### PMEL Tsunami Forecast Series: Vol. 12 A Tsunami Forecast Model for Mayagüez, Puerto Rico

Burak Uslu 1,2

<sup>1</sup>Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, WA

<sup>2</sup>NOAA/Pacific Marine Environmental Laboratory (PMEL), Seattle, WA

August 23, 2013

#### NOTICE from NOAA

Mention of a commercial company or product does not constitute an endorsement by NOAA/OAR. Use of information from this publication concerning proprietary products or the tests of such products for publicity or advertising purposes is not authorized. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration.

Contribution No. 3353 from NOAA/Pacific Marine Environmental Laboratory Contribution No. 1774 from Joint Institute for the Study of the Atmosphere and Ocean (JISAO)

> Also available from the National Technical Information Service (NTIS) (http://www.ntis.gov)

# Contents

| Li | ist of Figures i                                                                                                                |                              |  |
|----|---------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| Li | List of Tables                                                                                                                  |                              |  |
| 1  | Background and Objectives1.1Puerto Rico History1.2Tide Station1.3Tsunamis in Puerto Rico                                        | 1<br>1<br>2<br>2             |  |
| 2  | Forecast Methodology                                                                                                            | 4                            |  |
| 3  | Model Development3.1Source digital elevation models3.2Reference model grids3.3Forecast model grids3.4Model setup and validation | <b>6</b><br>6<br>7<br>7<br>8 |  |
| 4  | Results                                                                                                                         | 9                            |  |
| 5  | Summary and Conclusions                                                                                                         | 11                           |  |
| 6  | Acknowledgments                                                                                                                 | 12                           |  |
| 7  | References                                                                                                                      | 13                           |  |
| FI | FIGRUES                                                                                                                         |                              |  |
| TA | TABLES                                                                                                                          |                              |  |
| Aŗ | Appendices                                                                                                                      |                              |  |
| A  | <ul> <li>A.1 Forecast model ★.in file for Mayagüez, Puerto Rico:</li></ul>                                                      | <b>40</b><br>40<br>41        |  |
| B  | Propagation Database: Atlantic Ocean Unit Sources                                                                               | 42                           |  |

| С | SIFT Testing          | 52   |
|---|-----------------------|------|
|   | C.1 Purpose           | . 52 |
|   | C.2 Testing Procedure | . 52 |
|   | C.3 Results           | 53   |

# **List of Figures**

| 1  | Location of Puerto Rico relative to the Caribbean Sea is shown. Plate motions are      |     |
|----|----------------------------------------------------------------------------------------|-----|
|    | reproduce from Granja Bruña et al. (2009)                                              | 17  |
| 2  | A digital elevation map of Puerto Rico that shows the location of Mayagüez with        |     |
|    | respect to the capital San Juan and Ponce.                                             | 18  |
| 3  | Three images above show the location of Mayagrez tide gauge. The large satellite       |     |
|    | overlay is s Google Earth image with the location of the tide gauge from Puerto        |     |
|    | Rico Seismic Network and Vélez-Rodríguez (2007a). Image of the NOAA tide sta-          |     |
|    | tion in the lower left corner is provided by Vélez-Rodríguez (2007a,b). Inset illus-   |     |
|    | trating the the location of the tide station on a satellite image in the lower right   |     |
|    | corner is provided by Vélez-Rodríguez (2007b)                                          | 19  |
| 4  | Sources used in the development of digital elevation map of Puerto Rico by NGDC        |     |
|    | are shown in the figure (Taylor et al., 2007).                                         | 20  |
| 5  | Reference model grids used for Mayagüez, Puerto Rico are shown above. (a) A            |     |
|    | grid, (b) B grid and (c) C grids are shown respectively. B grid covers the Puerto      |     |
|    | Rico as an island and location of the tide station is shown in the C grid              | 21  |
| 6  | Six different grids are developed for five sets of forecast model. (a) Two A grids     |     |
|    | are designed with two different meridional extents. (b) Both B grids cover the         |     |
|    | same extends, but with different resolution. (c) Two different C grid extents are      |     |
|    | designed for optimal computation time. Location of the tide station is marked          |     |
|    | with red marker at Mayagüez.                                                           | 22  |
| 7  | Computed tide gauge signals from (a) 1755 Lisbon Earthquake and (b) 1918 Mona          |     |
|    | Passage earthquakes are shown above.                                                   | 23  |
| 8  | Map of the Caribbean and South Atlantic Ocean showing the location of synthetic        |     |
|    | scenarios from Table 3 used to test Mayagüez, Puerto Rico Model are shown with         |     |
| _  | the NOAA's propagation database.                                                       | 24  |
| 9  | Reference model and Forecast models listed in Table 1 are tested against the hy-       |     |
|    | pothetical scenarios listed in Table 3. All five Forecast model and Reference Model    | o = |
| 10 | agree fairly well for requirements for tsunami prediction (Synolakis et al., 2008).    | 25  |
| 10 | S4 Forecast model from the list in Table 3 is designated as the forecast model to be   |     |
|    | used by the warning centers. This forecast model is test for sensitivity of reflective |     |
|    | boundary and the response of 1 m and 10 m reflective boundary at the Mayagüez          | 00  |
| 11 | tide station are shown above.                                                          | 26  |
| 11 | Computed results of maximum amplitude and currents speed for a synthetic $M_w$         | 07  |
|    | 9.3 earthquake from ATSZ 38-47 are shown above for forecast and reference models.      | 27  |

| 12         | Computed results of maximum amplitude and currents speed for a synthetic $M_w$                                                                                                                                                                                                                                                             | 0.0      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 13         | 9.3 earthquake from ATSZ 48-57 are shown above for forecast and reference models.<br>Computed results of maximum amplitude and currents speed for a synthetic $M_w$                                                                                                                                                                        | 28       |
| 14         | 9.3 earthquake from ATSZ 58-67 are shown above for forecast and reference models. Computed results of maximum amplitude and currents speed for a synthetic $M_w$                                                                                                                                                                           | 29       |
| 15         | 9.3 earthquake from ATSZ 68-77 are shown above for forecast and reference models.                                                                                                                                                                                                                                                          | 30       |
| 15         | Computed results of maximum amplitude and currents speed for a synthetic $M_w$<br>9.3 earthquake from ATSZ 82-91 are shown above for forecast and reference models.                                                                                                                                                                        | 31       |
| 16         | Computed results of maximum amplitude and currents speed for a synthetic $M_w$                                                                                                                                                                                                                                                             |          |
| 17         | 9.3 earthquake from SSSZ 1 are shown above for forecast and reference models Computed results of maximum amplitude and currents speed for a synthetic $M_w$                                                                                                                                                                                | 32       |
| 17         | 7.5 earthquake from ATSZ 52b are shown above for forecast and reference models.                                                                                                                                                                                                                                                            | 33       |
| 18         | Computed results of maximum amplitude and currents speed for a synthetic $M_w$                                                                                                                                                                                                                                                             |          |
|            | 6.2 earthquake from SSSZ 11 with 0.1 m slip are shown above for forecast and reference models.                                                                                                                                                                                                                                             | 34       |
|            |                                                                                                                                                                                                                                                                                                                                            |          |
| B.1<br>B.2 | Atlantic Source Zone unit sources.       South Sandwich Islands Subduction Zone.                                                                                                                                                                                                                                                           | 44<br>50 |
|            |                                                                                                                                                                                                                                                                                                                                            | 50       |
| C.1        | Response of the Mayaguez forecast model to synthetic scenario ATSZ 38-47 (al-<br>pha=25). Maximum sea surface elevation for (a) A-grid, b) B-grid, c) C-grid. Sea<br>surface elevation time series at the C-grid warning point (d) The lower time series<br>plot is the result obtained during model development and is shown for compari- |          |
| 0.0        | son with test results.                                                                                                                                                                                                                                                                                                                     | 55       |
| C.2        | Response of the Mayaguez forecast model to synthetic scenario ATSZ 48-57 (al-<br>pha=25). Maximum sea surface elevation for (a) A-grid, b) B-grid, c) C-grid. Sea<br>surface elevation time series at the C-grid warning point (d) The lower time series                                                                                   |          |
|            | plot is the result obtained during model development and is shown for compari-                                                                                                                                                                                                                                                             |          |
| C.3        | son with test results                                                                                                                                                                                                                                                                                                                      | 56       |
|            | son with test results.                                                                                                                                                                                                                                                                                                                     | 57       |

# **List of Tables**

| 1   | One reference model and a set of five forecast models are designed in this study.                                                                                                  |    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | Designed five forecast model use difference variance of grids for optimal predic-                                                                                                  |    |
|     | tion and computation time                                                                                                                                                          | 36 |
| 2   | MOST setup parameters for reference and forecast models for Mayagüez, Puerto                                                                                                       |    |
|     | Rico                                                                                                                                                                               | 37 |
| 3   | Synthetic tsunami events used in development of Mayagüez, Puerto Rico Forecast                                                                                                     |    |
|     | Model.                                                                                                                                                                             | 38 |
| 4   | Maximum and minimum amplitude computed during the development of Mayagües                                                                                                          | z, |
|     | Puerto Rico forecast Models are listed below.                                                                                                                                      | 39 |
| B.1 | Earthquake parameters for Atlantic Source Zone unit sources.                                                                                                                       | 45 |
| B.2 | Earthquake parameters for South Sandwich Islands Subduction Zone unit sources.                                                                                                     | 51 |
| C.1 | Table of maximum and minimum amplitudes (cm) at the Mayaguez, Puerto Rico warning point for synthetic and historical events tested using SIFT 3.2 and obtained during development. | 58 |
|     |                                                                                                                                                                                    | 50 |

## Foreword

Tsunamis have been recognized as a potential hazard to United States coastal communities since the mid-twentieth century, when multiple destructive tsunamis caused damage to the states of Hawaii, Alaska, California, Oregon, and Washington. In response to these events, the United States, under the auspices of the National Oceanic and Atmospheric Administration (NOAA), established the Pacific and Alaska Tsunami Warning Centers, dedicated to protecting United States interests from the threat posed by tsunamis. NOAA also created a tsunami research program at the Pacific Marine Environmental Laboratory (PMEL) to develop improved warning products.

The scale of destruction and unprecedented loss of life following the December 2004 Sumatra tsunami served as the catalyst to refocus efforts in the United States on reducing tsunami vulnerability of coastal communities, and on 20 December 2006, the United States Congress passed the "Tsunami Warning and Education Act" under which education and warning activities were thereafter specified and mandated. A "tsunami forecasting capability based on models and measurements, including tsunami inundation models and maps..." is a central component for the protection of United States coastlines from the threat posed by tsunamis. The forecasting capability for each community described in the PMEL Tsunami Forecast Series is the result of collaboration between the National Oceanic and Atmospheric Administration office of Oceanic and Atmospheric Research, National Weather Service, National Ocean Service, National Environmental Satellite, Data, and Information Service, the University of Washington's Joint Institute for the Study of the Atmosphere and Ocean, National Science Foundation, and United States Geological Survey.

NOAA Center for Tsunami Research

#### Abstract

The National Oceanic and Atmospheric Administration has developed a tsunami forecast model for Mayagüez, Puerto Rico as part of the Tsunami Warning and Education Act. This study describes the development, validation, and stability tests of the model designed for Mayagüez, Puerto Rico. The forecast model development process includes compilation of bathymetric and topographic data and creation of higher-resolution reference model grids, and optimezed resolution forecast model grids capable of producing an inundation forecast in minutes. Mayagüez Model is tested for the 1755 Lisbon and 1918 Mona Passage historical tsunamis as well as seven synthetic scenarios. Results shows that the designed forecast model will be successfully used in predicting tsunami hazard operationally and tsunamis generated from the Muertos Trough and the Puerto Rico Trench pose the largest threat to Mayagüez.

# **Background and Objectives**

The National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami, Research (NCTR) at the NOAA Pacific Marine Environmental Laboratory (PMEL) has developed a tsunami forecasting capability for operational use by NOAA's two Tsunami Warning Centers located in Hawaii and Alaska (Titov et al., 2005). The system is designed to efficiently provide basin-wide warning of approaching tsunami waves accurately and quickly. Forecast models provided combines real-time tsunami event data with numerical models to produce estimates of tsunami wave arrival times and amplitudes at a coastal community of interest.

The primary goal of the system termed Short-term Inundation Forecast of Tsunamis (SIFT) is to provide NOAA Tsunami Warning Centers with operational tools that combine real-time deep-ocean Bottom Pressure Recorder (BPR) recordings from the tsunameter network (Eble and González, 0401) and seismic data with a suite of numerical codes, and the Method of Splitting Tsunami (MOST) (Titov and Synolakis, 1998; Titov and González, 1997), to produce efficient forecasts of tsunami arrival time, height, and inundation. To achieve accurate and detailed information on the likely impact of incoming tsunamis on specific coastal communities within certain time limits and to reduce false alarms, 75 forecast models are being developed and integrated as components of SIFT for a limited number of 75 U.S. coastal cities and territories that are potentially at most risk.

The present study reports development and testing of forecast models for the city of Mayagüez on the island of Puerto Rico. Figure 1 shows the Caribbean Sea and the island of Puerto Rico. In a more detailed Figure 2, Puerto Rico coastlines is shown with capital San Juan in the north, Ponce in the south and Mayagüez located in the west coast of the island. Details and procedures in development of this forecast model is outlined in Synolakis et al. (2008) and Tang et al. (2009).

#### **1.1 Puerto Rico History**

First European arrival in the Puerto Rico was by Christopher Columbus in 1493, who named the island San Juan Bautista, which eventually became the name of the capital of the island. Followed by this exploration, the island was colonized by Spain and named as the "rich port" or "Puerto Rico" because of the gold found in its rivers (Smithsonian Magazine, 2013).

Indigenous Taíno and Carib races were mixed with Spanish and African immigrants dur-

ing Spanish colonization from 1493 until 1898. Many indigenous town names are still in use, such as Mayagüez and Utuado (Figure 2). Puerto Rico was a secure Spanish port, even though numerous assaults were attempted by French, Dutch and British. Finally, United States forces invaded Puerto Rico following the Spanish-American war, and the island was ceded to United States by the 1898 Treaty of Paris (Smithsonian Magazine, 2013).

In 1917 Puerto Ricans were granted full U.S. Citizenship and in the mid 1900s the island's economy flourished by the industrialization effort called Operation Bootstrap, which provided cheap labor and tax-aid for the American companies. Puerto Rican economy flourished and still relies on manufacturing and tourism, where Puerto Rico provides high-tech equipments and pharmaceuticals goods to United States. Puerto Rico became part of U.S. Commonwealth in 1952 adopting the U.S. constitution (History.com, 2013). From World War II until 2003, two thirds of the island had been purchased and occupied by the U.S. Navy for military practices. Due to an accident occurred in 2003, the Navy had to evacuate and the Navy land has been designated to a wild life reserve.

#### 1.2 Tide Station

Hence, the economical importance and the major base in Caribbean, a forecasting capability for Puerto Rico is necessary and Mayagüez forecast model is prepared as outlined in this study. Figures 2 and 3 shows the town of Mayagüez and the location of the tide station in Mayagüez Harbor. Tide stations are usually designated as the warning point and tsunami warning centers rely their warnings depending on the predicted wave amplitude at these locations. Location of the station in Mayagüez, which is part of the Puerto Rico Seismic Network (Vélez-Rodríguez, 2007a), is shown in Figure 3 provided by Vélez-Rodríguez (2007a), as well as the illustration by Vélez-Rodríguez (2007b). Location of the station is marked on a satellite image in the Figure 3, courtesy of Google Earth. In the forecast model and reference model, the nearest wet point is selected as the synthetic tide gauge node representing the predictions for the tide station. Depth of water in the numerical models for tide station is 0.7 m.

### 1.3 Tsunamis in Puerto Rico

Tsunamis in Caribbean are not as frequent as they are in Pacific Ocean, however, active fault lines around the region has helped tsunamis observed from variety of sources including transoceanic earthquake, volcanic eruptions and submarine landslides.

