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Individual-based modelling (IBM) techniques offer many advantages for spatially
explicit modelling of marine fish early life history. However, computationally
efficient methods are needed for incorporating spatially explicit circulation and prey
dynamics into IBMs. Models of nutrient–phytoplankton–zooplankton (NPZ)
dynamics have traditionally been formulated in an Eulerian (fixed spatial grid)
framework, as opposed to the pseudo-Lagrangian (individual-following) framework
of some IBMs. We describe our recent linkage of three models for the western Gulf
of Alaska: (1) a three-dimensional, eddy-resolving, wind- and runoff-driven circula-
tion model, (2) a probabilistic IBM of growth and mortality for egg and larval
stages of walleye pollock (Theragra chalcogramma), and (3) an Eulerian, stage-
structured NPZ model which specifies production of larval pollock prey items.
Individual fish in the IBM are tracked through space using daily velocity fields
generated from the hydrodynamic model, along with self-directed vertical migrations
of pollock appropriate to each life stage. The NPZ dynamics are driven by the same
velocity, temperature, and salinity fields as the pollock IBM, and provide spatially
and temporally varying prey fields to that model. The resulting prey fields yield
greater variance of individual fish attributes (e.g. length), relative to models with
spatially uniform prey. Practical issues addressed include the proper time filtering
and storage of circulation model output for subsequent use by biological models,
and use of different spatial grids for physical and biological dynamics. We demon-
strate the feasibility and computational costs of our coupled approach using specific
examples from the western Gulf of Alaska.
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Introduction

Fisheries research continues to establish important
linkages among fish populations, their prey and
predators, and characteristics of the immediate physical
environment (e.g. circulation, temperature). As inter-
actions among populations and the environment are
clarified by field measurements and laboratory exper-
iments, there is a growing need for models that simul-
taneously include several trophic levels and specific
populations. A single modelling approach may not serve
well for all components.
1054–3139/01/051030+12 $35.00/0
The majority of marine ecosystem models are formu-
lated in terms of the aggregate properties of each model
component, e.g. the mean biomass of phytoplankton per
unit volume or the mean number of fish per unit area. In
effect, such models follow the evolution of the ‘‘mean
individual’’ of a population through time. An increas-
ingly popular class of population models, commonly
referred to as ‘‘individual-based’’ models (IBM), keeps
track of distinct individuals within a population, each of
which interacts with other individuals and its physical
environment based on its present state and possibly its
past history. Such models are frequently stochastic in
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design. Recent examples include DeAngelis et al. (1991),
Rose et al. (1993), Crowder et al. (1993), Werner et al.
(1993, 1996), and Hinckley et al. (1996). Continuing
developments in computer speed and architecture have
rendered the IBM approach to fisheries modelling
increasingly tractable.

Realistic population or ecosystem modelling may
require explicit treatment of spatial history. Many
marine species spend their life stages in different physical
environments (e.g. separation between spawning
grounds, nurseries and adult feeding areas). Even for
species with no appreciable horizontal transport, vertical
migration through light, temperature, and prey
concentration gradients can play a significant role in
determining growth and survival.

We consider the simultaneous inclusion of circulation
and prey fields in a spatially explicit, three-dimensional
IBM for walleye pollock (Theragra chalcogramma) near
Shelikof Strait, Alaska. An overview of the area and the
life history of pollock spawning in Shelikof Strait are
shown in Figure 1. Its early life history has been studied
extensively by the Fisheries Oceanography Coordinated
Investigations (FOCI) programme (Schumacher and
Kendall, 1995; Kendall et al., 1996). Spawned eggs
develop into larvae and juveniles as they are advected
to the southwest with the prevailing currents. To
capture the early life history, the models include passive
advection and active vertical locomotion of individual
fish through their habitat and feeding on prey items
whose concentration varies in space and time.

We use three linked complex models, each designed
to address issues relevant to pollock life history near
Shelikof Strait:

(1) The three-dimensional, eddy resolving, semi-
spectral primitive equation circulation model (SPEM)
of Haidvogel et al. (1991), adapted to the region by
Hermann and Stabeno (1996), is capable of describing
both the mean flow and much of its horizontal and
vertical complexity. Forcing includes twice-daily geo-
strophic winds, suitably rotated to account for the
ageostrophic effects of coastal topography (Stabeno
et al., 1995) and coastal run-off (Royer, 1982). Results
have been calibrated using current meter and drogued
drifter data (Stabeno and Hermann, 1996).

