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STRATIFICATION: Water column stratification has varying effects on the

ecosystem depending on the season. Prior to the spring
bloom, nutrients are plentiful in the surface waters.
During this light-limited regime, the onset of
stratification allows phytoplankton to remain in the
surface layer reducing light-limitation. Thus,
stratification is necessary for the onset of the spring
bloom. After the spring bloom depletes the surface layer
of nutrients, the nutrient-limited regime of summer
occurs in a stratified 2-layer system. Under this regime,
mixing reduces stratification and allows nutrients to be
entrained into the surface layer from below generating
primary production. Thus, during the nutrient-limited
regime, reduction of stratification is necessary for
production.
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Stratification has been estimated from the model output as the maximum in the vertical derivative of
temperature. Stratification is typically very low throughout May and into June. High interannual variability is

apparent in both the timing of the onset of stratification and in the strength of summer stratification. The
early 1970s stand out as years with very late stratification onset and weak stratification
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MIXED LAYER MODEL:
While one-dimensional models are often not realistic in the ocean, the STRATIFICATION (BLOOM) DATE

the mixed layer. As an estimate
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IEEicase where ice was present af ter May 1, The model WESIESg " i 2 LY Linear regression suggests a marginally significant increase in entrainment over time
from May 1 to September 30 of each year (1951 - 2004). Runs were ow * Y (0.5 m/yr). This is surprising as summer winds have not been increasing. However,
initialized with May 1 temperature from the National Centers for oz entrainment is a complicated process dependent on the depth of the mixed layer and
Environmental Prediction (NCEP) Reanalysis (Kalnay et al., 1996) and e X 1998 the strength of stratification as well as the strength of wind mixing.
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the fall transition occurs later, the decreasing amount of daylight may limit the
magnitude of the fall bloom.
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