O'Loughlin and Lander (2003) reports two trans-oceanic tsunamis observed in the Caribbean generated in Europe, as early as in 16th century. The 1755 Lisbon tsunami that had inundation in the Lesser Antilles and the 1761 Iberian tsunami that was observed with a 1.2m run-up height in Barbados (Lander and Whiteside, 2007; O'Loughlin and Lander, 2003; Baptista et al., 1998, 2003)

Caribbean also has a history of local tsunamis as well. In 1918 a  $M_L$  7.5 earthquake in the Mona Passage between Hispaniola and Puerto Rico (Figure 1) triggered a tsunami that affected mostly western coast of Puerto Rico and causing more than 100 casualties. Lopez-Venegas et al. (2008) study discusses the geologic evidence of a large scale submarine landslide that is related to the source of the 1918 tsunami. A run-up of 1.1-1.5 m wave was observed in Mayagüez 25-30

minutes after the earthquake.

National Geophysical Data (2013) holds the most current up to date database of tsunami observations in the world. Harbitz et al. (2012) studied tsunami hazards in the Caribbean looking at tsunami sources from landslide, volcanic eruptions and earthquakes. Harbitz et al. (2012) holds a very valuable and detailed database of historical tsunamis in the Caribbean and lists the  $M_S$  7.5 Virgin Islands earthquake as the sources of highest tsunamis of Caribbean. The run-up height has been debated between 18.3 m and 10 m. Historical investigation of documentation and surveys are discussed by Zahibo and Pelinovsky (2001); Zahibo et al. (2003) and numerical modeling of this event has been performed by Zahibo et al. (2008); Harbitz et al. (2012); Barkan and ten Brink (2010).

In this study, the 1755 Lisbon and 1918 Mona Passage tsunamis are modeled. Computed wave amplitudes are compared to historical accounts.

## **Forecast Methodology**

Two complete sets of grids were developed from NOAA's National Geophysical Data Center high resolution bathymetric database (Taylor et al., 2007). Aim for the first set is to provide the best available solution from the most up to date elevation model. High resolution grids are referred to as reference grid models and they are designed for research purposes to provide the most accurate prediction of wave amplitudes, wave arrival time and currents in Mayagüez, Puerto Rico. Second set of grids are optimized from the reference model to provide computation with in time constrains and yet to be accurate enough for warning purposes. All forecast models are compare with reference model test scenarios for their predictions.

In general a tsunami forecast model is a set of high-resolution grids constructed by the Pacific Marine Environmental Laboratory, that computes and provides a tsunami inundation for a selected coastal community in real-time within minutes of an earthquake. The Method of Splitting Tsunami (MOST) is a suite of numerical simulation codes capable of simulating three processes of tsunami evolution: earthquake, transoceanic propagation, and inundation of dry land. The MOST model has been extensively tested against a number of laboratory experiments and benchmarks (Synolakis et al., 2008) and was successfully used for simulations of many historical tsunami events. The main objective of a forecast model is to provide an accurate, yet rapid, estimate of wave arrival time, wave height, and inundation in the minutes following a tsunami event. Titov and González (1997) describe the technical aspects of forecast model development, stability, testing, and robustness, and Tang et al. (2009).

A basin-wide database of pre-computed water elevations and flow velocities for unit sources covering worldwide subduction zones has been generated to expedite forecasts (Gica et al., 2008). As the tsunami wave propagates across the ocean and successively reaches tsunameter observation sites, recorded sea level is ingested into the tsunami forecast application in near real-time and incorporated into an inversion algorithm to produce an improved estimate of the tsunami source. A linear combination of the pre-computed database is then performed based on this tsunami source, a source that reflects the transfer of energy to the fluid body and thus a transfer of the governing physics from earth to ocean, to produce synthetic boundary conditions of water elevation and flow velocities to initiate the forecast model computation.

Accurate forecasting of the tsunami impact on the target forecast area largely relies on the accuracies of bathymetry and topography and the numerical computation. The spatial and temporal grid resolution necessary for modeling accuracy poses a challenge in the run-time requirement for real-time forecasts. Each forecast model consists of three telescoped grids with increasing spatial resolution in the finest grid, and temporal resolution for simulation of wave inundation onto dry land. The forecast model utilizes the most recent bathymetry and topography available to reproduce the correct wave dynamics during the inundation computation. Previous and present development of forecast models in the Pacific and Atlantic Ocean((Titov et al., 2005; Titov, 2009; Wei et al., 2008; Tang et al., 2008b) have been validated for the accuracy and efficiency. Models are tested in real-time at every opportunity during an event and they are used for scientific research, as well. Tang et al. (2009) provide forecast model development methodology details.

Metropolitan population of Mayagüez is 106,330 is according to U.S. Census Bureau (2012), making it an important port town. Mayagüez, unlike the port towns in Pacific Ocean, does not have a very high relief. The deepest point in the grid modeled for harbor is 171 m and that is approximately seven kilometers off shore. Highest point in the same grid is 259 m.

Mayaguez is located on the West of Puerto Rico in North East Caribbean. Location of Puerto Rico relative to the Caribbean Sea is shown in Figure 1, where it is approximately 140 km East of Dominican Republic and 750 East of Cuba. Florida is the southern most state in continental United States, which is approximately a 1600 km flight distance from Miami, FL to Mayagüez, PR. Caribbean islands are results of the interactions between North American plate and Caribbean Sea. Geological setting of fault lines surrounding Puerto Rico is shown in Figure 1. Puerto Rico is an uplif result of submergence of Hispaniola and Puerto Rico Trenches in the North and Muertos Trough in the South (Granja Bruña et al., 2009).

## **Model Development**

The Mayagüez forecast model is developed from high-resolution digital elevation model was provided by NOAA's National Geophysical Data Center (NGDC). High-resolution grids for the Mayagüez and its vicinity are constructed from the best available data source shown in Figure 4. A Forecast Model is an optimized version of a reference high resolution model, where a forecast model has to compute results in a time constrain operational restrictions, yet their results has to agree with a reference model. Reference Model are produced at Pacific Marine and Environmental Laboratories for research purposes and they are used in purposes that forecast models are not sufficient, such as hazard assessments and studies tsunami currents in the ports (Uslu et al., 2013, 2010b,a). Forecast models reduced in resolution and details, but they are designed to provide reliable predictions that agrees with reference models for warning centers.

Referred to as A, B, and C, the three nested grids each become successively finer in resolution as they telescope into study area. The largest coverage is from the lowest resolution A-grid that extends from offshore Puerto Rico to deep ocean, while the near-shore details are resolved within the finest scale C-grid to the point that tide gauge observations recorded during historical tsunamis are resolved within expected accuracy limits. The general procedure to develop the forecast model is to begin development with large spatial extent merged bathymetric topographic grids at high resolution, and then optimize these grids by sub sampling to coarsen the resolution and shrink the overall grid dimensions to achieve a 4 to 10 hr simulation of modeled tsunami waves within the required time period of 10 min of wall-clock time. The forecast model is developed by incrementally reducing the resolution and extent of the coverage of the reference model, as described in (Tang et al., 2008a). It is possible to develop 3 arc-sec fastrunning optimized numerical grids that can predict time histories at desired numerical tide gauges with high accuracy (Tang et al., 2006).

#### 3.1 Source digital elevation models

The National Geophysical Data Center (NGDC) developed the digital elevation models for Puerto Rico using numerous source of bathymetric, topographic and shoreline data from federal, state government agencies and universities. Data from the U.S. Geological Survey (USGS); the NOAA National Ocean Service (NOS), National Geodetic Survey (NGS), Office of Coast Survey (OCS)

and National Centers for Coastal Ocean Science (NCOOS); the Puerto Rico Planning Board (PRPB); the Puerto Rico Office of Management and Budget; and the University of Puerto Rico are processed and combined with the procedures described in Taylor et al. (2007) for relative to local Mean High Water as the vertical datum and World Geodetic System 1984 as the horizontal datum. Figure 4 shows the source of datasets used in compiling of Puerto Rico digital elevation model, primarily from NOS hydrographic and LIDAR surveys, U.S. Army Corps of Engineers Scanning Hydrographic Operational Airborne Lidar Surveys (SHOALS), and a deep water multibeam sonar surveys collected by the U.S. Geological Survey.

#### 3.2 Reference model grids

A set of three nested high-resolution model grids were created (Figure 4) from the source digital elevation model provided by NGDC (Taylor et al., 2007) described in previous section. These reference grids provide guidance for the development of optimized forecast grids of lower resolution and smaller extent that will allow the model to operate in real time (Tang et al., 2009). Figure 5 shows and Table 2 lists the setup parameters and details of the the reference model. Optimized grids designed in this report were all tested against the reference model for reliability and stability. Three nested grids, referred to as A, B, and C-grids, each of which becomes successively finer in resolution as they telescope into the population and economic center of the community of interest. The offshore area is covered by the largest and lowest 24 arc-sec resolution A grid that extends from continental shelf of Caribbean Sea to Atlantic Ocean. B grid with 6 arc-sec resolution covers the entire Puerto Rico and the Mayagüez is modeled with 1 arc-sec for detailed computations. A discrepancy in the A grid is visible in the reference model in the East of Puerto Rico. This issue is addressed in the forecast model and for future study for hazard assessment reference model will need to be updated.

#### **3.3 Forecast model grids**

Forecast models are designed by using subsamples of the reference model or optimized grids from the source digital elevation model from NGDC. In total six grids are developed and five combination of these grids are test in this study. One of them is designated for the use for the NOAA tsunami warning system predictions. Details of the forecast models are listed in Table 1 and extends of these are shown in Figure 6.

The forecast model is required to produce wave height and inundation forecasts that agrees with the reference model. All five forecast model computed simulations for 10 hours of wave propagation. Models are named S1, S2, S3, S4, and S5 in the Table 1 respectively, and CPU time for each model ranges from 9 minutes to 25 minutes. Two different A Grids, two B Grids and two C Grids are used in five sets of combination in this study. S1 has the highest resolution and the largest coverage, hence computation takes approximately 25 minutes. In S2, S3, S4 and S5, B Grid has been lowered to 21 arc-sec from 12 arc-sec. S4 and S5 also has a smaller coverage of the C Grid. S1, S2, and S5 shares the same A grid. The fastest computation time is S5, where the 10 hours of simulation time is completed in 9.06 minutes. For future forecasting capabilities the larger A Grid is preferred, which will be shared with all Puerto Rico grids, hence the S4 forecast model with a larger A Grid and still sufficient computation speed provides the

desired prediction and computation efficiency.

#### 3.4 Model setup and validation

Table 2 summarizes the grid extents and model parameters of the reference and forecast models. The model parameters are similar to those used for other models in the SIFT system. A slightly higher Manning (friction) coefficient is used in the reference model to reduce high frequency, small-amplitude ringing that occurs along shorelines in the reference C grid with a lower coefficient.

Mayagüez forecast model is tested against two historical tsunamis. First scenario is a  $M_w$  9.0 tsunami from Lisbon, Portugal adopted from Barkan et al. (2009) representing the 1755 tsunami. Source model for 1755 uses an elastic deformation (Smylie and Mansinha, 1971) with angles of Dip=40°, Strike=345°, and Rake=90° located at 10.7530°N, 36.0420°W and 5 km depth with a 26.5m slip on an area of 600×80 km. Second source is the 1918 Mona Passage tsunami with a unit source (1 m) rupture on ATSZ-52y matching the  $M_w$  7.5 magnitude.

Forecast model predicts a 2m wave height from the 1755 Lisbon earthquake. This is a reasonable prediction amplitude for the region. 1918 is expected to be a submarine landslide (Lopez-Venegas et al., 2008) and the forecast model predicts a 75 cm wave height at the tide gauge, which is quite good considering that there is no landslide element and the published reports indicate that the maximum run up was approximately 1.1-15 m. Figure 7 for computed tide gauge prediction of the 1918 and 1755 tsunamis. Since the two scenarios tested for Mayagüez forecast model are quite good, model proves to be reliable for forecasting capabilities. More testing will be performed in the future as the tide records become available.

# Results

Validation of the forecast model ensures that, to the greatest extent possible, the model accurately reproduces actual tsunami events, and that it remains numerically stable under all possible source conditions (Synolakis et al., 2008; Tang et al., 2009).

Reference model and forecast models listed in Table 2 are tested against vigorous hypothetical scenarios. These scenarios ranges from Micro-tsunamis to Mega-tsunamis and are located in various locations of the Atlantic Ocean. Figure 8 shows the map of the Caribbean and South Atlantic Ocean with the location of synthetic scenarios used to test Mayagüez, Puerto Rico. For more details of the NOAA propagation database please see Gica et al. (2008) and Appendix B. Results of the all five forecast models and reference Model comparison with the test scenarios listed in Table 3 at the Mayaüez tide station are shown in Figure 9. All models agree each other fairly well for requirements of the tsunami prediction (Synolakis et al., 2008). Even though, any of the forecast models can be used for warning purposes, because of the system requirements, time optimization and model S4 has been designated in this study.

One of the interesting question arose during the development of the model was the height of the reflective boundaries in A and B grids. In Pacific Ocean models, depending on circumstances different reflective boundaries are applied for different model. In Caribbean models, because of the shallow reefs a development of not more than a meter reflective boundary is proposed by NOAA's Tsunami Research Center. S4 forecast model is test for sensitivity of response of 1 m and 10 m reflective boundaries in A and B grids at the Mayagüez tide station are shown in Figure 10. Proposed Mayagüez model has 1 m reflective boundary in A and B grids to be consistent with the other Caribbean models; however, according to this study accuracy between a model with 10 m and 1 m reflective boundary are negligible. In the future if need to be, the developer suggest that a 10 m reflective boundary can be used with confidence.

Forecast models are tested for 6 Synthetic tsunamis triggered from a hypothetical  $M_w$  9.3 tsunamis with a 25 m rupture, 1 moderate tsunami from a  $M_w$  7.5 earthquake with a 1 m rupture and a micro tsunami triggered from South Sandwich Islands from a 0.1 rupture for stability and reliability analysis. Test scenarios are listed in Table 3 and Figures 11, 12, 13, 14, 15, 17, 16, and 18 show the computed maximum amplitudes and maximum current speeds. Maximum and minimum amplitudes computed at the synthetic tide gauge are listed in Table 4 for comparison. Each scenario computed with the Reference Model and the forecast Model S4 as well as the rest of the models show good agreement with each other.

This study concludes that Muertos Trough in the South and Puerto Rico Trench in the North

are the potential tsunami threat for Mayagüez, Puerto Rico. Forecast model predicts an 8 m wave triggered from a  $M_w$  9.3 earthquake from Puerto Rico Trench (ATSZ-48) and a 5 m wave from Muertos Trough (ATSZ-82) computed at the Mayagüez tide station listed in Table 4 and the corresponding maximum amplitude plots shown in Figures 12 and 15.

## **Summary and Conclusions**

This report describes the development of a real-time tsunami forecast model for Mayagüez, Puerto Rico. The forecast model grids were designed by comparing the results from multiple candidate grids to a reference model, for a variety of source scenarios. This algorithm for developing an optimal grid configuration may, with further refinement, be possible to automate, speeding inundation forecast model development.

The resulting forecast model is capable of producing real-time prediction of wave amplitudes and inundation that compare well with a higher-resolution reference model used for validation. Please note that both the reference and forecast model adequately predicts the synthetic events fairly well and the forecast model used in this report is good enough for the forecasting capabilities. Development of this optimized tsunami forecast model was based on a digital elevation model provided by the National Geophysical Data Center and the author considers it to be an adequate representation of the local topography/bathymetry. As new digital elevation models become available, forecast models will be updated and report updates will be posted at

http://nctr.pmel.noaa.gov/forecast\_reports/.