(2) The stochastic, spatially explicit IBM of walleye
pollock (Figure 2) described by Hinckley et al. (1996)
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Figure 1. Summary of early life history for walleye pollock spawning at the exit of Shelikof Strait. Primary regional currents are
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tracks individuals through time and space, and models
life-stage specific processes such as development, feed-
ing, growth, and mortality. The model follows indi-
viduals through the egg, yolk-sac, feeding larval, and
juvenile stages from late winter to the fall of their first
year. As discussed in Hinckley et al. (1996), the use of a
stochastic model results in more realistic length distri-
butions than a deterministic model, and significantly
impacts the spatial distribution of the population. The
IBM now includes prey selection based on stage and size
of pollock, and the effects of turbulence on feeding
(Megrey and Hinckley, this volume). Output from an
earlier version of this model compared favourably with
larval surveys spanning several years (Hermann et al.,
1996).

(3) The three-dimensional nutrient–phytoplankton–
zooplankton (NPZ) model (Figure 3) is a deterministic,
lower trophic level model similar to that described in
Frost (1987, 1993) and is formulated on a fixed spatial
grid. The model follows total nitrogen and phyto-
plankton concentrations in a three-layered water column
consisting of a mixed layer, a stratified layer, and an
underlying source layer. Of the herbivores included,
Neocalanus spp. is the mesozooplankton biomass-
dominant (Napp et al., 1996; Incze et al., 1997), acting
to consume the bulk of primary production, and Pseu-
docalanus spp. is the prey resource for larval pollock
(Kendall et al., 1987; Nakatani and Maeda, 1987;
Hillgruber et al., 1995). Stages of Pseudocalanus, from
egg to adult, are followed separately. Model equations
as well as comparisons to data and an optimization
analysis are available in Hinckley (1999).

Both biological models receive input from the circu-
lation model in the form of currents, temperature, and
salinity (Figure 4). The IBM also uses wind data directly
to calculate effective turbulence levels at larval depths
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through the empirical formula of MacKenzie and
Leggett (1993). Irradiance derived from climatological
means and mixed layer depths derived from the SPEM
model are input to the NPZ model.

We discuss applied and theoretical issues relevant to
coupling the Lagrangian biological (IBM), Eulerian
physical (SPEM), and Eulerian biological (NPZ)
models, and describe our present coupling techniques.
Relevant coupling issues include: the use of time-filtered
versus unfiltered circulation fields for tracking indi-
viduals, the choice of a time step for updating individual
positions, the use of different spatial grids for biological
and physical models, and the choice of spatial boundary
conditions for each model. Issues relevant to coupling
the IBM with SPEM receive the most extensive treat-
ment, as we have the longest experience with these two
models. We then describe results of float-tracking exper-
iments using SPEM output, which bear directly on
coupling issues, and results from the NPZ model driven
by SPEM velocities, and their effect when used as prey
fields for the IBM. Finally, we summarize com-
putational and storage requirements for the models as
currently implemented.
Materials and methods

Methods for coupling Lagrangian and Eulerian
models

Spatially explicit biological models may be constructed
using either Eulerian or Lagrangian frames of reference,
a distinction drawn by other plankton modelers (e.g.
Lande and Lewis, 1989). An Eulerian biophysical model
is here defined as one that follows the evolution of some
quantity at discrete, fixed physical locations. Typically,
these locations are the fixed grid points used by a
numerical model, although analytical solutions through-
out the domain are sometimes possible for simple
Eulerian models. Changes in any quantity are due not
only to local biological processes, but also to advective
and diffusive exchange with adjacent locations, e.g.:

Bt[x,t]= �u [x,t]·�B[x,t]+�·(k�B)+fE [B,x,t], (1)

where B represents the modeled quantity, u=(u,v,w) is
the fluid velocity, k represents horizontal and vertical
eddy diffusion coefficients, x=(x,y,z) is the spatial
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location, t is time, and fE represents changes due to
biological processes (birth, growth, death, etc.) at a fixed
location.

