Alongshelf Differences in the Lower Trophic Level in the Gulf of Alaska in 2011

Nancy Kachel ${ }^{1}$, Nicholas Bond ${ }^{1}$, Ana Aguillar-Islas ${ }^{2}$, Calvin Mordy ${ }^{1}$, Sigrid Salo ${ }^{3}$, Phyllis Stabeno ${ }^{3}$, Suzanne Strom ${ }^{4}$
${ }^{1}$ IISAO, University of Washington, NOAA/PMEL, 7600 Sand Point Way, Seattle WA, $98115,{ }^{2}$ University of Alaska Fairbanks, Fairbanks, AK
${ }^{3}$ NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, ${ }^{*}$ Shannon Point Marine Center, Western Washington University, Bellingham, WA

CGOAIERP = Lower Trophic Level, Station Grid- 2011

As part of the GOAIERP- LTL program, the $R V$ Thompson and R / V Tiglax conducted hydrographic, zooplankkton,
larval and neusto sempling on this srid of stations in May 2011 In addition the Thompon sampled dissolved Fe larval and neuston sampling on this grid of stations in May 2011. In addition, the Thompson sampled dissolved
and conducted phytoplankton productivity experiments. The zooplankton and larval results are reported on a companion poster by Hoperoft t tal.

Status of the Gulf of Alaska Spring 2011

ENSO: La Nina with a negative PDO.
SST: Temperatures were slightly $\left(-0.5\right.$ to $\left.-1^{\circ} \mathrm{C}\right)$ below normal in March/April. ST: Temperatures were slightly $\left(-0.5\right.$ to $\left.-1^{\circ} \mathrm{C}\right)$ below normal in March/April.
off both Kodiak and Sitka. Seward Line temperature in May were $\sim-0.5^{\circ} \mathrm{C}$ lower than normal.

Mean Cloud Cover: March and April had above average ($\sim 10-15 \%$). Net Short Wave Radiation: average

Winds: Mean seasonal upwelling winds at Sitka during the winter were stronger than in any year since 1967.
Downwelling winds, were \sim average from fall 2010 through summer 2011 Wind Mixing: Fall through spring ~ average, but summer was above average. Mixed Layer Depth: mixing ~ normal (from ARGO drifters by F\&O Canada).

Subarctic Gyre: The position of the dividing streamline of the West Wind Drift at $145^{\circ} \mathrm{W}$ in April and May was farther south than average. Since 2000, only 2005 was it farther south in spring.
The fraction of flow going to the GOA was below average.
Satellite Chlorophyll: Comparlson of 2011 to Recent Past

Chlorophyll ${ }^{4} \mathrm{mg} \mathrm{m}^{5}$)
ABOVE: Satelitite chlorophyII composites for early May 2003-2011 compared to 201 The Spring Bloom had not yet started over the Eas
The Spring Bloom had not yet started over the Eastern GOA or the Seward Line .
The chlorophyll composites were created using Modis Aqua data obtained from NASA's ocean color web site
(oceancolor sffe nasa gov). It was processed to mapped files using NASA's SeaDAS processing suite of progra For each year that Modis Aqua data are available, we then made composite images over 2 week periods in the spring and early summer, and for one month periods later in the summer. Multi-year means, for each of the above times,
were created by calculating the average of each year's mean concentration.
${ }^{\text {BELOW: Other periods from mid-April trhrough Augus. }}$ Chlorophyll was
Chlorophyll was low throughout the year, but highest in June.
Note sustained production - near Chatham Strait and Cross S,
Chorophyll was low throughout the year, but highest in June.
Note sustained production - near Chatham Strait and Cross Sound, as well as
on Portlock Bank and in Sheilikof Strait.

The continental shelves off southeast Alaska are $10-15 \mathrm{~km}$ wide; those of the central GOA are $-100-200 \mathrm{~km}$. Sampling occurred in pre-bloom conditions. The surface layers began to warm during the Seward and SEG-2 transect
Coss shelf exchange is more prevalent in Southeast. Coss shelf exchange is more prevalent in Southeast
oostal waters are fresher in the north.
enabing sustained summer production to occur nearby.

Phytoplankton Cell Size

Phytolankton cell size during May at SEG line (1\&2) and on the
Seward Line were remarkably low except for the two points in the Seward Line were remarkably low except for the two points in the
surface.These are likely due to export of inland ford waters rather than surface. These are likely due to export of in and fjors waters arather
in situ production and are associated with a lower salinity layer. The Seward Line was on a arajectory toward producing a bloom commu-
nity in terms of biomass and size composition of the phyto nity in terms of biomass and size composition of the phyto. On the SEG line there wass an extraordinarily high fraction of the community (generally $>90 \%$) in small cells.
These cells are REALLY TINY- The dominant taxa are <2 um in size., which could only be eaten by pro as salps and pteropods.

Currents and Cross Shelf Flow: Drifter Tracks

Top: ARGOS-tracked drifters deployed in May 2011 in the EGO
Botom: Drifters deployed in previous years in May. Their patterns show the pathways of Idealized current vectors shown in light blue illustrate the discontinuous nature of the coastal current.

Salinity decreased from spring to fall due to increased runoff from
Cross Sound.
There was a very slow draw-down of nitrate from spring to summer
due to low levels of production. due to low levels of production.
Northward winds confined freshw Northward winds confined freshwater towards the coast and deepened the freshwater lens along the coas.
From spring to summer flow
In Spptember, currents were stronger and more variable, with reversals, especially at 25 m .