# Acknowledgments

Special thank you to Marie Eble from Pacific Marine and Environmental Laboratories (National Oceanic and Atmospheric Adminisstration) and Lindsey Wright from Joint Institute of the Study of Ocean and Atmosphere (University of Washington) who had provided helpful assistance in locating the Mayagüez tide station and valuable information with the tide records. Lindsey Wright has also helped completing the SIFT testing of the forecast model. Mayagüez forecast model has been initially developed and designed by Aurelio Mercado and Wilford Schmidt from Department of Marine Sciences, University of Puerto Rico.

This work is funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement Numbers NA10OAR4320148 and NA08OAR4320899 and is JISAO contribution number No. 2152. This work is also Contribution No. XXXX from NOAA/Pacific Marine Environmental Laboratory.

# References

- Baptista, M., Heitor, S., Miranda, J., Miranda, P., and Victor, L. (1998). The 1755 lisbon tsunami; evaluation of the tsunami parameters. *Journal of Geodynamics*, 25(1âĂŞ2):143 157.
- Baptista, M. A., Miranda, J. M., Chierici, F., and Zitellini, N. (2003). New study of the 1755 earthquake source based on multi-channel seismic survey data and tsunami modeling. *Natural Hazards and Earth System Science*, 3(5):333–340.
- Barkan, R. and ten Brink, U. (2010). Tsunami simulations of the 1867 virgin island earthquake: Constraints on epicenter location and fault parameters. *Bulletin of the Seismological Society of America*, 100(3):995–1009.
- Barkan, R., ten Brink, U. S., and Lin, J. (2009). Far field tsunami simulations of the 1755 lisbon earthquake: Implications for tsunami hazard to the u.s. east coast and the caribbean. *Marine Geology*, 264(1âĂŞ2):109 122. <ce:title>Tsunami hazard along the U.S. Atlantic coast</ce:title>.
- Eble, M. C. and González, F. I. (1991/04/01). Deep-ocean bottom pressure measurements in the northeast pacific. *Journal of Atmospheric and Oceanic Technology*, 8(2):221–233.
- Gica, E., Spillane, M., Titov, V., Chamberlin, C., and Newman, J. (2008). Development of the forecast propagation database for NOAA's Short–term Inundation Forecast for Tsunamis (SIFT). Tech. Memo. OAR PMEL–139, NOAA/Pacific Marine Environmental Laboratory, Seat-tle, WA.
- Granja Bruña, J. L., Ten Brink, U. S., Carbó Gorosabel, A., Muñoz Martín, A., and Gómez Ballesteros, M. (2009). Morphotectonics of the central muertos thrust belt and muertos trough (northeastern caribbean). *Marine Geology*, 263:7–33.
- Harbitz, C., Glimsdal, S., Bazin, S., Zamora, N., Løvholt, F., Bungum, H., Smebye, H., Gauer, P., and Kjekstad, O. (2012). Tsunami hazard in the caribbean: Regional exposure derived from credible worst case scenarios. *Continental Shelf Research*, 38:1–23.
- History.com (2013). U.S. takes control of Puerto Rico. http://www.history.com/this-day-in-history/us-takes-control-of-puerto-rico.

- Lander, J. and Whiteside, L. (2007). Caribbean Tsunamis: An Initial History. In *Tsunami Workshop June 11D13*, Mayaguez, Puerto Rico.
- Lopez-Venegas, A. M., ten Brink, U. S., and Geist, E. L. (2008). Submarine landslide as the source for the october 11, 1918 mona passage tsunami: Observations and modeling. *Marine Geology*, 254(1):35–46.
- National Geophysical Data (2013). (NGDC) Historic Tsunami Data Base. http://www.ngdc.noaa.gov/seg/hazard/tsu.shtml.
- O'Loughlin, K. and Lander, J. (2003). *Caribbean Tsunamis, A 500-Year History from 1498*D1998. Springer, The Netherlands, second edition edition.
- Smithsonian Magazine (2013). Puerto Rico History and Heritage. http://www.smithsonianmag.com/travel/destination-hunter/north-america/caribbeanatlantic/puerto-rico/puerto-rico-history-heritage.html.
- Smylie, D. E. and Mansinha, L. (1971). The elasticity theory of dislocations in real earth models and changes in the rotation of the earth. *Geophys. J. R. astr. Soc.*, 23:329–354.
- Synolakis, C. E., Bernard, E., Titov, V., Kânoğlu, U., and González, F. (2008). Validation and verification of tsunami numerical models. *Pure Appl. Geophys*, 165:2197–2228.
- Tang, L., Chamberlin, C., and Titov, V. (2008a). Developing tsunami forecast inundation models for Hawaii: procedures and testing. Tech. Memo. OAR PMEL-141, NOAA.
- Tang, L., Chamberlin, C., Tolkova, E., Spillane, M., Titov, V., Bernard, E., and Mofjeld, H. (2006). Assessment of potential tsunami impact for Pearl Harbor, Hawaii. Tech. Memo. OAR PMEL, NOAA.
- Tang, L., Titov, V., and Chamberlin, C. (2009). Development, testing, and applications of sitespecific tsunami inundation models for real-time forecasting. *J. Geophys. Res*, page C12025.
- Tang, L., Titov, V., Wei, Y., Mofjeld, H., Spillane, M., Arcas, D., Bernard, E., Chamberlin, C., Gica, E., and Newman, J. (2008b). Tsunami forecast analysis for the may 2006 tonga tsunami. J. *Geophys. Res*, page C12015.
- Taylor, L., Eakins, B., Carignan, K., Warnken, R., Sazonova, T., and Schoolcraft, D. (2007). Digital Elevation Models for Puerto Rico: Procedures, Data Sources and Analysis. NOAA Technical Memorandum, NOAA, National Geophysical Data Center, Marine Geology and Geophysics Division, Boulder, Colorado.
- Titov, V. V. (2009). *Tsunami forcasting*, volume 15: Tsunamis of *the Sea*, chapter 12, pages 371–400. Harvard University Press, Cambridge, MA and London, England.
- Titov, V. V. and González, F. (1997). Implementation and testing of the method of splitting tsunami (MOST) model. Technical Memorandum ERL PMEL 112, NOAA.
- Titov, V. V., González, F. I., Bernard, E. N., Eble, M. C., Mofjeld, H. O., Newman, J. C., and Venturato, A. J. (2005). Real-Time Tsunami Forecasting: Challenges and Solutions. *Natural Hazards*, 35(1):35–41.

- Titov, V. V. and Synolakis, C. E. (1998). Numerical modelling of tidal wave runup. *J. Waterw. Port Coast. Ocean Eng.*, 124:157–171.
- U.S. Census Bureau (2012). Metropolitan and Micropolitan Statistical Areas Totals: Vintage 2012. http://http://www.census.gov/popest/data/metro/totals/2012/index.html.
- Uslu, B., Eble, M., Arcas, D., and Titov, V. (2013). Tsunami Hazard Assessment for the Commonwealth of the Northern Mariana Islands. Tsunami Hazard Assessment Special Series, NOAA.
- Uslu, B., Eble, M., and Chamberlin, C. (2010a). Tsunami Hazard Assessment for Guam. Tsunami Hazard Assessment Special Series, NOAA OAR Special Repor.
- Uslu, B., Eble, M., Titov, V., and Bernard, E. (2010b). Distant tsunami threats to the ports of Los Angeles and Long Beach, California. Tsunami Hazard Assessment Special Series, NOAA OAR Special Report.
- Vélez-Rodríguez, L. L. (2007a). Tidal Stations and Bench Marks: Tools for Spatial Information Managements. In 6th FIG Regional Conference, TS 09 D Natural Resources and Risk Management, pages 1/9–9/9 pp., San José, Costa Rica.
- Vélez-Rodríguez, L. L. (2007b). Tidal Stations and Bench Marks: Tools for Spatial Information Managements. *6th FIG Regional Conference*.
- Wei, Y., Bernard, E. N., Tang, L., Weiss, R., Titov, V. V., Moore, C., Spillane, M., Hopkins, M., and glu, U. K. (2008). Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines. *Geophys. Res. Let.*, 35:L04609.
- Zahibo, N., Pelinovsky, E., Kurkin, A., and Nikolkina, I. (2008). Tunami hazard for the french west indies lesser antilles. In Krishnamurthy, R., Kannen, A., Ramanathan, A., Tinti, S., Glavovic, B. C., Green, D. R., Han, Z., and Agardy, T. S., editors, *Integrated Coastal Zone Management (ICZM)*, page 800 pp. Research Publishing Services, ISBN:978-981-05-8948-6.
- Zahibo, N., Pelinovsky, E., Yalciner, A. C., Kurkin, A., Koselkov, A., and Zaitsev, A. (2003). The 1867 virgin island tsunami. *Natural Hazards and Earth System Science*, 3(5):367–376.
- Zahibo, N. and Pelinovsky, E. N. (2001). Evaluation of tsunami risk in the lesser antilles. *Natural Hazards and Earth System Science*, 1(4):221–231.

# **FIGRUES**

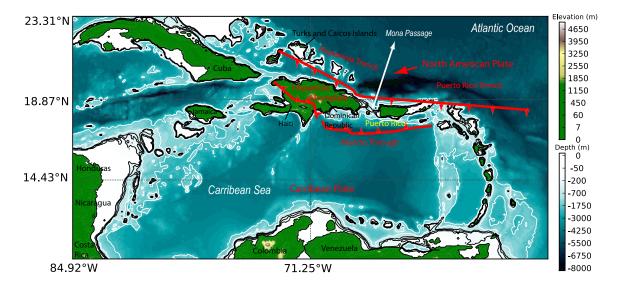



Figure 1: Location of Puerto Rico relative to the Caribbean Sea is shown. Plate motions are reproduce from Granja Bruña et al. (2009).

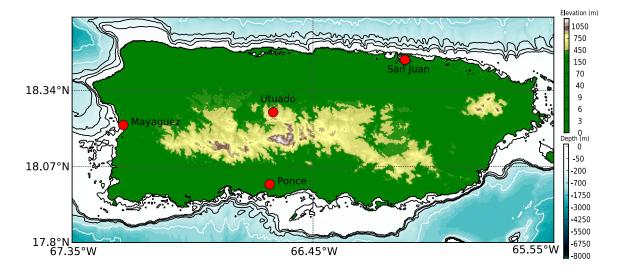



Figure 2: A digital elevation map of Puerto Rico that shows the location of Mayagüez with respect to the capital San Juan and Ponce.



Figure 3: Three images above show the location of Mayagrez tide gauge. The large satellite overlay is s Google Earth image with the location of the tide gauge from Puerto Rico Seismic Network and Vélez-Rodríguez (2007a). Image of the NOAA tide station in the lower left corner is provided by Vélez-Rodríguez (2007a,b). Inset illustrating the the location of the tide station on a satellite image in the lower right corner is provided by Vélez-Rodríguez (2007b)

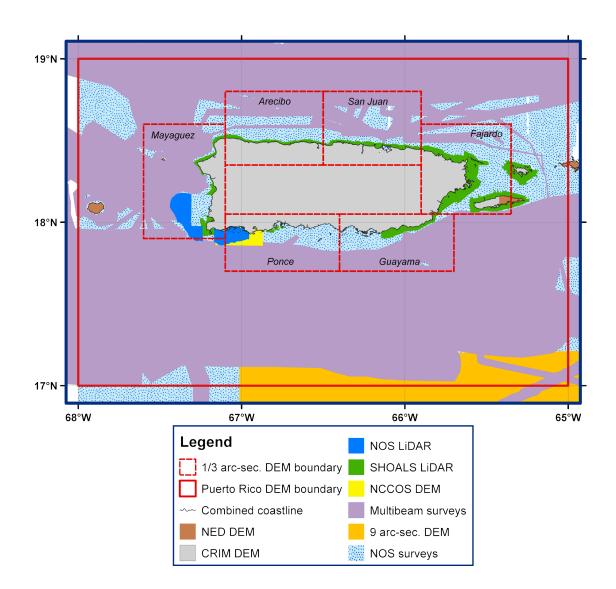



Figure 4: Sources used in the development of digital elevation map of Puerto Rico by NGDC are shown in the figure (Taylor et al., 2007).

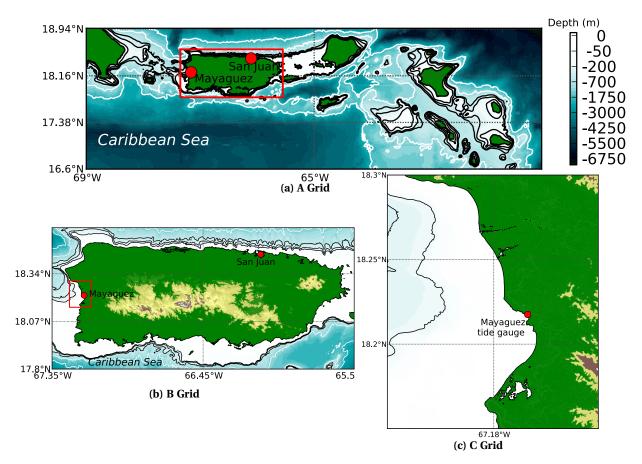



Figure 5: Reference model grids used for Mayagüez, Puerto Rico are shown above. (a) A grid, (b) B grid and (c) C grids are shown respectively. B grid covers the Puerto Rico as an island and location of the tide station is shown in the C grid.

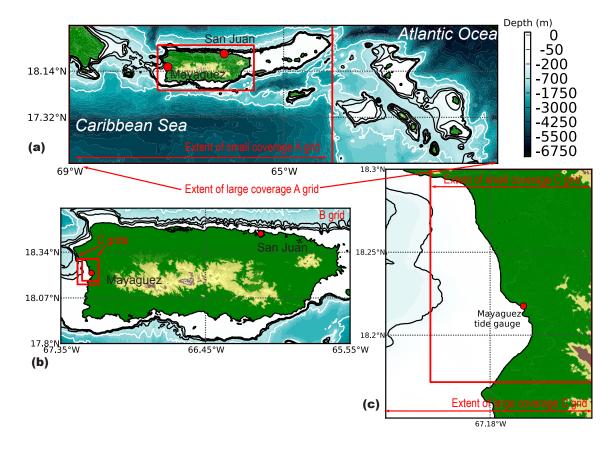



Figure 6: Six different grids are developed for five sets of forecast model. (a) Two A grids are designed with two different meridional extents. (b) Both B grids cover the same extends, but with different resolution. (c) Two different C grid extents are designed for optimal computation time. Location of the tide station is marked with red marker at Mayagüez.

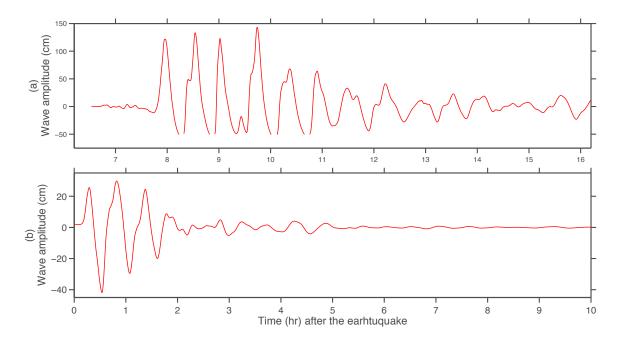



Figure 7: Computed tide gauge signals from (a) 1755 Lisbon Earthquake and (b) 1918 Mona Passage earthquakes are shown above.