In the hydrodynamic literature, a Lagrangian refer-
ence frame is one which moves with a discrete parcel of
fluid. By extension, we may define a Lagrangian biologi-
cal model as one that follows an individual organism or
group of organisms moving through space as it is
advected by the ambient currents. Mathematically we
represent changes following an individual (or group) i
as:

DBi/dt=fL (Bi[t], xi[t],t) (2)

where:

where Bi (t) represents some property of the individual
(or group) at time t, xi(t)=(xi[t],yi[t],zi[t]) represents the
spatial path through time, and fL represents any non-
conservative changes due to biological processes. Such
changes may include processes based on past history.
The quantity ui represents each component of the fluid
velocity u plus any directed motions, such as vertical
migration owing to buoyancy or locomotion. Note the
potentially ‘‘individual-based’’ nature of the Lagrangian
model, though in fact such models need not be IBMs
per se.

Here, we choose to use an IBM for young pollock, an
Eulerian NPZ model to generate prey fields, and an
Eulerian physical model (SPEM) to generate velocity,
salinity, and temperature fields for both.
have allowed for ever-more accurate hindcasts and
forecasts of velocity fields using these equations when
hydrographic and velocity data are available (Fukumori
and Malanotte-Rizzoli, 1995). Even when such data are
not available, or when the model is not intended as a
hindcast, one may wish to reproduce the dynamics of a
particular region in some statistical sense; for example,
to achieve the correct scale and frequency of passage of
eddies and correct mean flows.

Ideally, we wish to use a three-dimensional hydro-
dynamic model to generate accurate velocity fields
through which individuals can be tracked in a stochastic
IBM with arbitrarily high spatial and temporal resolu-
tion. Several possibilities exist for coupling a circulation
model with a stochastic IBM: (i) run the hydrodynamic
and individual-based models in parallel, updating indi-
vidual positions at each new time step of the hydro-
dynamic model. Run the combined model many times,
one run for each realization of the IBM. (ii) Run the
hydrodynamic and individual-based models in parallel
just once, computing all realizations of the IBM simul-
taneously. (iii) Run the hydrodynamic model once,
tracking a number of passive floats whose initial pos-
ition corresponds to initial organism concentrations in
the model domain. Store the resulting Lagrangian series
of position, temperature, salinity, etc. for later use by an
IBM without any further spatial tracking [Figure 5(a)].
(iv) Run the hydrodynamic model once, storing all
relevant gridded velocity, temperature, and salinity fields
at each model grid point and time step for subsequent
use by an IBM that performs its own spatial tracking
[Figure 5(b)].

All approaches have both advantages and drawbacks.
Method (i) is at present computationally prohibitive for
most three-dimensional hydrodynamic models, as it
requires a potentially large number of runs. Method (ii)
reduces computation of the physical model, but requires
huge amounts of computer memory to keep track of all
biological realizations simultaneously. Method (iii) is
efficient and allows for many individuals, but eliminates
the possibility of adding individual behaviour (in par-
ticular, vertical locomotion), which varies as a function
of the individual’s unique, partly random, life history. In
other words, any realization of the IBM in method (iii)
cannot feed back on the float tracks, which are deter-
mined by the hydrodynamic model alone. Method (iv)
offers the possibility of feedback, but requires poten-
tially huge amounts of data storage to accommodate the
three-dimensional circulation model output. Hence we
propose a modification of (iv):

(iv-a) Run the hydrodynamic model once, storing
suitably low-pass-filtered (high frequencies removed),
decimated time-series of all relevant gridded velocity,
temperature, and salinity fields at each model grid point
for subsequent use by an IBM that performs its own
spatial tracking.
IBM-SPEM coupling
At its core, our Lagrangian problem is one of accurately
tracking an individual in a time and space variable,
partially unknown environment. When a hindcast of a
population for a specific time period is attempted,
we must consider both the accuracy of the hindcast
velocity field and the accuracy of the scheme used
for tracking individuals within that velocity field. Both
the physical and biological environment experienced
by the tracked individuals (in particular, the prey field
they experience) may be strongly affected by these
factors.

