# The Rise and Fall of Zooplankton Populations in Recent Decades on the SE Bering Sea Shelf - Bottom-Up and Top-Down Control of Two Copepod General

#### Jeffrey M. Napp and Christine T. Baier: NOAA/Alaska Fisheries Science Center/7600 Sand Point Way NE, Seattle, WA 98115, USA

Introduction For 10 years we have participated in research on the eastern Bering Sea shelf ecosystem to learn about physical and biological mechanisms that affect the survival of the early life history stages of pollock (Theragra chalcogramma). The ultimate goal is to predict recruitment strength of future year classes with a known level of uncertainty. In the process, we studied the pelagic ecosystem of the shelf to determine how physics and biology interact to affect plankton production and pollock prey availability. We have also observed and will begin to calculate how biology affects top-down forcing on plankton populations. For this poster we compare zooplankton biomass and species abundance data collected from the southeast Bering Sea Middle Shelf Domain to examine temporal trends in relation to environmental variability. Summer zooplankton biomass (wet weight) data were collected by the Hokkaido University from the T/S Oshoro Maru between 1955 and 1999. Species concentration data for dominant copepod taxa (Acartia spp., Calanus marshallae, and Pseudocalanus spp.) were obtained from PROBES (1980 & 1981; Processes and Resources of the Bering Sea Shelf; Smith, and Vidal, 1986), BS FOCI (Bering Sea Fisheries Oceanography Coordinated Investigations), and SEBSCC (Southeast Bering Sea Carrying Capacity) for 1995-1999.

## Conclusion

The Oscillating Control Hypothesis (Hunt et al., submitted; Hunt, S10-014) provides a framework for discussion of what controls the pelagic ecosystem of the southeastern Bering Sea. The hypothesis states that control from below dominates during cold regimes, control from above is prevalent during warm regimes, and there is a temporary decrease in predation pressure on zooplankton following a shift from a cold, to warm regimes. Recent programs (BS FOCI, SEBSCC, and Inner Fronts) have greatly increased our knowledge of climate control of bottom-up processes, but we are relatively ignorant of natural mortality rates. We need to know how top-down and bottom-up processes simultaneously act on zooplankton to limit their production and standing stock. Too often we focus on only one mode of control for pelagic populations. In reality, populations are simultaneously affected by processes influencing both their birth and death rates (e.g. Ohman and Hirche, 2001).

P. A. Land A. P. Mart See B. 19 Manu passes & vol 100 - wenner parties par

### Point #1 A Contradiction In Our Zooplankton Data?

We were unable to find a statistically significant temporal trend in the T/S Oshoro Maru data (Fig. 1A; Hunt et al., submitted; Napp et al, accepted). There are, however, statistically significant differences in the concentrations of copepod taxa between the mid to late 1990s and the early 1980s (Fig. 1b & c, and Table 1). We do not feel these two results contradict each other; it is possible for a bulk property (zooplankton biomass) to remain constant over time while individual components (concentration of particular taxa) change.



#### Point #2 **Environmental Variability Affects Bottom-up Processes For Some Species More Than Others.**

The Bering Sea shelf ecosystem rapidly responds to atmospheric forcing (Napp and Hunt, 2001). One important mechanism for such forcing is changes in the latitudinal extent and duration of sea ice (e.g. Napp et al., 2000; Wyllie-Echeverria and Wooster, 1998). There was a tendency for later arrival of ice and a shorter duration from 1975 to 1998 that appeared to reverse in 1998 (Fig. 2; Hunt et al., submitted). The arrival of sea-ice affects the timing, magnitude, and duration of the spring phytoplankton bloom (Hunt et al., submitted; Stabeno et al., 2001).

C. marshallae and Pseudocalanus spp. populations may respond differently to the environmental effects of sea ice. C. marshallae begins reproduction before the spring phytoplankton bloom and copepodites appear to be recruited over a relatively short duration, mainly during the bloom (Fig. 3; Baier and Napp, submitted). In contrast, *Pseudocalanus* spp. reproduces continuously through the spring and summer (e.g. Dagg *et al.*, 1984). Also the development of *Calanus* is slower and more affected by cold temperatures than is Pseudocalanus (Fig. 4). Thus Calanus populations are likely more susceptible than *Pseudocalanus* to variability in bottom-up processes driven by sea-ice fluctuations.

### Point #3

**Pinpointing Bottlenecks In Top-down Control** Is A Difficult, Multi-variate Problem As There Are Many Predators For Each Prey Type.

Several important predators of copepods have shown a trend of increasing abundance in recent years. Scyphomedusae (jellyfish) biomass dramatically increased in 1990 (Fig. 5; Brodeur et al., 1999). Chaetognaths are more abundant than they were in the early 1980s (Fig. 6). Increased foraging activity of planktivorous marine mammals on the southeast Bering Sea shelf has been observed (Tynan, submitted). Calanus and Pseudocalanus, however, do not show the corresponding decline in concentration we would expect if secondary production remained constant (compare Figs 5 & 6 with Figs. 1b & c). Other vertebrate predators such as forage fish (e.g. age-0 Walleye pollock, Theragra *chalcogramma*) would also be expected to impact plankton populations. Bio-energetics models reveal that it is possible for age-0 pollock to locally deplete their copepod prey resources, particularly in areas of high juvenile fish abundance (Ciannelli et al. in prep.). Abundance of age-0 pollock in the southeastern Bering Sea shelf has been sampled in recent years, and there is some indication that years of high summer abundance of juveniles are



followed by years of lower *Calanus* and *Pseudocalanus* concentrations (compare Fig. 7) with Fig. 1b & c). --- Entire survey area



60

50

20

10

E 40

. 0 30



This work was funded, in part, by NOAA's Coastal Ocean Program Southeast Bering Sea Carrying Capacity (SEBSCC) project. We thank our collaborators in this project and NSF's Inner Fronts project for sharing their ideas and hypotheses with us. We also thank the AFSC Graphic Artists for their skillful assistance in the preparation of this poster.