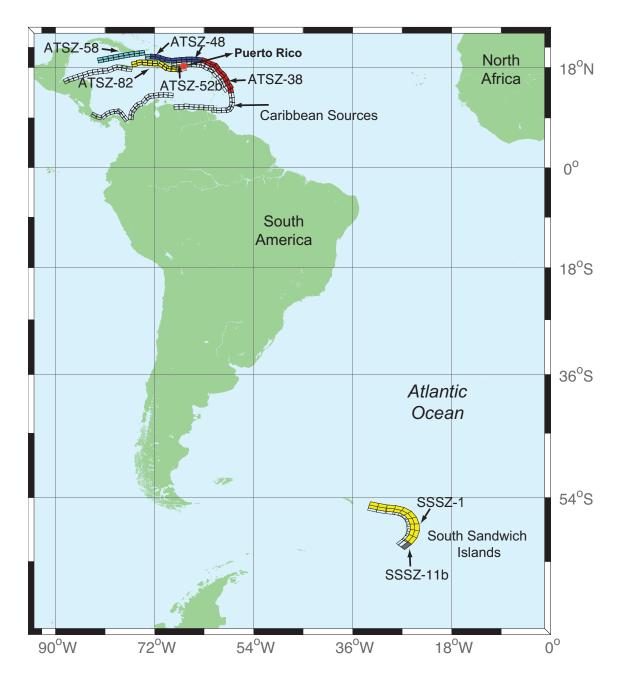



Figure 8: Map of the Caribbean and South Atlantic Ocean showing the location of synthetic scenarios from Table 3 used to test Mayagüez, Puerto Rico Model are shown with the NOAA's propagation database.

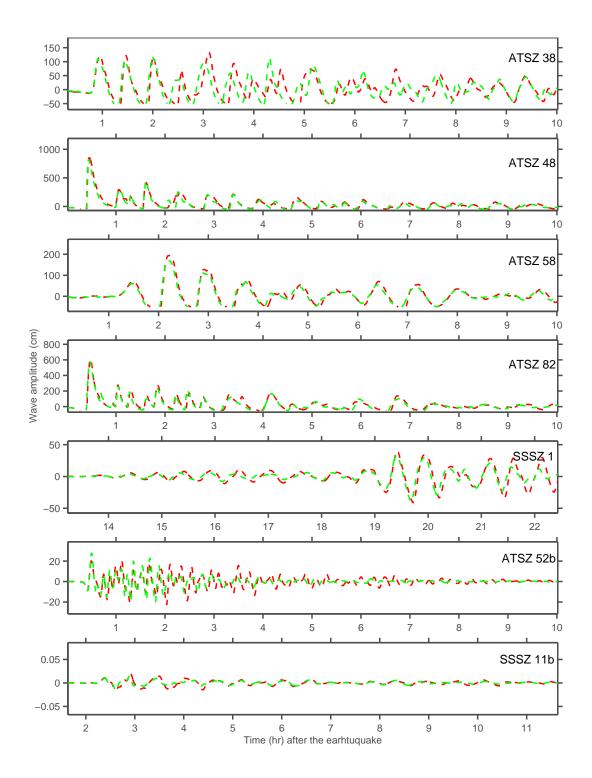
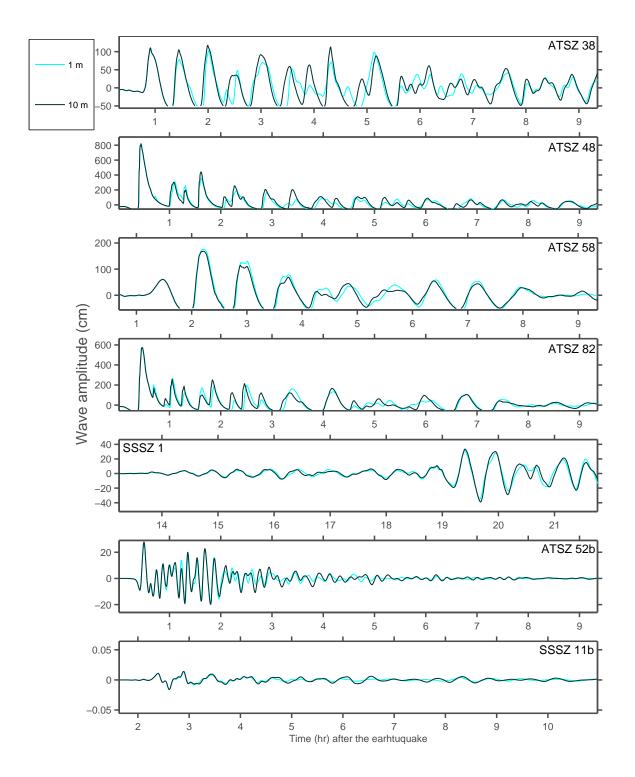
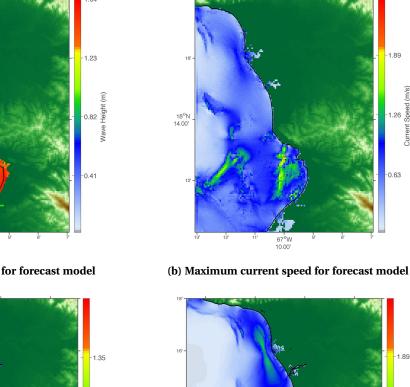
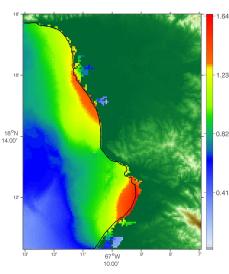
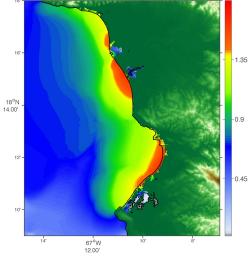



Figure 9: Reference model and Forecast models listed in Table 1 are tested against the hypothetical scenarios listed in Table 3. All five Forecast model and Reference Model agree fairly well for requirements for tsunami prediction (Synolakis et al., 2008).



Figure 10: S4 Forecast model from the list in Table 3 is designated as the forecast model to be used by the warning centers. This forecast model is test for sensitivity of reflective boundary and the response of 1 m and 10 m reflective boundary at the Mayagüez tide station are shown above.



18<sup>0</sup>N 14.00'

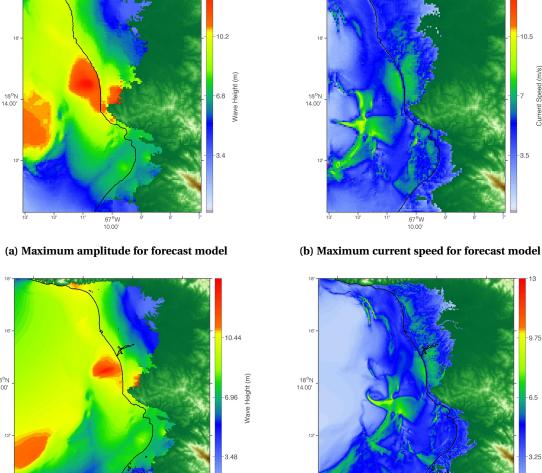


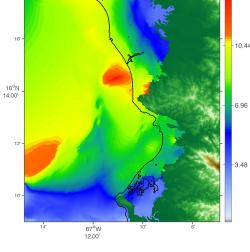
(a) Maximum amplitude for forecast model



(c) Maximum amplitude for reference model

(d) Maximum current speed for reference model


67°W 12.00' (m/s)


02. Current Speed (r

0.63

Figure 11: Computed results of maximum amplitude and currents speed for a synthetic  $M_w$  9.3 earthquake from ATSZ 38-47 are shown above for forecast and reference models.

Vave Height (m





(c) Maximum amplitude for reference model

(d) Maximum current speed for reference model

67<sup>0</sup>W 12.00'

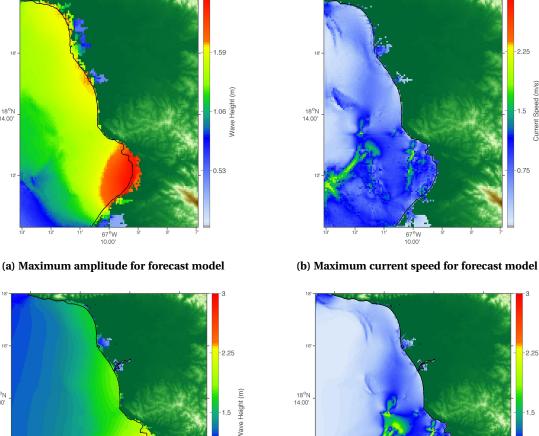
10.5

Current Speed

35

13

9.75


65

3.25

(m/s)

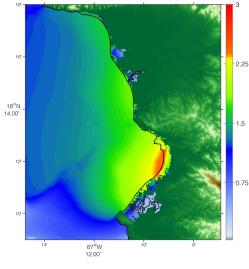
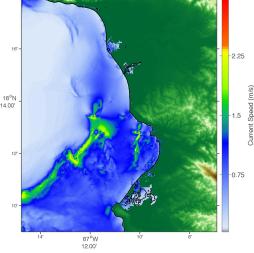

Current Speed

Figure 12: Computed results of maximum amplitude and currents speed for a synthetic  $M_w$  9.3 earthquake from ATSZ 48-57 are shown above for forecast and reference models.

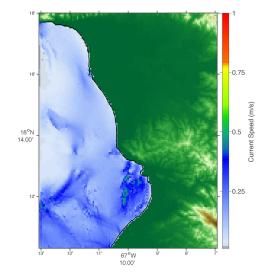


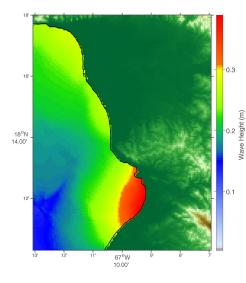
2.12


18<sup>°</sup>N 14.00'



(c) Maximum amplitude for reference model


2.25


0.75



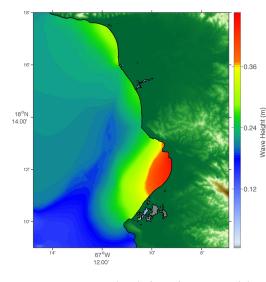
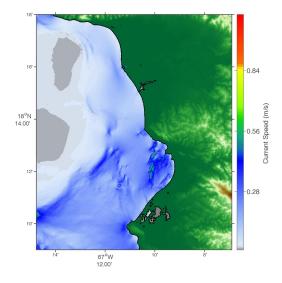

(d) Maximum current speed for reference model

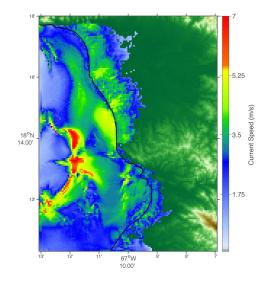
Figure 13: Computed results of maximum amplitude and currents speed for a synthetic  $M_w$  9.3 earthquake from ATSZ 58-67 are shown above for forecast and reference models.

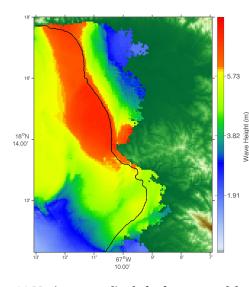





(a) Maximum amplitude for forecast model




(c) Maximum amplitude for reference model


(b) Maximum current speed for forecast model



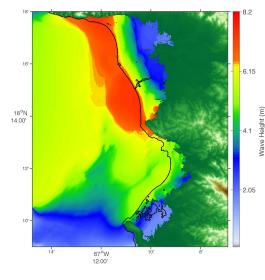
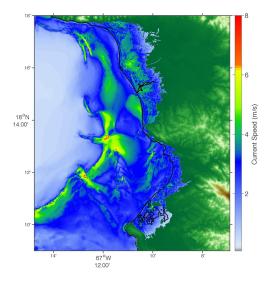

(d) Maximum current speed for reference model

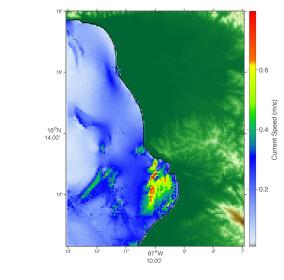
Figure 14: Computed results of maximum amplitude and currents speed for a synthetic  $M_w$  9.3 earthquake from ATSZ 68-77 are shown above for forecast and reference models.

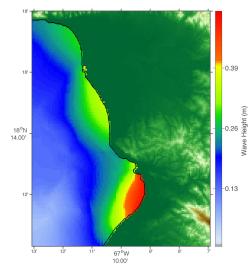





(a) Maximum amplitude for forecast model




(c) Maximum amplitude for reference model


(b) Maximum current speed for forecast model



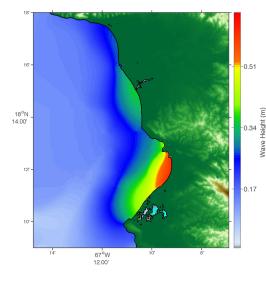
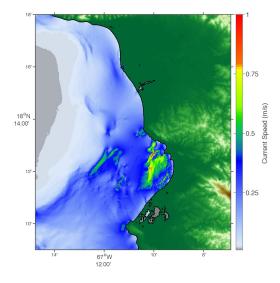

(d) Maximum current speed for reference model

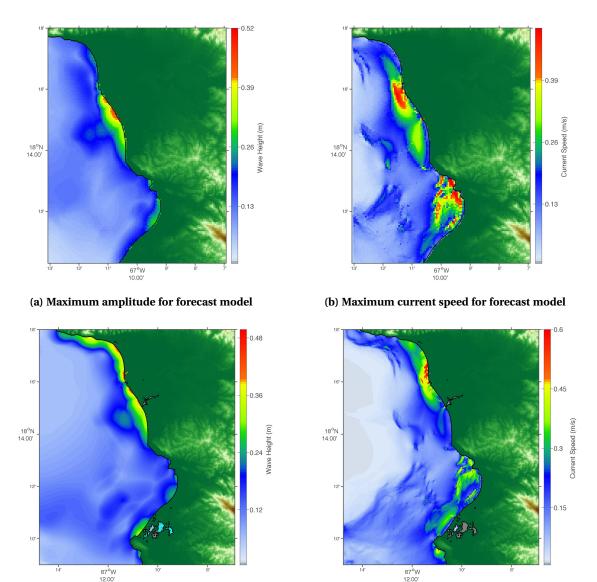
Figure 15: Computed results of maximum amplitude and currents speed for a synthetic  $M_w$  9.3 earthquake from ATSZ 82-91 are shown above for forecast and reference models.






(a) Maximum amplitude for forecast model

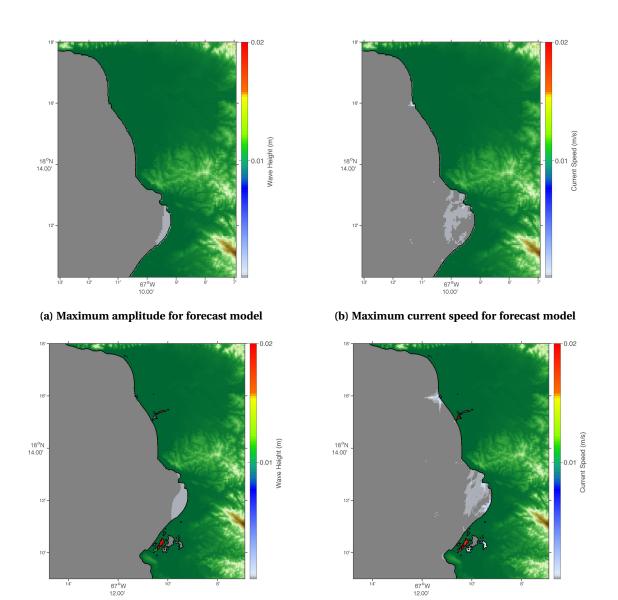



(c) Maximum amplitude for reference model

(b) Maximum current speed for forecast model



(d) Maximum current speed for reference model


Figure 16: Computed results of maximum amplitude and currents speed for a synthetic  $M_w$  9.3 earthquake from SSSZ 1 are shown above for forecast and reference models.



(c) Maximum amplitude for reference model

(d) Maximum current speed for reference model

Figure 17: Computed results of maximum amplitude and currents speed for a synthetic  $M_w$  7.5 earthquake from ATSZ 52b are shown above for forecast and reference models.



