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G Oal g We have deployed nitrate meters in upwelling (Oregon) and downwelling (Gulf of Alaska) regimes

of the Northeast Pacific Ocean to 1) better understand mechanisms of on-shelf nutrient transport, 2)
better parameterize nitrate from physical and/or biological parameters, and 3) better understand how declining nutrients
In the Northeast Pacific Ocean may impact coastal ecosystems.

Oregon Coast Alaskan Shelf

Purpose

Purpose

To examine the temporal variability of subsurface nitrate offshore of Yaguina
Bay Channel during seasonal upwelling in relation to wind events and tides.

Design

In August, 2000 we moored a\W.S. Ocean Nitrate Monitor along withT-S
sensors and a current meter offshore of Yaquina Bay.
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Alaskan Shelf, and, to parameterize nitrate from temperature and/or salinity.
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Bathymetry along the central Oregon Coast (left) with the

To examine the role of role of submarine canyons in supplying nutrients to the

|ocations of Hecta Head and Stonewall Bank, and the location 40

In May, 2001 we moored aW.S. Ocean Nitrate Monitor at 233 m on the northern slope

Resu ItS of the mooring outside of Yaquina Bay Channel (right).
Bathymetry compiled from various NOAA data sources. a5
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poor (r2 = 0.31, small range of temperature).

« Strong upwelling was observed at the start and end of the month,
interrupted by a period of weak downwelling winds, and lower nitrate
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relationship of nitrate and temperature was especially  varied by about 2-10 uM.  May to June/July in conjunction with increased salinity.
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« Nitrate and temperature are related (r* = 0.71) due to the uptake of nitrate & [ g M ] ) nitrate.

by phytoplankton concomitant with warming of recently upwelled water. e i Near Bottom Seward 5
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» The T-S diagram from May 12 to July 7 suggested
three modes of mixing (red, blue, and green) for three
different watertypes (A, B, and C).
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favorably with estimates made from N*° incubations in 1985 under nitrate
replete conditions: 1.4+0.4 pM N d* chl-a* (Kokkinakis & Wheeler, 1987).
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CO N CI usion By continuning to deploy moored in situ nutrient analyzes, we will obtain a better understanding of the interannual variability

of nutrients in the Northeast Pacific Ocean, and the variability of mechanisms transporting nutrients onto the shelf. Nitrate
timeseries provides an understanding of temporal variability which cannot be achieved from “synoptic’ hydrographic data. In addition, predictions of nitrate
from regional hydrographic data may be skewed by watertypes outside the study area.
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Temperature-salinity diagrams of mooring data from May 12-July 7 (left) and for May 12-September 25 (right).
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