The Navier-Stokes equations that form the basis of
hydrodynamic models are an exact representation of the
fluid evolution, but can never be solved exactly (that is,
at arbitrarily high spatial and temporal resolution) on
any finite computer. Nonetheless, hydrodynamic models
have achieved some success in resolving both large-scale
and, to a lesser extent, mesoscale (�10 km) velocity
features of coastal and open-ocean environments.
Increasingly sophisticated data assimilation schemes
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Note that the characteristics of the filter used in (iv-a),
and the interval for subsampling, depend on what
portion of the full spectrum of motions is considered
‘‘expendable’’ for purposes of spatial tracking. For
example, time-filtering would introduce a bias if locomo-
tion of individuals were somehow correlated with higher
frequency current fluctuations (e.g. swimming in
response to tides or internal waves) that had been
removed. In general, primitive equation hydrodynamic
model output contains far less energy at superinertial
frequencies than is observed in real oceanographic
measurements (Stabeno and Hermann, 1996), and such
fluctuations that do exist in the model are poorly
correlated with the real data. Nevertheless, subsampling
without filtering, while partially adequate for spatial
tracking, could lead to serious aliasing errors when
much high frequency energy is present. We suggest
filtering to eliminate this poorly correlated high
frequency band, but retain significantly correlated sub-
inertial motions. The significance of tides is context-
dependent and needs to be considered carefully.

Consider how spatial tracking in method (iv-a) might
be efficiently accomplished with the filtered fields, and
whether any of the information lost in the filtering
process might be added back in by the tracking
algorithm. Neutrally buoyant floats have been tracked
in many numerical ocean models. Instantaneous
float velocities are generally derived by interpolating
between grid points to the current location of each float.
Generally, the floats are advanced in time using the same
time step as is used for solving the governing hydro-
dynamic equations, but this need not be the case, and
especially not in our situation where previously stored,
filtered velocity fields are used. How, then, do we choose
a time step for float tracking that is sufficiently short but
not computationally prohibitive? One requirement is
that the Lagrangian decorrelation time TL be much
longer than the time step dt used for float tracking:
TL��t (4)

The property TL is defined as follows. When moving
within a turbulent flow field, particle velocities eventu-
ally become decorrelated from their starting velocities.
This loss of ‘‘memory’’ can be characterized by the
integral of the lagged correlation function:

where

where u�u� is the mean turbulent kinetic energy of the
flow, u�i(t) is the velocity of the particle i at time t, Tmax

is a suitably long time used for averaging and the square
brackets denote an ensemble mean over all particles.

When (4) is satisfied, the moving float (individual) can
be reasonably approximated to travel at constant vel-
ocity for a period that is longer than the time between
updates of the velocity field used for tracking. When this
is not the case, tracks will diverge from ‘‘true’’ particle
paths. Haidvogel (1982) has demonstrated that adequate
spatial resolution is also crucial for accurate float track-
ing; with overly coarse resolution, non-linear interac-
tions present in the hydrodynamic equations will be
improperly represented and floats will diverge from their
true path.

We generally expect time filtering of velocities to
increase TL. This is helpful in allowing a longer time step
for tracking, as well as reducing the size of the velocity
file, if the higher-frequency variability can be reasonably
sacrificed. If tides are a critical aspect of the indi-
vidual’s life history, there may be no easy way to avoid
using unfiltered velocities, and a short tracking time
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step. Note, however, that some information about tides
could be stored in compact form (amplitude and phase)
for later use; such reconstructed tidal velocities could
be added to filtered (subtidal) velocity fields directly in
the tracking algorithm, potentially reducing storage
requirements.

The model used here is a prognostic, rigid-lid, hydro-
static, three-dimensional, primitive equation model of
velocity and salinity fields in the northern Gulf of
Alaska (Hermann and Stabeno, 1996). Stabeno and
Hermann (1996) demonstrated that the model yields
realistic mean flows and eddy statistics (frequency of
passage of mesoscale eddies) in the vicinity of Shelikof
Strait. Tides are not explicitly formulated, but some
high-frequency (near-inertial) oscillations are included in
the dynamics. Boundary conditions were provided using
a telescoped grid with a toroidal, re-entrant channel
(Hermann and Stabeno, 1996). The finely resolved
portion of the model domain (4-km mean spacing;
Figure 1) extends from the entrance of Shelikof Strait
to slightly westward of the Shumagin Islands, and
southward to just beyond the Alaskan Stream.
As with the IBM, we use time-filtered, stored output
from the physical model as input for the NPZ model.
Time-filtered barotropic stream-function output from
the physical model is subsampled to the NPZ grid. The
horizontal gradients of the barotropic stream function,
divided by water-column depth (or by 100 m in regions
of deeper bathymetry), yields depth-averaged velocities
at each horizontal location. These are used to calculate
the horizontal divergence and, subsequently, the vertical
velocities. This approximation distorts the true vertical
shear and vertical velocities, but avoids spurious (and
potentially very large) convergence, which typically
results from subsampling a full, three-dimensional vel-
ocity field. Errors in the computed vertical velocity field
are likely not too large in this case; vertical upwelling of
nutrients strongly affects production in some parts of the
ocean, but in the Gulf of Alaska downwelling predomi-
nates during most of the year. Horizontal advection and
mixed layer deepening are hence the more significant
sources of nutrients to feed production.