(c) Maximum amplitude for reference model

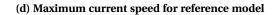



Figure 18: Computed results of maximum amplitude and currents speed for a synthetic  $M_w$  6.2 earthquake from SSSZ 11 with 0.1 m slip are shown above for forecast and reference models.

# **TABLES**

Table 1: One reference model and a set of five forecast models are designed in this study. Designed five forecast model use difference variance of grids for optimal prediction and computation time

| tation time. | 4.0.11                      | D.C. 1                         | 0.0.11                    | 0           |
|--------------|-----------------------------|--------------------------------|---------------------------|-------------|
| Model Name   | A Grid                      | B Grid                         | C Grid                    | Computation |
|              |                             |                                |                           | Time (min)  |
| Reference    | mayaguez_24s-ssl.1nod       | mayaguez_6s_s2-ssl_1nod_c2-ssl | mayaguez_1s_s2_c-ssl.1nod |             |
| model (R)    | 24 arc-sec                  | 6 arc-sec                      | 1 arc-sec                 |             |
| Forecase     | A5_45s_1nd_SSL1.9.asc.topo1 | SJ_grid_B-ssl_1nod             | mayaguez_3s_s_1n_c-ssl    | 25.0167     |
| model (S1)   | 45 arc-sec                  | 12 arc-sec                     | 3 arc-sec                 |             |
|              | Larger coverage             | Higher resolution              | Larger coverage           |             |
| Forecase     | A5_45s_1nd_SSL1.9.asc.topo1 | mayaguez_21s-ssl               | mayaguez_3s_s_1n_c-ssl    | 16.6000     |
| model (S2)   | 45 arc-sec                  | 21 arc-sec                     | 3 arc-sec                 |             |
|              | Larger coverage             | Lower resolution               | Larger coverage           |             |
| Forecase     | mayaguez_45s-ssl.1nod       | mayaguez_21s-ssl               | mayaguez_3s_s_1n_c-ssl    | 12.0167     |
| model (S3)   | 45 arc-sec                  | 21 arc-sec                     | 3 arc-sec                 |             |
|              | Smaller coverage            | Lower resolution               | Larger coverage           |             |
| Forecase     | A5_45s_1nd_SSL1.9.asc.topo1 | mayaguez_21s-ssl               | mayaguez_3s_s2-ssl        | 12.767      |
| model (S4)   | 45 arc-sec                  | 21 arc-sec                     | 3 arc-sec                 |             |
|              | Larger coverage             | Lower resolution               | Smaller coverage          |             |
| Forecase     | mayaguez_45s-ssl.1nod       | mayaguez_21s-ssl               | mayaguez_3s_s2-ssl        | 9.0667      |
| model (S5)   | 45 arc-sec                  | 21 arc-sec                     | 3 arc-sec                 |             |
|              | Smaller coverage            | Lower resolution               | Smaller coverage          |             |

|                             |                                      | Ref       | ference | Model |      | For       | ecast M | odel |      |
|-----------------------------|--------------------------------------|-----------|---------|-------|------|-----------|---------|------|------|
|                             |                                      | Coverage  | Cell    | nx    | Time | Coverage  | Cell    | nx   | Time |
|                             |                                      | Lat. [°N] | Size    | х     | Step | Lat. [°N] | Size    | х    | Step |
| Grid                        | Region                               | Lon. [°W] | ["]     | ny    |      | Lon. [°W] | ["]     | ny   | Step |
|                             |                                      | 16.597-   |         |       |      | 16.500-   |         |      |      |
| А                           | North East                           | 18.950    |         | 1200  |      | 18.950    |         | 610  |      |
|                             | Caribbean Sea                        | 291.000-  | 24      | ×     | 2.25 | 18.950-   | 47      | ×    | 4.00 |
|                             |                                      | 298.993   |         | 354   |      | 18.950    |         | 197  |      |
|                             |                                      | 17.800-   |         |       |      | 17.801-   |         |      |      |
| В                           |                                      | 18.600    |         | 1081  |      | 18.600    |         | 309  |      |
|                             | Puerto Rico                          | 292.650-  | 6       | ×     | 0.45 | 18.600-   | 21      | ×    | 2.00 |
|                             |                                      | 294.450   |         | 481   |      | 18.600    |         | 138  |      |
|                             |                                      | 18.150-   |         |       |      | 18.172-   |         |      |      |
| С                           |                                      | 18.300    |         | 474   |      | 18.300    |         | 124  |      |
|                             | Mayagüez                             | 292.754-  | 1       | ×     | 0.45 | 18.300-   | 3       | ×    | 2.00 |
|                             |                                      | 292.885   |         | 541   |      | 18.300    |         | 155  |      |
| Minimum offshore depth [m]: |                                      |           | 10.0    | )     |      |           | 1.0     |      |      |
| Wate                        | er depth for dry land ]m]:           |           | 0.1     |       |      |           | 0.1     |      |      |
| Frict                       | tion coffeficient [n <sup>2</sup> ]: |           | 0.004   | 4     |      |           | 0.003   |      |      |
| CPU                         | time for 10-hr simulation:           | 39        | 92.2334 | mins  |      | 12.       | .7667 m | nins |      |

Table 2: MOST setup parameters for reference and forecast models for Mayagüez, Puerto Rico.

Computations were performed on a single Intel Xeon processor at 2.93GHz, PowerEdge R510.

 Table 3: Synthetic tsunami events used in development of Mayagüez, Puerto Rico Forecast

 Model.

| Scenario                            | Scenario  | Source             | Tsunami Source   | α    |  |  |  |
|-------------------------------------|-----------|--------------------|------------------|------|--|--|--|
| No                                  | Name      | Zone               | Parameters       | (m)  |  |  |  |
|                                     | Ν         | lega-tsunami Scen  | arios            |      |  |  |  |
| 1                                   | ATSZ 38   | Atlantic           | A38-A47, A38-A47 | 25   |  |  |  |
| 2                                   | ATSZ 48   | Atlantic           | A48-A57, B48-B57 | 25   |  |  |  |
| 3                                   | ATSZ 58   | Atlantic           | A58-A67, B58-B67 | 25   |  |  |  |
| 4                                   | ATSZ 68   | Atlantic           | A68-A77, B68-B77 | 25   |  |  |  |
| 5                                   | ATSZ 82   | Atlantic           | A82-A91, B82-B91 | 25   |  |  |  |
| 6                                   | SSSZ 1-10 | South Sandwich     | A1-A10, B1-B10   | 25   |  |  |  |
| M <sub>w</sub> 7.5-tsunami Scenario |           |                    |                  |      |  |  |  |
| 7                                   | ATSZ B52  | Atlantic           | B52              | 1    |  |  |  |
|                                     | N         | Aicro-tsunami Scer | nario            |      |  |  |  |
| 8                                   | SSSZ B11  | South Sandwich     | B11              | 0.01 |  |  |  |

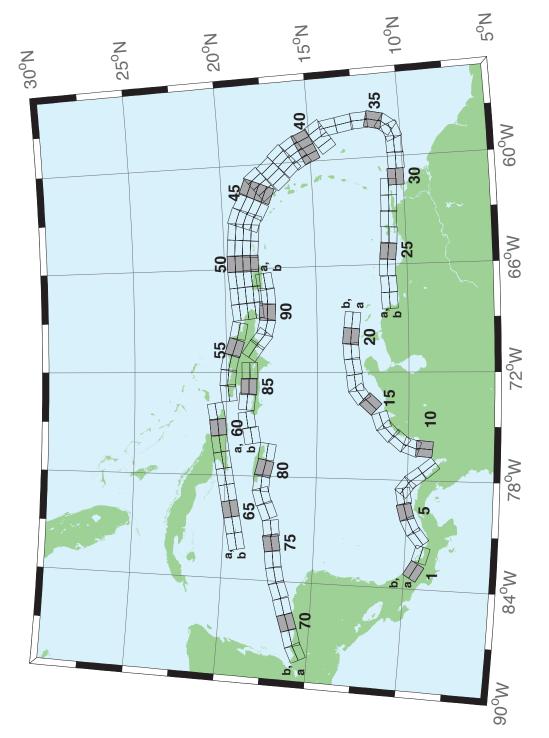
| Table 4: | : Maximum      | l and r | ninimum     | amplituc | le compı | uted dui | ring the i | developi | nent of l | Mayagüe | z, Puerto | o Rico fo | orecast M | Table 4: Maximum and minimum amplitude computed during the development of Mayagüez, Puerto Rico forecast Models are listed | eq |
|----------|----------------|---------|-------------|----------|----------|----------|------------|----------|-----------|---------|-----------|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------|----|
| Delow.   |                |         | Reference M | te Model | SI       |          | S          | 5        | No.       |         | Ň         | 4         | S5        |                                                                                                                            |    |
|          |                |         | Max.        | Min.     | Max.     | Min.     | Max.       | Min.     | Max.      | Min.    | Max.      | Min.      | Max.      | Min.                                                                                                                       |    |
|          |                |         |             | Amp      | Amp.     | Amp.     | Amp.       | Amp.     | Amp.      | Amp.    | Amp.      | Amp.      | Amp.      | Amp.                                                                                                                       |    |
|          | Scenario $M_w$ | $M_w$   | (cm)        | (cm)     | (cm)     | (cm)     | (cm)       | (cm)     | (cm)      | (cm)    | (cm)      | (cm)      | (cm)      | (cm)                                                                                                                       |    |
|          | ATSZ-38        | 9.3     |             | -50.76   | 133.87   | -50.91   | 127.48     | -50.93   | 136.24    | -51     | 110.1     | -51       | 117.71    | -50.97                                                                                                                     |    |
|          | ATSZ-48        | 9.3     | 849.8       | -50.65   | 863.8    | -50.95   | 867        | -51      | 866.34    | -50.91  | 818.95    | -50.93    | 819.71    | -50.94                                                                                                                     |    |
|          | ATSZ-58        | 9.3     | 193.83      | -50.85   | 209.54   | -51      | 208.36     | -50.94   | 208.39    | -50.99  | 176.19    | -50.76    | 168.59    | -50.94                                                                                                                     |    |
|          | ATSZ-68        | 9.3     | 36.9        | -36.09   | 40.98    | -39.5    | 39.89      | -38.64   | 39.83     | -38.57  | 31.07     | -28.21    | 31.71     | -29.28                                                                                                                     |    |
|          | ATSZ-82        |         | 609.95      | -51      | 630.88   | -50.85   | 626.08     | -50.88   | 626.23    | -50.8   | 564.27    | -51       | 573.76    | -50.75                                                                                                                     |    |
|          | SSSZ-1         |         | 39.92       | -41.05   | 44.34    | -47.35   | 42.98      | -46.1    | 42.08     | -45.9   | 31.41     | -35.09    | 33.54     | -38.91                                                                                                                     |    |
|          | ATSZ-B52       |         | 20.4        | -22.52   | 23.51    | -23.63   | 24.18      | -22.39   | 24.16     | -22.31  | 27.73     | -19.03    | 27.72     | -19.83                                                                                                                     |    |
|          | SSSZ B11       | 6.2     | 0.02        | -0.01    | 0.02     | -0.02    | 0.02       | -0.02    | 0.02      | -0.02   | 0.01      | -0.02     | 0.01      | -0.02                                                                                                                      |    |

### **Appendix A**

### A.1 Forecast model **\***.in file for Mayagüez, Puerto Rico:

0.00001 Minimum amp. of input offshore wave (m) 1.0 Minimum depth of offshore (m) 0.1 Dry land depth of inundation (m) 0.003 Friction coefficient ( $n \star \star 2$ ) 1 Let A-Grid and B-Grid run up 300.0 Max eta before blow-up (m) 2.0 Time step (sec) 18000 Total number of time steps in run (6 hours) 2 Time steps between A-Grid computations 1 Time steps between B-Grid computations 14 Time steps between output steps 0 Time steps before saving first output step 1 Save output every n-th grid point mayaguez\_run2d/A5\_45s\_1nd\_SSL1.9.asc.topo1 mayaguez\_run2d/mayaguez\_21s-ssl\_1n mayaguez\_run2d/mayaguez\_3s\_s2-ssl ./ ./ 1 1 1 1 NetCDF output for A, B, C, SIFT

1 Timeseries locations: 3 71 101 mayaguez nearest grid point to 292.8404167 E, 18.21671295 N


### A.2 Reference model **\***.in file for Mayagüez, Puerto Rico:

0.001 Minimum amp. of input offshore wave (m) 10 Minimum depth of offshore (m) 0.1 Dry land depth of inundation (m) 0.004 Friction coefficient  $(n \star \star 2)$ 1 Let A-Grid and B-Grid run up 300.0 Max eta before blow-up (m) 0.45 Time step (s) 80000 Total number of time steps in run (4.0 hours) 5 Time steps between A-grid computations 1 Time steps between B-grid computations 70 Time steps between output steps 0 Time steps before saving first output step 2 Save output every n-th grid point mayaguez\_24s-ssl.1nod mayaguez\_6s\_s2-ssl\_1nod\_c2-ssl mayaguez\_1s\_s2\_c-ssl.1nod ./ ./ 1 1 1 1 NetCDF output for A, B, C, SIFT 1 Timeseries locations:

