The effect of oceanographic structure on juvenile pollock and capelin distribution in the Gulf of Alaska

E. Logerwell, A. Hollowed, C. Wilson (Alaska Fisheries Science Center)

P. Stabeno (Pacific Marine Environmental Laboratory)

mammals, birds, fishes

walleye pollock capelin

Outline

- Distribution and abundance of juvenile pollock and capelin relative to water mass properties
- Intra-annual variability (temporal scale: weeks)
- Interannual variability
- Community reorganization, interspecific competition and decadal-scale climate forcing

Study site

Study site

Methods

- Summer 2000-2002, 2004 NOAA Vessel Miller Freeman
- Echo integration-trawl (EIT)
 - Acoustics (38kHz) to assess distribution and abundance of fish
 - Trawls to confirm species, size and age
- Physical oceanography
 - CTD, XBT, MBT
 - Moorings
 - Drifters
- Multiple surveys ("passes")
 - Pass 1 : Aug 16-19, 2002
 - Pass 2 : Aug 22-24
 - Pass 3 : Aug 30-Sep 2

- Pass 1 : Aug 15-17, 2004
- Pass 2 : Aug 21-24
- Pass 3 : Aug 26-30
- Pass 4 : Sep 2-4

Outline

- Distribution and abundance of juvenile pollock and capelin relative to water mass properties
- Intra-annual variability (temporal scale: weeks)
- Interannual variability
- Community reorganization, interspecific competition and decadal-scale climate forcing

2000, 2001

Hollowed, et al. in revision

Pass 1

Summer Currents

Wind and transport

Outline

- Distribution and abundance of juvenile pollock and capelin relative to water mass properties
- Intra-annual variability (temporal scale: weeks)
- Interannual variability
- Community reorganization, inter-specific competition and decadal-scale climate forcing

Pass 1, 2004

Pass 3, 2004

Wind

Pass 1, 2002 Pass 3, 2002

2004

What's so special about inshore (ACC) water?

Pass 1, 2002

Pass 1, 2002

Summary

- In 2002, juvenile pollock (age 1 and 2) were most abundant in warm, fresh water nearshore whereas capelin were most abundant in cool, salty water offshore
- Over a two-week period juvenile pollock distribution expanded with offshore expansion of warm, fresh waters. Capelin abundance decreased.
- Hypothesize that a wind-driven event resulted in increased transport of warm, fresh ACC water through the study area
- In 2004, juvenile pollock were not present and capelin (mixed with age-0 pollock) were most abundant in warm, fresh water nearshore
- Hypothesize that nearshore (ACC) waters are enriched feeding areas

Outline

- Distribution and abundance of juvenile pollock and capelin relative to water mass properties
- Intra-annual variability (temporal scale: weeks)
- Interannual variability
- Community reorganization, inter-specific competition and decadal-scale climate forcing

Community reorganization

Anderson & Piatt, 1999

Pass 1, 2002 Pass 3, 2002

2004

Looks like competition

Community reorganization

- Links between decadal-scale climate and wind "events"
- Competition
 - Common, limiting prey resource(s)?
 - Zooplankton assemblages similar or different among water masses?
 - Future work with Wilson and Duffy-Anderson (NPRB funded)
 - Zooplankton distribution and abundance
 - Fish diet
- Interannual variability in age-1+ pollock distribution and abundance

Acknowledgements

- Steller Sea Lion Research Initiative (SSLRI)
- GLOBEC-NEP
- NOAA Ship Miller Freeman

GOA stock assessment

Dorn, et al. 2004. NPFMC Gulf of Alaska SAFE

Pass 1, 2004

Pass 2, 2004

Pass 3, 2004

Pass 1, 2004

Pass 2, 2004

Pass 3, 2004

Pass 4, 2004

Moorings

Winter Currents

Pass 3, 2004

Pass 2, 2004

Pass 1, 2002

Pass 2, 2002

Pass 3, 2002

Pass 2, 2004

Pass 3, 2004

Pass 4, 2004