The vertical structure of the NPZ model assumes a
mixed layer of variable depth with uniform properties,
and a stratified region beneath (down to 100 m), where
mixing is based on the spatially constant background
diffusivity. MLD time-series were generated using the
circulation model’s density profiles at the horizontal
locations of the NPZ grid. A simple algorithm was
employed, where MLD was defined as the depth at
which the salinity field (the primary determinant of
density in this region during spring) assumes a value
0.05 psu greater than the surface value. Clearly, this is a
crude parameterization and future circulation modelling
will include explicit mixed layer physics.
NPZ-SPEM coupling

The characteristic length and time scales of biological
properties are strongly influenced by, but not identical
to, the corresponding scales of their physical environ-
ment. Ideally, we would like to resolve both fields so
finely in space and time that all relevant scales are
included, but this is rarely possible because of the cost
involved. As a compromise, we chose different horizon-
tal and vertical scales for the Eulerian physical and
biological models. For NPZ dynamics, we generally
require a finer vertical scale than for the physical model
owing to the sensitivity of primary production to
changes in mixed layer depth (MLD). In particular, we
wish to resolve the vertical dimension finely enough for
small changes in MLD (here externally supplied) to
trigger blooms at the appropriate time (e.g. when MLD
becomes less than the critical depth). This entails a
sacrifice of horizontal resolution. How crucial this loss
may be depends on the relative magnitude of advective
change, versus locally (biologically) driven change. The
character of mesoscale eddies in the vicinity of Shelikof
Strait suggests a horizontal spacing of �12 km as a
desirable goal; note, however, that the useful NPZ
resolution is fundamentally dependent on the character-
istic scales of the modelled circulation, rather than the
characteristic (and typically finer) scales of the circula-
tion itself. As a first attempt, we chose to use a model
with 1-m resolution in the vertical (coverage 0–100 m),
and 20-km resolution (5� the physical model) in the
horizontal (Figure 6). Background horizontal and verti-
cal diffusivities were set at 10 and 10�5 m2 s�1,
respectively.
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Since we have used stored, time-filtered, and deci-
mated stream-function fields to drive the NPZ model,
the effects of that filtering on the prey dynamics must be
considered. Float-tracking experiments suggest an
acceptable loss of temporal information for our rigid
lid circulation model with no tides (see Results). The
effect of varying spatial resolution on the NPZ fields
depends on the magnitude of the advection terms,
relative to the local non-conservative (biological)
dynamics. If biological dynamics predominate over
advective change, then coarse resolution of the advective
terms is a permissible compromise. We may ulti-
mately be able to invoke spatially dependent diffusivities
to partially compensate for the loss of spatial resolu-
tion. Biological components with the fastest turnover
times (phytoplankton) will be the least susceptible to
aliasing from the choice of a coarse spatial grid, while
those with longer turnover times will be most affected.
Napp et al. (1996) have demonstrated that advection
plays a large role in determining the spatial patterns of
phytoplankton and zooplankton observed in Shelikof
Strait. Future iterations of coupled SPEM-NPZ models
will examine the consequences of decreasing the spatial
scale.