3 313 301 mayaguez nearest grid point to 292.8404167 E, 18.21671295 N

Appendix B

**Propagation Database:** Atlantic Ocean Unit Sources





| Segment              | Description                                  | Longitude( <sup>o</sup> E) | Latitude( <sup>o</sup> N) | Strike( <sup>0</sup> ) | Dip( <sup>0</sup> ) | Depth (km) |
|----------------------|----------------------------------------------|----------------------------|---------------------------|------------------------|---------------------|------------|
| atsz–1a              | Atlantic Source Zone                         | -83.2020                   | 9.1449                    | 120                    | 27.5                | 28.09      |
| atsz–1b              | Atlantic Source Zone                         | -83.0000                   | 9.4899                    | 120                    | 27.5                | 5          |
| atsz–2a              | Atlantic Source Zone                         | -82.1932                   | 8.7408                    | 105.1                  | 27.5                | 28.09      |
| atsz–2b              | Atlantic Source Zone                         | -82.0880                   | 9.1254                    | 105.1                  | 27.5                | 5          |
| atsz–3a              | Atlantic Source Zone                         | -80.9172                   | 9.0103                    | 51.31                  | 30                  | 30         |
| atsz–3b              | Atlantic Source Zone                         | -81.1636                   | 9.3139                    | 51.31                  | 30                  | 5          |
| atsz–4a              | Atlantic Source Zone                         | -80.3265                   | 9.4308                    | 63.49                  | 30                  | 30         |
| atsz–4b              | Atlantic Source Zone                         | -80.5027                   | 9.7789                    | 63.49                  | 30                  | 5          |
| atsz–5a              | Atlantic Source Zone                         | -79.6247                   | 9.6961                    | 74.44                  | 30                  | 30         |
| atsz–5b              | Atlantic Source Zone                         | -79.7307                   | 10.0708                   | 74.44                  | 30                  | 5          |
| atsz–6a              | Atlantic Source Zone                         | -78.8069                   | 9.8083                    | 79.71                  | 30                  | 30         |
| atsz–6b              | Atlantic Source Zone                         | -78.8775                   | 10.1910                   | 79.71                  | 30                  | 5          |
| atsz–7a              | Atlantic Source Zone                         | -78.6237                   | 9.7963                    | 127.2                  | 30                  | 30         |
| atsz–7b              | Atlantic Source Zone                         | -78.3845                   | 10.1059                   | 127.2                  | 30                  | 5          |
| atsz–8a              | Atlantic Source Zone                         | -78.1693                   | 9.3544                    | 143.8                  | 30                  | 30         |
| atsz–8b              | Atlantic Source Zone                         | -77.8511                   | 9.5844                    | 143.8                  | 30                  | 5          |
| atsz–9a              | Atlantic Source Zone                         | -77.5913                   | 8.5989                    | 139.9                  | 30                  | 30         |
| atsz–9b              | Atlantic Source Zone                         | -77.2900                   | 8.8493                    | 139.9                  | 30                  | 5          |
| atsz–10a             | Atlantic Source Zone                         | -75.8109                   | 9.0881                    | 4.67                   | 17                  | 19.62      |
| atsz–10b             | Atlantic Source Zone                         | -76.2445                   | 9.1231                    | 4.67                   | 17                  | 5          |
| atsz–11a             | Atlantic Source Zone                         | -75.7406                   | 9.6929                    | 19.67                  | 17                  | 19.62      |
| atsz–11b             | Atlantic Source Zone                         | -76.1511                   | 9.8375                    | 19.67                  | 17                  | 5          |
| atsz–12a             | Atlantic Source Zone                         | -75.4763                   | 10.2042                   | 40.4                   | 17                  | 19.62      |
| atsz–12b             | Atlantic Source Zone                         | -75.8089                   | 10.4826                   | 40.4                   | 17                  | 5          |
| atsz–13a             | Atlantic Source Zone                         | -74.9914                   | 10.7914                   | 47.17                  | 17                  | 19.62      |
| atsz–13b             | Atlantic Source Zone                         | -75.2890                   | 11.1064                   | 47.17                  | 17                  | 5          |
| atsz–14a             | Atlantic Source Zone                         | -74.5666                   | 11.0708                   | 71.68                  | 17                  | 19.62      |
| atsz–14b             | Atlantic Source Zone                         | -74.7043                   | 11.4786                   | 71.68                  | 17                  | 5          |
| atsz–15a             | Atlantic Source Zone                         | -73.4576                   | 11.8012                   | 42.69                  | 17                  | 19.62      |
| atsz–15b             | Atlantic Source Zone                         | -73.7805                   | 12.0924                   | 42.69                  | 17                  | 5          |
| atsz–16a             | Atlantic Source Zone                         | -72.9788                   | 12.3365                   | 54.75                  | 17                  | 19.62      |
| atsz–16b             | Atlantic Source Zone                         | -73.2329                   | 12.6873                   | 54.75                  | 17                  | 5          |
| atsz–17a             | Atlantic Source Zone                         | -72.5454                   | 12.5061                   | 81.96                  | 17                  | 19.62      |
| atsz–17b             | Atlantic Source Zone                         | -72.6071                   | 12.9314                   | 81.96                  | 17                  | 5          |
| atsz–18a             | Atlantic Source Zone                         | -71.6045                   | 12.6174                   | 79.63                  | 17                  | 19.62      |
| atsz–18b             | Atlantic Source Zone                         | -71.6839                   | 13.0399                   | 79.63                  | 17                  | 5          |
| atsz–19a             | Atlantic Source Zone                         | -70.7970                   | 12.7078                   | 86.32                  | 17                  | 19.62      |
| atsz–19b             | Atlantic Source Zone                         | -70.8253                   | 13.1364                   | 86.32                  | 17                  | 5          |
| atsz–20a             | Atlantic Source Zone                         | -70.0246                   | 12.7185                   | 95.94                  | 17                  | 19.62      |
| atsz–20a<br>atsz–20b | Atlantic Source Zone                         | -69.9789                   | 13.1457                   | 95.94                  | 17                  | 5          |
| atsz–200<br>atsz–21a | Atlantic Source Zone                         | -69.1244                   | 12.6320                   | 95.94<br>95.94         | 17                  | 19.62      |
| atsz–21a<br>atsz–21b | Atlantic Source Zone                         | -69.0788                   | 13.0592                   | 95.94<br>95.94         | 17                  | 5          |
| atsz–210<br>atsz–22a | Atlantic Source Zone                         | -68.0338                   | 11.4286                   | 266.9                  | 17                  | 17.94      |
| atsz–22b             | Atlantic Source Zone                         | -68.0102                   | 10.9954                   | 266.9                  | 15                  | 5          |
|                      | Atlantic Source Zone                         |                            | 11.4487                   |                        |                     |            |
| atsz–23a<br>atsz–23b | Atlantic Source Zone                         | -67.1246<br>-67.1010       | 11.0155                   | 266.9<br>266.9         | 15<br>15            | 17.94<br>5 |
| atsz–230<br>atsz–24a | Atlantic Source Zone                         | -66.1656                   | 11.5055                   | 273.3                  | 15                  | 17.94      |
| atsz–24a<br>atsz–24b | Atlantic Source Zone                         | -66.1911                   | 11.0724                   | 273.3                  | 15                  | 5          |
| atsz–240<br>atsz–25a | Atlantic Source Zone                         | -65.2126                   | 11.4246                   | 275.5                  | 15                  | 17.94      |
| atsz–25a<br>atsz–25b | Atlantic Source Zone                         | -65.2616                   | 10.9934                   | 276.4                  | 15                  | 5          |
| atsz–250<br>atsz–26a | Atlantic Source Zone                         | -64.3641                   | 11.3516                   | 270.4                  | 15                  | 17.94      |
| atsz–26a<br>atsz–26b | Atlantic Source Zone                         | -64.3862                   | 10.9183                   | 272.9                  | 15                  | 5          |
|                      | Atlantic Source Zone                         |                            |                           | 272.9                  |                     | 17.94      |
| atsz–27a             |                                              | -63.4472                   | 11.3516                   |                        | 15                  |            |
| atsz–27b             | Atlantic Source Zone<br>Atlantic Source Zone | -63.4698                   | 10.9183                   | 272.9                  | 15                  | 5          |
| atsz–28a             |                                              | -62.6104                   | 11.2831                   | 271.1                  | 15                  | 17.94      |
| atsz–28b             | Atlantic Source Zone                         | -62.6189                   | 10.8493                   | 271.1                  | 15                  | 5          |
| atsz–29a             | Atlantic Source Zone                         | -61.6826                   | 11.2518                   | 271.6                  | 15                  | 17.94      |
| atsz–29b             | Atlantic Source Zone                         | -61.6947                   | 10.8181                   | 271.6                  | 15                  | 5          |
| atsz–30a             | Atlantic Source Zone                         | -61.1569                   | 10.8303                   | 269                    | 15                  | 17.94      |
| atsz–30b             | Atlantic Source Zone                         | -61.1493                   | 10.3965                   | 269                    | 15                  | 5          |

Table B.1: Earthquake parameters for Atlantic Source Zone unit sources.

Continued on next page

| C                    | De conincti c                                | Laurente 1 (OD)            | I - 414- 1 (03.7)         | 0t1 (0)                | D: (0)              | Dent d         |
|----------------------|----------------------------------------------|----------------------------|---------------------------|------------------------|---------------------|----------------|
| Segment              | Description                                  | Longitude( <sup>o</sup> E) | Latitude( <sup>0</sup> N) | Strike( <sup>0</sup> ) | Dip( <sup>0</sup> ) | Depth (km)     |
| atsz–31a             | Atlantic Source Zone                         | -60.2529                   | 10.7739                   | 269                    | 15                  | 17.94          |
| atsz–31b             | Atlantic Source Zone                         | -60.2453                   | 10.3401                   | 269                    | 15                  | 5              |
| atsz–32a             | Atlantic Source Zone                         | -59.3510                   | 10.8123                   | 269                    | 15                  | 17.94          |
| atsz–32b             | Atlantic Source Zone                         | -59.3734                   | 10.3785                   | 269                    | 15                  | 5              |
| atsz–33a             | Atlantic Source Zone                         | -58.7592                   | 10.8785                   | 248.6                  | 15                  | 17.94          |
| atsz–33b             | Atlantic Source Zone                         | -58.5984                   | 10.4745                   | 248.6                  | 15                  | 5              |
| atsz–34a             | Atlantic Source Zone                         | -58.5699                   | 11.0330                   | 217.2                  | 15                  | 17.94          |
| atsz–34b             | Atlantic Source Zone                         | -58.2179                   | 10.7710                   | 217.2                  | 15                  | 5              |
| atsz–35a             | Atlantic Source Zone                         | -58.3549                   | 11.5300                   | 193.7                  | 15                  | 17.94          |
| atsz–35b             | Atlantic Source Zone                         | -57.9248                   | 11.4274                   | 193.7                  | 15                  | 5              |
| atsz–36a             | Atlantic Source Zone                         | -58.3432                   | 12.1858                   | 177.7                  | 15                  | 17.94          |
| atsz–36b             | Atlantic Source Zone                         | -57.8997                   | 12.2036                   | 177.7                  | 15                  | 5              |
| atsz–37a             | Atlantic Source Zone                         | -58.4490                   | 12.9725                   | 170.7                  | 15                  | 17.94          |
| atsz–37b             | Atlantic Source Zone                         | -58.0095                   | 13.0424                   | 170.7                  | 15                  | 5              |
| atsz–38a             | Atlantic Source Zone                         | -58.6079                   | 13.8503                   | 170.2                  | 15                  | 17.94          |
| atsz–38b             | Atlantic Source Zone                         | -58.1674                   | 13.9240                   | 170.2                  | 15                  | 5              |
| atsz–39a             | Atlantic Source Zone                         | -58.6667                   | 14.3915                   | 146.8                  | 15                  | 17.94          |
| atsz–39b             | Atlantic Source Zone                         | -58.2913                   | 14.6287                   | 146.8                  | 15                  | 5              |
| atsz–39y             | Atlantic Source Zone                         | -59.4168                   | 13.9171                   | 146.8                  | 15                  | 43.82          |
| atsz–39z             | Atlantic Source Zone                         | -59.0415                   | 14.1543                   | 146.8                  | 15                  | 30.88          |
| atsz–40a             | Atlantic Source Zone                         | -59.1899                   | 15.2143                   | 156.2                  | 15                  | 17.94          |
| atsz–40b             | Atlantic Source Zone                         | -58.7781                   | 15.3892                   | 156.2                  | 15                  | 5              |
| atsz–40y             | Atlantic Source Zone                         | -60.0131                   | 14.8646                   | 156.2                  | 15                  | 43.82          |
| atsz–40z             | Atlantic Source Zone                         | -59.6012                   | 15.0395                   | 156.2                  | 15                  | 30.88          |
| atsz–41a             | Atlantic Source Zone<br>Atlantic Source Zone | -59.4723                   | 15.7987                   | 146.3                  | 15<br>15            | 17.94          |
| atsz–41b             | Atlantic Source Zone                         | -59.0966                   | 16.0392                   | 146.3                  | 15                  | 5<br>43.82     |
| atsz–41y             |                                              | -60.2229                   | 15.3177                   | 146.3                  |                     |                |
| atsz–41z             | Atlantic Source Zone<br>Atlantic Source Zone | -59.8473                   | 15.5582                   | 146.3                  | 15<br>15            | 30.88<br>17.94 |
| atsz–42a<br>atsz–42b | Atlantic Source Zone                         | -59.9029<br>-59.5716       | 16.4535<br>16.7494        | 137<br>137             | 15                  | 5              |
| atsz–420<br>atsz–42y | Atlantic Source Zone                         | -60.5645                   | 15.8616                   | 137                    | 15                  | 43.82          |
| atsz–42y<br>atsz–42z | Atlantic Source Zone                         | -60.2334                   | 16.1575                   | 137                    | 15                  | 43.82<br>30.88 |
| atsz–42z<br>atsz–43a | Atlantic Source Zone                         | -60.5996                   |                           | 137                    | 15                  | 30.88<br>17.94 |
| atsz–43a<br>atsz–43b | Atlantic Source Zone                         | -60.2580                   | 17.0903<br>17.3766        | 138.7                  | 15                  | 5              |
| atsz–430<br>atsz–43y | Atlantic Source Zone                         | -61.2818                   | 16.5177                   | 138.7                  | 15                  | 43.82          |
| atsz–43y<br>atsz–43z | Atlantic Source Zone                         | -60.9404                   | 16.8040                   | 138.7                  | 15                  | 43.82<br>30.88 |
| atsz–432<br>atsz–44a | Atlantic Source Zone                         | -61.1559                   | 17.8560                   | 141.1                  | 15                  | 17.94          |
| atsz–44a<br>atsz–44b | Atlantic Source Zone                         | -60.8008                   | 18.1286                   | 141.1                  | 15                  | 5              |
| atsz–440<br>atsz–44y | Atlantic Source Zone                         | -61.8651                   | 17.3108                   | 141.1                  | 15                  | 43.82          |
| atsz–44z             | Atlantic Source Zone                         | -61.5102                   | 17.5834                   | 141.1                  | 15                  | 30.88          |
| atsz–45a             | Atlantic Source Zone                         | -61.5491                   | 18.0566                   | 112.8                  | 15                  | 17.94          |
| atsz–45a<br>atsz–45b | Atlantic Source Zone                         | -61.3716                   | 18.4564                   | 112.8                  | 15                  | 5              |
| atsz–45y             | Atlantic Source Zone                         | -61.9037                   | 17.2569                   | 112.8                  | 15                  | 43.82          |
| atsz–45y             | Atlantic Source Zone                         | -61.7260                   | 17.6567                   | 112.8                  | 15                  | 30.88          |
| atsz–46a             | Atlantic Source Zone                         | -62.4217                   | 18.4149                   | 117.9                  | 15                  | 17.94          |
| atsz–46b             | Atlantic Source Zone                         | -62.2075                   | 18.7985                   | 117.9                  | 15                  | 5              |
| atsz–46y             | Atlantic Source Zone                         | -62.8493                   | 17.6477                   | 117.9                  | 15                  | 43.82          |
| atsz–46z             | Atlantic Source Zone                         | -62.6352                   | 18.0313                   | 117.9                  | 15                  | 30.88          |
| atsz–47a             | Atlantic Source Zone                         | -63.1649                   | 18.7844                   | 110.5                  | 20                  | 22.1           |
| atsz–47b             | Atlantic Source Zone                         | -63.0087                   | 19.1798                   | 110.5                  | 20                  | 5              |
| atsz–47y             | Atlantic Source Zone                         | -63.4770                   | 17.9936                   | 110.5                  | 20                  | 56.3           |
| atsz–47z             | Atlantic Source Zone                         | -63.3205                   | 18.3890                   | 110.5                  | 20                  | 39.2           |
| atsz–48a             | Atlantic Source Zone                         | -63.8800                   | 18.8870                   | 95.37                  | 20                  | 22.1           |
| atsz–48b             | Atlantic Source Zone                         | -63.8382                   | 19.3072                   | 95.37                  | 20                  | 5              |
| atsz–48y             | Atlantic Source Zone                         | -63.9643                   | 18.0465                   | 95.37                  | 20                  | 56.3           |
| atsz–40y<br>atsz–48z | Atlantic Source Zone                         | -63.9216                   | 18.4667                   | 95.37                  | 20                  | 39.2           |
| atsz–49a             | Atlantic Source Zone                         | -64.8153                   | 18.9650                   | 94.34                  | 20                  | 22.1           |
| atsz–49b             | Atlantic Source Zone                         | -64.7814                   | 19.3859                   | 94.34<br>94.34         | 20                  | 5              |
| atsz–490<br>atsz–49y | Atlantic Source Zone                         | -64.8840                   | 18.1233                   | 94.34<br>94.34         | 20                  | 56.3           |
| atsz–49z             | Atlantic Source Zone                         | -64.8492                   | 18.5442                   | 94.34<br>94.34         | 20                  | 39.2           |
|                      |                                              |                            |                           |                        |                     |                |

