NOAA PMEL UWPCO2 – 2014 Coastal Cruises
Partial pressure of carbon dioxide (pCO₂), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from R/V Oscar Dyson in the Bering Sea and coast of Alaska from 2014-03-03 to 2014-08-13 (NCEI Accession 0132046)

Simone R. Alin {NOAA Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA, 98115, USA}
Catherine E. Cosca {NOAA Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA, 98115, USA}
Richard A. Feely {NOAA Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA, 98115, USA}

ABSTRACT: This archival package contains underway measurements of pCO₂, salinity, sea surface temperature, and other parameters collected in 2014 on board the NOAA Ship Oscar Dyson in the Gulf of Alaska and the Bering Sea. Cruise names and Expocodes: DY1402 (330A20140303), DY1403 (330A20140314), DY1404 (330A20140405), DY1405 (330A20140507), DY1406 (330A20140520), DY1407_L1 (330A20140616), DY1407_L2 (330A20140704), DY1407_L3 (330A20140727). This effort was conducted in support of the coastal monitoring and research objectives of the NOAA Ocean Acidification Program (OAP).

TEMPORAL COVERAGE:
START DATE: 3/3/2014 END DATE: 8/13/2014

SPATIAL COVERAGE:
NORTH BOUND: 62.391
WEST BOUND: 179.08 EAST BOUND: -151.745
SOUTH BOUND: 52.841

GEOGRAPHIC NAMES:
Bering Sea; Gulf of Alaska; North Pacific Ocean;

PLATFORMS:
Oscar Dyson (Call Sign: 330A);
pCO2 (fCO2) autonomous

<table>
<thead>
<tr>
<th>Abbreviation:</th>
<th>fCO2W@SST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td>µatm</td>
</tr>
<tr>
<td>Observation type:</td>
<td>Surface underway</td>
</tr>
<tr>
<td>In-situ / Manipulation / Response variable:</td>
<td>In-situ observation</td>
</tr>
<tr>
<td>Measured or calculated:</td>
<td>Measured</td>
</tr>
<tr>
<td>Sampling instrument:</td>
<td>Seawater pump</td>
</tr>
<tr>
<td>Location of seawater intake:</td>
<td>Bow</td>
</tr>
<tr>
<td>Analyzing instrument:</td>
<td>General Oceanics 8050. PMEL system ID: GO9</td>
</tr>
<tr>
<td>Equilibrator type:</td>
<td>Shower head</td>
</tr>
<tr>
<td>Equilibrator volume:</td>
<td>about 0.5 L</td>
</tr>
<tr>
<td>Is the equilibrator vented or not:</td>
<td>Vented</td>
</tr>
<tr>
<td>Water flow rate:</td>
<td>3 L/min</td>
</tr>
<tr>
<td>Gas flow rate:</td>
<td>~ 0.8 L/m</td>
</tr>
<tr>
<td>How was temperature inside the equilibrator measured:</td>
<td>Hart Scientific model 1521 digital thermometer, serial number 1320065, with an NIST traceable model 5610 thermistor probe, serial number B011803. Accurate to ± 0.01°C</td>
</tr>
<tr>
<td>How was pressure inside the equilibrator measured:</td>
<td>Setra 239 differential pressure transducer, accurate to plus minus 0.15 hPa. The equilibrator was passively vented to a secondary equilibrator, and the Licor sample output was vented to the laboratory when CO$_2$ measurements were made, thus equilibrator headspace pressure was assumed to be laboratory pressure. Pressure in the laboratory was measured with a GE Druck barometer, serial number 3054512, with an accuracy of ± 0.01 %.</td>
</tr>
<tr>
<td>Drying method for gas:</td>
<td>From Pierrot, et al.: Sample air is dried in a condenser that is cooled to 4-5°C by a Peltier thermoelectric device. This partially dried air flushes a chamber that is vented and remains at ambient pressure. The dried air inside the chamber is used as the counter flow in the Nafion tubing. A vacuum pump pulls the dried air from the chamber first through a fixed restrictor and then through the Nafion tubes, thus creating an absolute pressure and corresponding partial pressure gradient for water vapor across the membrane. When atmospheric air is measured, some of the partially dried air (80-100 ml/min) is pushed through a Nafion tube, the analyzer and out a vent instead of flushing the chamber. The headspace gas, when being measured, is circulated in a closed loop through the analyzer at a rate similar to that of the atmospheric air (80-100 ml/min). It is dried</td>
</tr>
</tbody>
</table>
first in the condenser, then in a Nafion tube prior to entering the analyzer and being returned to the
equilibrator. Typically, the water mole fraction (xH₂O) in the dried gas is about 2 parts per
thousand (ppt), which corresponds to a dew point temperature of about -20°C. The liquid water
condensed out of the sample air streams is removed by peristaltic pumps into the vent equilibrator
at intervals determined by the user.

Gas detector manufacturer: Licor 7000
Gas detector model: IRG4-0847
Gas detector resolution: 0.2 µatm
Gas detector uncertainty: 0.3 µatm for equilibrator measurements, 0.2 µatm for atmospheric measurements
Standardization technique: The system runs a full cycle in approximately 10 hours. The cycle starts with 4 standard gases,
then measures three rounds of 6 atmospheric samples followed by 60 surface water samples. Each
new gas is flushed through the Licor Analyzer for 3 minutes prior to a stop-flow measurement.
Standardization frequency: Every 10 hours
Standard gas manufacturer: Standard gases are supplied by NOAA’s Earth System Research Laboratory, Global Monitoring
Division, in Boulder, CO, and are directly traceable to the WMO scale.
Standard gas concentration: LL83539, 245.43 ppm; LL154363, 420.76 ppm; LL108056, 501.998 ppm; LL63968, 659.096
ppm
Standard gas uncertainty: 0.01 ppm
Water vapor correction method: Details of the data reduction are described in Pierrot, et.al. (2009).
Temperature correction method: Details of the data reduction are described in Pierrot, et.al. (2009).
At what temperature was pCO₂ reported: In situ sea surface temperature
Uncertainty: ± 0.01°C
Quality flag convention: WOCE quality control flags are used: 2 = good value, 3 = questionable value, 4 = bad value
Researcher name: Catherine E. Cosca
Researcher institution: Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration

Sea Surface Temperature

Abbreviation: SST(TSG)_C
Unit Degree Celcius
Observation type: Surface Underway
In-situ / Manipulation / Response variable:

Measured or calculated:

Sampling instrument: Seabird 45, maintained by the NOAA Ship Oscar Dyson.

Uncertainty: 0.0025°C

Abbreviation: SST(TSG)_C

Salinity

Abbreviation: SAL(TSG)_PERMIL

Observation type: Surface Underway

In-situ / Manipulation / Response variable:

Measured or calculated:

Sampling instrument: Seabird 45, maintained by the NOAA Ship Oscar Dyson.

Uncertainty: 0.005 PSU

Abbreviation: SAL(TSG)_PERMIL

PUBLICATIONS DESCRIBING THIS DATA SET:

ADDITIONAL INFORMATION:

FUNDING AGENCY:

NOAA's Ocean Acidification Program

PROJECT TITLE: West Coast Ocean Acidification Monitoring Network: Volunteer Observing Ships

PROJECT ID: OAPFY12.03.PMEL.002

SUBMITTED BY: Catherine E. Cosca (Cathy.Cosca@noaa.gov)