The NPZ model domain is a subset of the physical
model, and needs boundary conditions for each of its
biological variables. In the interior, the balance of (1)
holds; separating out the spatial terms yields:

Bt[x,t]= �uh·�hB+�h·(kh·�hB)�wBz+
(kz�zB)z+fbiol [B,x,t] (7)

where B is an NPZ model variable (e.g. phytoplank-
ton), �h is the horizontal gradient operator, uh and kh

are the horizontal velocities and eddy diffusivity,
respectively, w is the vertical velocity, kz is the vertical
eddy diffusivity and fbiol represents all non-
conservative biological dynamics. Perfect knowledge of
upstream values would permit direct specification of B
at the upstream boundary; instead, we are limited to
several springtime measurements per year taken 7 km
apart along a transect across the lower exit region of
Shelikof Strait (Incze and Ainaire, 1994; Napp et al.,
1996; Incze et al., 1997). Hence, we provide values
at the upstream end by running the model in
one-dimensional mode (no advection or horizontal
diffusion):

Bt[x,t]= �wBz+(kz�zB)z+fbiol [B,x,t] (8)

Boundary values computed using (8) are advected
into the interior, driven by the velocity field and the
horizontal gradient term of (7).

At the downstream boundary, a zero gradient
condition was imposed for all biological variables
(Bt[x,t]=0).
IBM-NPZ coupling
Some of the issues discussed above for the proper
application of stored circulation fields to the IBM hold
for the application of Eulerian biological fields to the
IBM as well. Ideally, we could interpolate perfectly
accurate Eulerian prey values onto the location and time
of the tracked individuals of the Lagrangian IBM. In
practice we must settle for statistically correct prey
fields, driven in part by the statistically correct velocity
fields from the physical model. The mapping of prey
values to individual fish locations is straightforward,
and is performed in the IBM using simple linear
interpolation of NPZ output in time and space.

The present boundary conditions for the IBM are: (1)
when an individual is located outside the NPZ domain,
prey values of the NPZ boundary point nearest that
individual’s present location are applied; (2) when an
individual is advected outside the finely resolved circu-
lation model domain, it is removed from the population.
We also trap individuals at the downstream (south-
western) end of the physical domain, to prevent their
re-entrance at the upstream end.
Results

Float-tracking experiments

To address the accuracy of float tracking with pre-
stored, filtered, and decimated velocity fields versus
direct tracking with the unfiltered field, we present
results from a simulation of 1987 currents and float
tracks in the Gulf of Alaska (for details of model
forcing, see Hermann et al., 1996). Figure 7(a) illustrates
the results of float tracking by direct updating (case a) in
the hydrodynamic model; that is, ten floats are tracked
using the instantaneous velocity produced by the model
at each time step (0.0375 h) with a fourth-order Runge-
Kutta scheme. Interpolation of velocities between model
grid points is performed as described in Hoffmann et al.
(1989); briefly, this entails linear interpolation in the
horizontal and spectral (here, Chebyshev) expansion in
the vertical. Initial positions span a northwest–southeast
line between the Alaska Peninsula and the northwestern
corner of Kodiak Island, at 40-m depth. Many of the
floats circulate around and through a cyclonic–
anticyclonic eddy pair, just downstream from the exit of
Shelikof Strait. Note how some of the floats, released
in deep regions, cross bathymetric contours to the
shallower continental shelf.

Now consider the same set of floats tracked with
pre-stored, filtered, and decimated velocity fields. These
fields are produced by applying a cosine-Lanczos 30-h
low-pass filter to the original model time series during
execution of the run, and storing the filtered result once
per day. This filtering process eliminates all of the
near-inertial, internal wave oscillations. We wish to see if
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accurate float tracking can be achieved with time steps
>0.0375 h of the ‘‘direct’’ unfiltered method, and
whether the resulting tracks of the two compare favour-
ably. Float-tracking with pre-stored velocities is
attempted with three different values of the time step:
(case b) dt=1 h; (case c) dt=0.2 h; (case d) dt=0.04 h.
Linear interpolation in time is used to provide velocity
values in between the stored daily values; spatial inter-
polation is performed as in case a. In each case, floats
were seeded at exactly the same locations and depths. In
case b, the broadly defined paths of the float tracks from
case a are reasonably well reproduced, but the details
differ as the floats are advected downstream. Can a
shorter time step do better? Case c [Figure 7(b)] differs
from case b primarily in the improved fit with features in
the vicinity of the Shumagin Islands. Case d, with
highest temporal resolution, exhibits no substantial
difference from case c.

The root-mean-squared (rms) horizontal displacement
of the floats between cases a and b, b and c, and c and d
is plotted in Figure 8. During the first 4 d of simulation,
case b generates float tracks within �2 km of their
locations in case a. Thereafter, the results diverge to a
mean displacement of �40 km (the typical width of the
deep strait and sea valley in this area). Near day 30, the
mean displacement increases once more, ultimately
achieving values of �140 km. Cases b and c diverge
significantly from each other after day 30, while cases c
and d are essentially identical through day 60.