Table B.1 – continued from previous page

Continued on next page

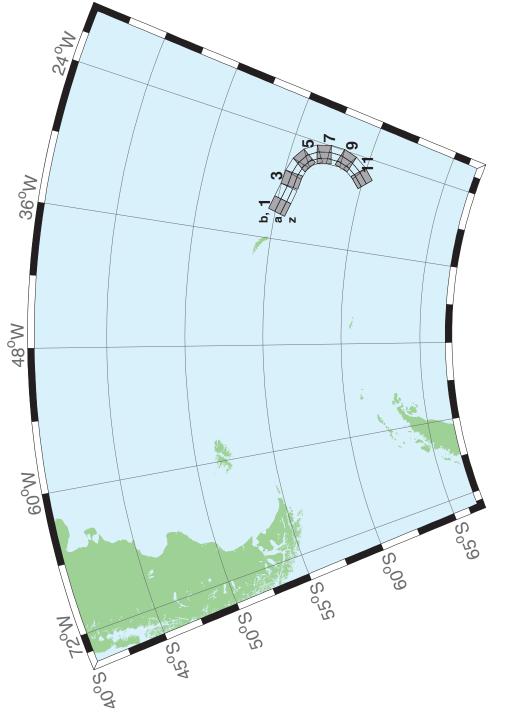

| Table B.1 – continued from previous page |                                              |                            |                           |                        |                     |            |
|------------------------------------------|----------------------------------------------|----------------------------|---------------------------|------------------------|---------------------|------------|
| Segment                                  | Description                                  | Longitude( <sup>o</sup> E) | Latitude( <sup>o</sup> N) | Strike( <sup>0</sup> ) | Dip( <sup>0</sup> ) | Depth (km) |
| atsz–50b                                 | Atlantic Source Zone                         | -65.6953                   | 19.4069                   | 89.59                  | 20                  | 5          |
| atsz–50y                                 | Atlantic Source Zone                         | -65.6874                   | 18.1407                   | 89.59                  | 20                  | 56.3       |
| atsz–50z                                 | Atlantic Source Zone                         | -65.6887                   | 18.5628                   | 89.59                  | 20                  | 39.2       |
| atsz–51a                                 | Atlantic Source Zone                         | -66.5742                   | 18.9484                   | 84.98                  | 20                  | 22.1       |
| atsz–51b                                 | Atlantic Source Zone                         | -66.6133                   | 19.3688                   | 84.98                  | 20                  | 5          |
| atsz–51y                                 | Atlantic Source Zone                         | -66.4977                   | 18.1076                   | 84.98                  | 20                  | 56.3       |
| atsz–51z                                 | Atlantic Source Zone                         | -66.5353                   | 18.5280                   | 84.98                  | 20                  | 39.2       |
| atsz–52a                                 | Atlantic Source Zone                         | -67.5412                   | 18.8738                   | 85.87                  | 20                  | 22.1       |
| atsz–52b                                 | Atlantic Source Zone                         | -67.5734                   | 19.2948                   | 85.87                  | 20                  | 5          |
| atsz–52y                                 | Atlantic Source Zone                         | -67.4781                   | 18.0319                   | 85.87                  | 20                  | 56.3       |
| atsz–52z                                 | Atlantic Source Zone                         | -67.5090                   | 18.4529                   | 85.87                  | 20                  | 39.2       |
| atsz–53a                                 | Atlantic Source Zone                         | -68.4547                   | 18.7853                   | 83.64                  | 20                  | 22.1       |
| atsz–53b                                 | Atlantic Source Zone                         | -68.5042                   | 19.2048                   | 83.64                  | 20                  | 5          |
| atsz–53y                                 | Atlantic Source Zone                         | -68.3575                   | 17.9463                   | 83.64                  | 20                  | 56.3       |
| atsz–53z                                 | Atlantic Source Zone                         | -68.4055                   | 18.3658                   | 83.64                  | 20                  | 39.2       |
| atsz–54a                                 | Atlantic Source Zone                         | -69.6740                   | 18.8841                   | 101.5                  | 20                  | 22.1       |
| atsz–54b                                 | Atlantic Source Zone                         | -69.5846                   | 19.2976                   | 101.5                  | 20                  | 5          |
| atsz–55a                                 | Atlantic Source Zone                         | -70.7045                   | 19.1376                   | 108.2                  | 20                  | 22.1       |
| atsz–55b                                 | Atlantic Source Zone                         | -70.5647                   | 19.5386                   | 108.2                  | 20                  | 5          |
| atsz–56a                                 | Atlantic Source Zone                         | -71.5368                   | 19.3853                   | 102.6                  | 20                  | 22.1       |
| atsz–56b                                 | Atlantic Source Zone                         | -71.4386                   | 19.7971                   | 102.6                  | 20                  | 5          |
| atsz–57a                                 | Atlantic Source Zone                         | -72.3535                   | 19.4838                   | 94.2                   | 20                  | 22.1       |
| atsz–57b                                 | Atlantic Source Zone                         | -72.3206                   | 19.9047                   | 94.2                   | 20                  | 5          |
| atsz–58a                                 | Atlantic Source Zone                         | -73.1580                   | 19.4498                   | 84.34                  | 20                  | 22.1       |
| atsz–58b                                 | Atlantic Source Zone                         | -73.2022                   | 19.8698                   | 84.34                  | 20                  | 5          |
| atsz–59a                                 | Atlantic Source Zone                         | -74.3567                   | 20.9620                   | 259.7                  | 20                  | 22.1       |
| atsz–59b                                 | Atlantic Source Zone                         | -74.2764                   | 20.5467                   | 259.7                  | 20                  | 5          |
| atsz–60a                                 | Atlantic Source Zone                         | -75.2386                   | 20.8622                   | 264.2                  | 15                  | 17.94      |
| atsz–60b                                 | Atlantic Source Zone                         | -75.1917                   | 20.4306                   | 264.2                  | 15                  | 5          |
| atsz–61a                                 | Atlantic Source Zone                         | -76.2383                   | 20.7425                   | 260.7                  | 15                  | 17.94      |
| atsz–61b                                 | Atlantic Source Zone                         | -76.1635                   | 20.3144                   | 260.7                  | 15                  | 5          |
| atsz–62a                                 | Atlantic Source Zone<br>Atlantic Source Zone | -77.2021                   | 20.5910                   | 259.9                  | 15                  | 17.94      |
| atsz–62b                                 |                                              | -77.1214                   | 20.1638                   | 259.9                  | 15                  | 5          |
| atsz–63a<br>atsz–63b                     | Atlantic Source Zone<br>Atlantic Source Zone | -78.1540<br>-78.0661       | 20.4189                   | 259                    | 15<br>15            | 17.94<br>5 |
| atsz–64a                                 | Atlantic Source Zone                         | -79.0959                   | 19.9930<br>20.2498        | 259<br>259.2           | 15                  | 17.94      |
| atsz–64b                                 | Atlantic Source Zone                         | -79.0098                   | 19.8236                   | 259.2                  | 15                  | 5          |
| atsz–640<br>atsz–65a                     | Atlantic Source Zone                         |                            |                           | 259.2                  | 15                  | 17.94      |
| atsz–65a<br>atsz–65b                     | Atlantic Source Zone                         | -80.0393<br>-79.9502       | 20.0773<br>19.6516        | 258.9                  | 15                  | 5          |
| atsz–65b<br>atsz–66a                     | Atlantic Source Zone                         | -80.9675                   | 19.8993                   | 258.6                  | 15                  | 17.94      |
| atsz–66b                                 | Atlantic Source Zone                         | -80.8766                   | 19.4740                   | 258.6                  | 15                  | 5          |
| atsz–600<br>atsz–67a                     | Atlantic Source Zone                         | -81.9065                   | 19.7214                   | 258.5                  | 15                  | 17.94      |
| atsz–67b                                 | Atlantic Source Zone                         | -81.8149                   | 19.2962                   | 258.5                  | 15                  | 5          |
| atsz–68a                                 | Atlantic Source Zone                         | -87.8003                   | 15.2502                   | 62.69                  | 15                  | 17.94      |
| atsz–68b                                 | Atlantic Source Zone                         | -88.0070                   | 15.6364                   | 62.69                  | 15                  | 5          |
| atsz–69a                                 | Atlantic Source Zone                         | -87.0824                   | 15.5331                   | 72.73                  | 15                  | 17.94      |
| atsz–69b                                 | Atlantic Source Zone                         | -87.2163                   | 15.9474                   | 72.73                  | 15                  | 5          |
| atsz–70a                                 | Atlantic Source Zone                         | -86.1622                   | 15.8274                   | 70.64                  | 15                  | 17.94      |
| atsz–70b                                 | Atlantic Source Zone                         | -86.3120                   | 16.2367                   | 70.64                  | 15                  | 5          |
| atsz–71a                                 | Atlantic Source Zone                         | -85.3117                   | 16.1052                   | 73.7                   | 15                  | 17.94      |
| atsz–71b                                 | Atlantic Source Zone                         | -85.4387                   | 16.5216                   | 73.7                   | 15                  | 5          |
| atsz–72a                                 | Atlantic Source Zone                         | -84.3470                   | 16.3820                   | 69.66                  | 15                  | 17.94      |
| atsz–72b                                 | Atlantic Source Zone                         | -84.5045                   | 16.7888                   | 69.66                  | 15                  | 5          |
| atsz–73a                                 | Atlantic Source Zone                         | -83.5657                   | 16.6196                   | 77.36                  | 15                  | 17.94      |
| atsz–73b                                 | Atlantic Source Zone                         | -83.6650                   | 17.0429                   | 77.36                  | 15                  | 5          |
| atsz–74a                                 | Atlantic Source Zone                         | -82.7104                   | 16.7695                   | 82.35                  | 15                  | 17.94      |
| atsz–74b                                 | Atlantic Source Zone                         | -82.7709                   | 17.1995                   | 82.35                  | 15                  | 5          |
| atsz–740<br>atsz–75a                     | Atlantic Source Zone                         | -81.7297                   | 16.9003                   | 79.86                  | 15                  | 17.94      |
| atsz–75b                                 | Atlantic Source Zone                         | -81.8097                   | 17.3274                   | 79.86                  | 15                  | 5          |
|                                          | Atlantic Source Zone                         | -80.9196                   | 16.9495                   | 82.95                  | 15                  | 17.94      |
| atsz–76a                                 |                                              |                            |                           |                        |                     |            |

Table B.1 – continued from previous page

Continued on next page

| Table B.1 – continued from previous page |                      |                            |                           |                        |                     |            |
|------------------------------------------|----------------------|----------------------------|---------------------------|------------------------|---------------------|------------|
| Segment                                  | Description          | Longitude( <sup>o</sup> E) | Latitude( <sup>o</sup> N) | Strike( <sup>0</sup> ) | Dip( <sup>0</sup> ) | Depth (km) |
| atsz–77a                                 | Atlantic Source Zone | -79.8086                   | 17.2357                   | 67.95                  | 15                  | 17.94      |
| atsz–77b                                 | Atlantic Source Zone | -79.9795                   | 17.6378                   | 67.95                  | 15                  | 5          |
| atsz–78a                                 | Atlantic Source Zone | -79.0245                   | 17.5415                   | 73.61                  | 15                  | 17.94      |
| atsz–78b                                 | Atlantic Source Zone | -79.1532                   | 17.9577                   | 73.61                  | 15                  | 5          |
| atsz–79a                                 | Atlantic Source Zone | -78.4122                   | 17.5689                   | 94.07                  | 15                  | 17.94      |
| atsz–79b                                 | Atlantic Source Zone | -78.3798                   | 18.0017                   | 94.07                  | 15                  | 5          |
| atsz–80a                                 | Atlantic Source Zone | -77.6403                   | 17.4391                   | 103.3                  | 15                  | 17.94      |
| atsz–80b                                 | Atlantic Source Zone | -77.5352                   | 17.8613                   | 103.3                  | 15                  | 5          |
| atsz–81a                                 | Atlantic Source Zone | -76.6376                   | 17.2984                   | 98.21                  | 15                  | 17.94      |
| atsz–81b                                 | Atlantic Source Zone | -76.5726                   | 17.7278                   | 98.21                  | 15                  | 5          |
| atsz–82a                                 | Atlantic Source Zone | -75.7299                   | 19.0217                   | 260.1                  | 15                  | 17.94      |
| atsz–82b                                 | Atlantic Source Zone | -75.6516                   | 18.5942                   | 260.1                  | 15                  | 5          |
| atsz–83a                                 | Atlantic Source Zone | -74.8351                   | 19.2911                   | 260.8                  | 15                  | 17.94      |
| atsz–83b                                 | Atlantic Source Zone | -74.7621                   | 18.8628                   | 260.8                  | 15                  | 5          |
| atsz–84a                                 | Atlantic Source Zone | -73.6639                   | 19.2991                   | 274.8                  | 15                  | 17.94      |
| atsz–84b                                 | Atlantic Source Zone | -73.7026                   | 18.8668                   | 274.8                  | 15                  | 5          |
| atsz–85a                                 | Atlantic Source Zone | -72.8198                   | 19.2019                   | 270.6                  | 15                  | 17.94      |
| atsz–85b                                 | Atlantic Source Zone | -72.8246                   | 18.7681                   | 270.6                  | 15                  | 5          |
| atsz–86a                                 | Atlantic Source Zone | -71.9143                   | 19.1477                   | 269.1                  | 15                  | 17.94      |
| atsz–86b                                 | Atlantic Source Zone | -71.9068                   | 18.7139                   | 269.1                  | 15                  | 5          |
| atsz–87a                                 | Atlantic Source Zone | -70.4738                   | 18.8821                   | 304.5                  | 15                  | 17.94      |
| atsz–87b                                 | Atlantic Source Zone | -70.7329                   | 18.5245                   | 304.5                  | 15                  | 5          |
| atsz–88a                                 | Atlantic Source Zone | -69.7710                   | 18.3902                   | 308.9                  | 15                  | 17.94      |
| atsz–88b                                 | Atlantic Source Zone | -70.0547                   | 18.0504                   | 308.4                  | 15                  | 5          |
| atsz–89a                                 | Atlantic Source Zone | -69.2635                   | 18.2099                   | 283.9                  | 15                  | 17.94      |
| atsz–89b                                 | Atlantic Source Zone | -69.3728                   | 17.7887                   | 283.9                  | 15                  | 5          |
| atsz–90a                                 | Atlantic Source Zone | -68.5059                   | 18.1443                   | 272.9                  | 15                  | 17.94      |
| atsz–90b                                 | Atlantic Source Zone | -68.5284                   | 17.7110                   | 272.9                  | 15                  | 5          |
| atsz–91a                                 | Atlantic Source Zone | -67.6428                   | 18.1438                   | 267.8                  | 15                  | 17.94      |
| atsz–91b                                 | Atlantic Source Zone | -67.6256                   | 17.7103                   | 267.8                  | 15                  | 5          |
| atsz–92a                                 | Atlantic Source Zone | -66.8261                   | 18.2536                   | 262                    | 15                  | 17.94      |
| atsz–92b                                 | Atlantic Source Zone | -66.7627                   | 17.8240                   | 262                    | 15                  | 5          |

