator was probably due to our particular survey design,
because the sum of the reciprocal of probabilities of selec-
tion consistently underestimated N. The HS estimator had
considerably more bias than HH and HT, was slightly more
imprecise, and was no better in terms of estimating the SE;
hence, the HS estimator was dropped from all further con-
sideration.

The bias of the mean in the HH and HT estimators was
only slightly greater than Cochran’s (1977) rule of thumb for
negligible bias, which is one-tenth of the SE. In terms of
precision of the mean, both estimators performed worse for
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Table C1. Equations used to calculate nonadaptive estimators of population mean and variance.



high-patchy populations compared with low-patchy popula-
tions (12% and 7%, respectively) (Fig. D1). The ANOVAs
and multiple comparison tests failed to detect significant dif-
ferences between these two estimators in terms of bias, pre-
cision, or MSE about the mean for either the high- or low-
patchy populations (Table D2).

The HH and the HT estimators of the SE were similar to
each other, overestimating the SE by a negligible amount
(Fig. D1). YGS and BH were by far the poorest estimators
of the SE in terms of bias, overestimating by around 9% for
high-patchy and 6% for low-patchy populations (Fig. D1).
Although YGS and BH were the poorest estimators in terms
of bias and MSE of the SE, BH was the most precise.
However, because MSE captures both bias and precision,
this was used as the final criterion for dismissing YGS and
BH as desirable estimators for these data sets.

Two variance estimators (YGS and HT) produced negative
estimates of variance, which are obviously invalid, although

computationally possible. The frequency of negative vari-
ances for the HT estimator was higher overall for the high-
patchy populations (6% for the high and 1% for the low). The
incidence of negative variances for the YGS estimator was
similar (7% for the high and 1.5% for the low). The occur-
rence of negative variances for HT has been observed by oth-
ers (Rao and Singh 1973), but YGS has been reported to be
usually positive (Thompson and Seber 1996). All negative
variances were excluded for purposes of computing measures
of bias and precision of the SE for these two estimators.

Of the two remaining variance estimators (having elimi-
nated the HS, YGS, and BH estimators), there were no sig-
nificant differences between the HT and the HH variance
estimators for relative bias, SD, or MSE of the SE for
high-patchy populations. For low-patchy populations, the
HT is significantly smaller in terms of relative bias of the SE
(Table D2). However, in terms of the relative MSE for both
population groups for both mean and SE, there were no sig-
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Note: All symbols are defined in Appendix A.
*HH, Hansen–Hurwitz; HT, Horvitz–Thompson; YGS, Yates–Grundy–Sen; BH, Brewer–Hanif; HS, Hajek–Sarndal.

Table D1. Equations used to calculate adaptive cluster estimators of population mean and variance.



nificant differences (Table D2). Because this is a measure of
both bias and precision combined and because the HH esti-
mator has some advantages over the HT estimator (i.e., it
never produces a negative variance estimate and it is much

easier computationally), we recommend the HH estimator in
practice.
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Fig. D1. The bias, imprecision, and MSE of the mean and SE averaged over the 50 high- and 50 low-patchy populations for the five
different adaptive cluster estimators.
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Adaptive
HH

Adaptive
HT

Adaptive
YGS**

Adaptive
BH**

Adaptive
HS

High-patchy
Bias of mean A A A A B
SE of mean A A A A B
MSE of mean* A A A A B
Bias of SE A A B B A
SD of SE B B C A AB
MSE of SE* A A B B A

Low-patchy
Bias of mean A A A A B
SE of mean A A A A B
MSE of mean* A A A A B
Bias of SE B A D C A
SD of SE AB B C A B
MSE of SE* A A C B A

Note: HH, Hansen–Hurwitz; HT, Horvitz–Thompson; YGS, Yates–Grundy–Sen; Brewer–Haniff; and
HS, Hajek–Sarndal. Estimators with same letters indicate no significant difference.

*MSEs capture both the bias and precision.
**The adaptive estimators BH and YGS are different estimators of the variance for the HT estimator

of the mean. Therefore, the bias, SE, and MSE of the mean are the same as the HT estimator.

Table D2. Results of multiple comparison tests showing significant differences (at 5% sig-
nificance level) among adaptive cluster survey design estimators for both (i) high-patchy
and (ii) low-patchy populations.