Apparently, by shortening the time unit from 1 h to
0.2 h, the results sufficiently converge on the ‘‘true’’
solution for the filtered velocity field; that is, the time
step is sufficiently shorter than the Lagrangian decorre-
lation time for the filtered velocities to yield an accurate
result. This justifies the use of a time step of 0.2 h in the
float-tracking algorithm described in Hinckley et al.
(1996).

Fewer of the float tracks cross into shallow shelf
areas when filtered velocities are used, compared to the
unfiltered technique. This deficiency could be addressed
to some extent by adding a suitable random walk
component to the tracked floats, an equivalence first
noted by Taylor (1921). We caution, however, that the
diffusivity lost by temporal filtering may be spatially
dependent, and that spatial variation in the magnitude
Figure 7. Tracks of ten floats (released along a cross-shelf line
at 40 m depth on DOY 135) generated (a) by directly updating
float positions at each time step and (b) by updating float
positions using previously stored, filtered, daily velocity fields,
with dt=0.2 h for the float-tracking algorithm (SPEM simula-
tion for 1987). Tracks are coded by time interval: DOY 135–165
(solid); DOY 165–195 (short dashes); DOY 195–225 (broken);
DOY 225–255 (dot-dash); DOY 255–270 (long dashes). Model
bathymetry (m) is shown in greyscale.
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of a random walk can pose special difficulties (Hunter
et al., 1993; Holloway, 1994).

Hinckley et al. (1996) noted the importance of
vertical position in determining the paths of individuals.
Figure 9 underscores this point by showing float paths
as in case c, but with all floats constrained to remain at
40 m depth, rather than being free to follow the flow
field in three dimensions. The influence of the eddy field
is markedly reduced by this constraint; floats do not
circulate around the eddy pair as they did in other cases.
Coupled run output, timing, and storage

Some illustrative results from the coupled SPEM-IBM-
NPZ models for mid-June, 1987 are shown in Figure 10:
(a) shows a cyclonic eddy located in the deepest part of
the sea valley (near 56.5�N–156�E), (b) shows the total
numbers of all copepodite stages of Pseudocalanus (the
food resource of larval pollock), and (c) shows the
positions of 1600 individual fish released (with mortality
set to zero), shaded according to length. The individual
lengths vary, owing to the different prey fields encoun-
tered during their life history; larvae>8-mm ingest a
mixture of nauplii and copepodites. A cluster of
medium-sized larvae (8–16 mm) is trapped within the
eddy. A tongue of low zooplankton concentration is
being advected around the southern rim of the eddy, and
shorter fish are associated with that feature. A tongue of
higher zooplankton concentration, advecting around the
northern rim of the eddy, has fewer but generally
longer fish associated with it. Regions downstream and
shoreward of this feature also exhibit greater lengths.

While some patchiness of fish size can be produced
through purely kinematic effects related to the time of
spawning (e.g. a cluster of late-spawned, smaller individ-
uals trapped in an eddy), clearly the spatially variable
Figure 9. Tracks of floats that were constrained to remain at
40 m depth, generated by directly updating float positions
at each time step (SPEM simulation for 1987; further as in
Figure 7).
Figure 10. Model output for mid-June, 1987: (a) SPEM (surface
velocity in m s�1); (b) NPZ (shading: total concentration of all
copepodite stages of Pseudocalanus spp. in the mixed layer;
number m�3); and (c) IBM (positions of individual pollock
shaded by length in mm).
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prey field contributes to the patchiness of fish attributes
in this model. The use of a dynamic prey field also
results in different mean growth and survival for groups
of individuals spawned at different places and times
(Hinckley et al., this volume).

All model results described were generated using a
CRAY Y-MP vector processing supercomputer. Statis-
tics of runs and output files are listed in Table 1. The
physical model consumes the largest amount of com-
puter time. Indeed, this is the primary motivation for
decoupling the physical and biological runs, because this
allows for much more testing and sensitivity analysis of
the biological models. The output files from the physical
model, while large, are not prohibitively so, and can be
transferred to local workstations for detailed analysis
and plotting. Statistics of the IBM are dependent on the
number of individuals followed.
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