Table B.1 – continued from previous page





| Segment  | Description                            | Longitude( <sup>o</sup> E) | Latitude( <sup>o</sup> N) | Strike( <sup>0</sup> ) | Dip( <sup>0</sup> ) | Depth (km) |
|----------|----------------------------------------|----------------------------|---------------------------|------------------------|---------------------|------------|
| sssz–1a  | South Sandwich Islands Subduction Zone | -32.3713                   | -55.4655                  | 104.7                  | 28.53               | 17.51      |
| sssz–1b  | South Sandwich Islands Subduction Zone | -32.1953                   | -55.0832                  | 104.7                  | 9.957               | 8.866      |
| sssz-1z  | South Sandwich Islands Subduction Zone | -32.5091                   | -55.7624                  | 104.7                  | 46.99               | 41.39      |
| sssz-2a  | South Sandwich Islands Subduction Zone | -30.8028                   | -55.6842                  | 102.4                  | 28.53               | 17.51      |
| sssz–2b  | South Sandwich Islands Subduction Zone | -30.6524                   | -55.2982                  | 102.4                  | 9.957               | 8.866      |
| sssz-2z  | South Sandwich Islands Subduction Zone | -30.9206                   | -55.9839                  | 102.4                  | 46.99               | 41.39      |
| sssz–3a  | South Sandwich Islands Subduction Zone | -29.0824                   | -55.8403                  | 95.53                  | 28.53               | 17.51      |
| sssz–3b  | South Sandwich Islands Subduction Zone | -29.0149                   | -55.4468                  | 95.53                  | 9.957               | 8.866      |
| sssz–3z  | South Sandwich Islands Subduction Zone | -29.1353                   | -56.1458                  | 95.53                  | 46.99               | 41.39      |
| sssz–4a  | South Sandwich Islands Subduction Zone | -27.8128                   | -55.9796                  | 106.1                  | 28.53               | 17.51      |
| sssz–4b  | South Sandwich Islands Subduction Zone | -27.6174                   | -55.5999                  | 106.1                  | 9.957               | 8.866      |
| sssz-4z  | South Sandwich Islands Subduction Zone | -27.9659                   | -56.2744                  | 106.1                  | 46.99               | 41.39      |
| sssz–5a  | South Sandwich Islands Subduction Zone | -26.7928                   | -56.2481                  | 123.1                  | 28.53               | 17.51      |
| sssz–5b  | South Sandwich Islands Subduction Zone | -26.4059                   | -55.9170                  | 123.1                  | 9.957               | 8.866      |
| sssz–5z  | South Sandwich Islands Subduction Zone | -27.0955                   | -56.5052                  | 123.1                  | 46.99               | 41.39      |
| sssz–6a  | South Sandwich Islands Subduction Zone | -26.1317                   | -56.6466                  | 145.6                  | 23.28               | 16.11      |
| sssz–6b  | South Sandwich Islands Subduction Zone | -25.5131                   | -56.4133                  | 145.6                  | 9.09                | 8.228      |
| sssz–6z  | South Sandwich Islands Subduction Zone | -26.5920                   | -56.8194                  | 145.6                  | 47.15               | 35.87      |
| sssz–7a  | South Sandwich Islands Subduction Zone | -25.6787                   | -57.2162                  | 162.9                  | 21.21               | 14.23      |
| sssz–7b  | South Sandwich Islands Subduction Zone | -24.9394                   | -57.0932                  | 162.9                  | 7.596               | 7.626      |
| sssz–7z  | South Sandwich Islands Subduction Zone | -26.2493                   | -57.3109                  | 162.9                  | 44.16               | 32.32      |
| sssz–8a  | South Sandwich Islands Subduction Zone | -25.5161                   | -57.8712                  | 178.2                  | 20.33               | 15.91      |
| sssz–8b  | South Sandwich Islands Subduction Zone | -24.7233                   | -57.8580                  | 178.2                  | 8.449               | 8.562      |
| sssz–8z  | South Sandwich Islands Subduction Zone | -26.1280                   | -57.8813                  | 178.2                  | 43.65               | 33.28      |
| sssz–9a  | South Sandwich Islands Subduction Zone | -25.6657                   | -58.5053                  | 195.4                  | 25.76               | 15.71      |
| sssz–9b  | South Sandwich Islands Subduction Zone | -24.9168                   | -58.6127                  | 195.4                  | 8.254               | 8.537      |
| sssz–9z  | South Sandwich Islands Subduction Zone | -26.1799                   | -58.4313                  | 195.4                  | 51.69               | 37.44      |
| sssz-10a | South Sandwich Islands Subduction Zone | -26.1563                   | -59.1048                  | 212.5                  | 32.82               | 15.65      |
| sssz-10b | South Sandwich Islands Subduction Zone | -25.5335                   | -59.3080                  | 212.5                  | 10.45               | 6.581      |
| sssz-10z | South Sandwich Islands Subduction Zone | -26.5817                   | -58.9653                  | 212.5                  | 54.77               | 42.75      |
| sssz–11a | South Sandwich Islands Subduction Zone | -27.0794                   | -59.6799                  | 224.2                  | 33.67               | 15.75      |
| sssz–11b | South Sandwich Islands Subduction Zone | -26.5460                   | -59.9412                  | 224.2                  | 11.32               | 5.927      |
| sssz-11z | South Sandwich Islands Subduction Zone | -27.4245                   | -59.5098                  | 224.2                  | 57.19               | 43.46      |

Table B.2: Earthquake parameters for South Sandwich Islands Subduction Zone unit sources.

### Appendix C

## **SIFT Testing**

Authors: Burak Uslu, Lindsey Wright

### C.1 Purpose

Forecast models are tested with synthetic tsunami events covering a range of tsunami source locations and magnitudes. Testing is also done with selected historical tsunami events when available.

The purpose of forecast model testing is three-fold. The first objective is to assure that the results obtained with the NOAA's tsunami forecast system software, which has been released to the Tsunami Warning Centers for operational use, are consistent with those obtained by the researcher during the development of the forecast model. The second objective is to test the forecast model for consistency, accuracy, time efficiency, and quality of results over a range of possible tsunami locations and magnitudes. The third objective is to identify bugs and issues in need of resolution by the researcher who developed the Forecast Model or by the forecast system software development team before the next version release to NOAA's two Tsunami Warning Centers.

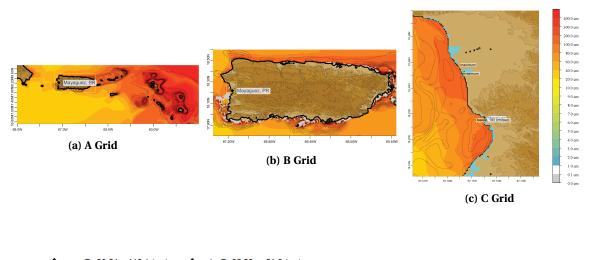
Local hardware and software applications, and tools familiar to the researcher(s), are used to run the Method of Splitting Tsunamis (MOST) model during the forecast model development. The test results presented in this report lend confidence that the model performs as developed and produces the same results when initiated within the forecast system application in an operational setting as those produced by the researcher during the forecast model development. The test results assure those who rely on the Savannah tsunami forecast model that consistent results are produced irrespective of system.

### C.2 Testing Procedure

The general procedure for forecast model testing is to run a set of synthetic tsunami scenarios and a selected set of historical tsunami events through the forecast system application and compare the results with those obtained by the researcher during the forecast model development and presented in the Tsunami Forecast Model Report. Specific steps taken to test the model include:

- 1. Identification of testing scenarios, including the standard set of synthetic events, appropriate historical events, and customized synthetic scenarios that may have been used by the researcher(s) in developing the forecast model.
- 2. Creation of new events to represent customized synthetic scenarios used by the researcher(s) in developing the forecast model, if any.
- 3. Submission of test model runs with the forecast system, and export of the results from A, B, and C grids, along with time series.
- 4. Recording applicable metadata, including the specific version used for testing.
- 5. Examination of forecast system model results for instabilities in both time series and plot results.
- 6. Comparison of forecast model results obtained through the forecast system with those obtained during the forecast model development.
- 7. Summarization of results with specific mention of quality, consistency, and time efficiency.
- 8. Reporting of issues identified to modeler and forecast software development team.
- 9. Retesting the forecast models in the forecast system when reported issues have been addressed or explained.

Synthetic model runs were tested on a DELL PowerEdge R510 computer equipped with two Xeon E5670 processors at 2.93 Ghz, each with 12 MBytes of cache and 32GB memory. The processors are hex core and support hyperthreading, resulting in the computer performing as a 24 processor core machine. Additionally, the testing computer supports 10 Gigabit Ethernet for fast network connections. This computer configuration is similar or the same as the configurations of the computers installed at the Tsunami Warning Centers so the compute times should only vary slightly.


#### C.3 Results

The Mayaguez forecast model was tested with SIFT version 3.2.

The Mayaguez, Puerto Rico forecast model was tested with three synthetic scenarios. Test results from the forecast system and comparisons with the results obtained during the forecast model development are shown numerically in Table C.1 and graphically in Figures C.1,C.2 and C.3. The results show that the minimum and maximum amplitudes and time series obtained from the forecast system agree with those obtained during the forecast model development, and that the forecast model is stable and robust, with consistent and high quality results across geographically distributed tsunami sources. The model run time (wall clock time) was 12.55 minutes for 10 hours of simulation time, and 5.0 minutes for 4.0 hours. This run time is within the 10 minute run time for 4 hours of simulation time and satisfies run time requirements.

A suite of three synthetic events was run on the Mayaguez forecast model. The modeled scenarios were stable for all cases run. Amplitudes of less than 75 centimeters (cm) were observed for all cases tested. The largest modeled height was 818.9 cm from the Atlantic (ATSZ

48-57) source zone. The smallest signal of 31.4 cm was recorded at the far field South Sandwich (SSSZ 1-10) source zone. The comparisons between the development cases and the forecast system output were consistent in shape and amplitude for all three cases. The Mayaguez reference point used for the forecast model development is the same as what is deployed in the forecast system, so the results can be considered valid for the three cases studied.



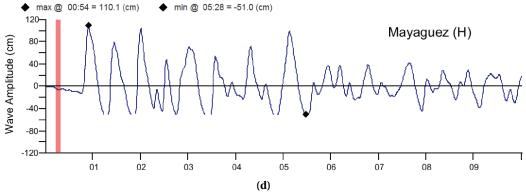



Figure C.1: Response of the Mayaguez forecast model to synthetic scenario ATSZ 38-47 (al-pha=25). Maximum sea surface elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d) The lower time series plot is the result obtained during model development and is shown for comparison with test results.

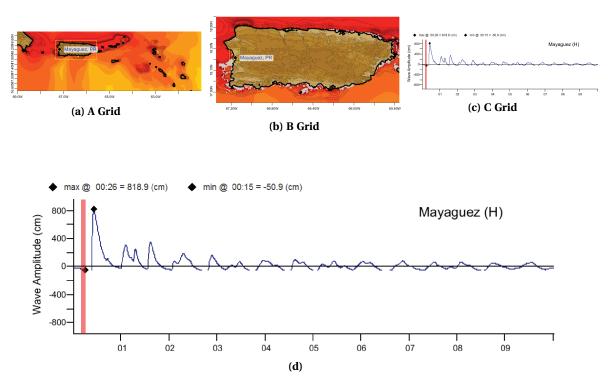
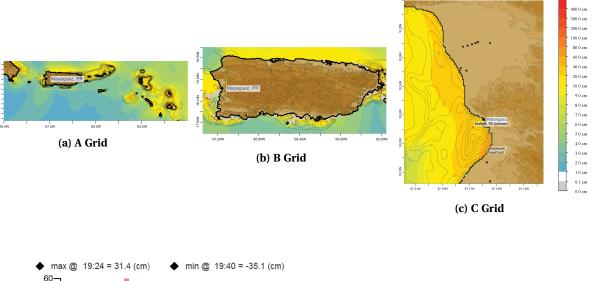




Figure C.2: Response of the Mayaguez forecast model to synthetic scenario ATSZ 48-57 (al-pha=25). Maximum sea surface elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d) The lower time series plot is the result obtained during model development and is shown for comparison with test results.



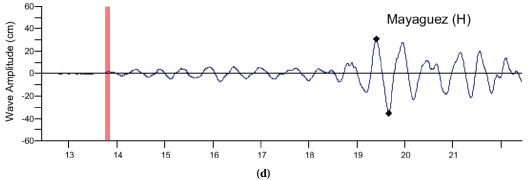



Figure C.3: Response of the Mayaguez forecast model to synthetic scenario SSSZ 1-10 (al-pha=25). Maximum sea surface elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d) The lower time series plot is the result obtained during model development and is shown for comparison with test results.

| )<br>)        |             |                |     |            |             |          |                        |
|---------------|-------------|----------------|-----|------------|-------------|----------|------------------------|
| Scenario Name | Source Zone | Tsunami Source | α   | SIFT Max I | Jevelopment | SIFT Min | SIFT Min   Development |
|               |             |                | (m) | (cm)       | Max (cm)    | (cm)     | Min (cm)               |

-51.0 -50.93 -35.09

-51.0 -50.9 -35.1

 $\begin{array}{c} 110.1 \\ 818.95 \\ 31.41 \end{array}$ 

110.1818.931.4

25 25 25

A38-A47, B38-B47 A48-A57, B48-B57 A1-A10, B1-B10

South Sandwich

Atlantic Atlantic

ATSZ 35-44 ATSZ 48-57 SSSZ 1-10

| varning point for synthetic and historical                 |                                                               |
|------------------------------------------------------------|---------------------------------------------------------------|
| and minimum amplitudes (cm) at the Mayaguez, Puerto Rico v | events tested using SIFT 3.2 and obtained during development. |
| Table C.1: Table of maximum and min                        | events tested using                                           |

## Glossary

- **Arrival time** The time when the first tsunami wave is observed at a particular location, typically given in local and/or universal time, but also commonly noted in minutes or hours relative to the time of the earthquake.
- Bathymetry The measurement of water depth of an undisturbed body of water.
- **Cascadia Subduction Zone** Fault that extends from Cape Mendocino in Northern California northward to mid-Vancouver Island Canada. The fault marks the convergence boundary where the Juan de Fuca tectonic plate is being subducted under the margin of the North America plate.
- Current speed The scalar rate of water motion measured as distance/time.
- **Current velocity** Movement of water expressed as a vector quantity. Velocity is the distance of movement per time coupled with direction of motion.
- **Digital Elevation Model (DEM)** A digital representation of bathymetry or topography based on regional survey data or satellite imagery. Data are arrays of regularly spaced elevations referenced to a map projection of the geographic coordinate system.
- **Epicenter** The point on the surface of the earth that is directly above the focus of an earthquake.
- **Focus** The point beneath the surface of the earth where a rupture or energy release occurs due to a buildup of stress or the movement of earth's tectonic plates relative to one another.
- **Inundation** The horizontal inland extent of land that a tsunami penetrates, generally measured perpendicularly to a shoreline.
- **Marigram** Tide gauge recording of wave level as a function of time at a particular location. The instrument used for recording is termed a marigraph.
- **Moment Magnitude** ( $M_W$ ) The magnitude of an earthquake on a logarithmic scale in terms of the energy released. Moment magnitude is based on the size and characteristics of a fault rupture as determined from long-period seismic waves.
- **Method of Splitting Tsunamis (MOST)** A suite of numerical simulation codes used to provide estimates of the three processes of tsunami evolution: tsunami generation, propagation, and inundation.

- **Near-field** A particular location at which the earth's deformation due to energy release affects the modeling solution.
- **Propagation database** A basin-wide database of pre-computed water elevations and flow velocities at uniformly spaced grid points throughout the world oceans. Values are computed from tsunamis generated by earthquakes with a fault rupture at any one of discrete 100 × 50 km unit sources along worldwide subduction zones.
- **Runup** Vertical difference between the elevation of tsunami inundation and the sea level at the time of a tsunami. Runup is the elevation of the highest point of land inundated by a tsunami as measured relative to a stated datum, such as mean sea level.
- **Short-term Inundation Forecasting for Tsunamis (SIFT)** A tsunami forecast system that integrates tsunami observations in the deep-ocean with numerical models to provide an estimate of tsunami wave arrival and amplitude at specific coastal locations while a tsunami propagates across an ocean basin.
- **Subduction zone** A submarine region of the earth's crust at which two or more tectonic plates converge to cause one plate to sink under another, overriding plate. Subduction zones are regions of high seismic activity.
- **Synthetic event** Hypothetical events based on computer simulations or theory of possible or even likely future scenarios.
- **Tidal wave** Term frequently used incorrectly as a synonym for tsunami. A tsunami is unrelated to the predictable periodic rise and fall of sea level due to the gravitational attractions of the moon and sun: the tide.
- **Tide** The predictable rise and fall of a body of water (ocean, sea, bay, etc.) due to the gravitational attractions of the moon and sun.
- **Tide gauge** An instrument for measuring the rise and fall of a column of water over time at a particular location.
- **Tele–tsunami or distant tsunami or far–field tsunami** Most commonly, a tsunami originating from a source greater than 1000 km away from a particular location. In some contexts, a tele-tsunami is one that propagates through deep-ocean before reaching a particular location without regard to distance separation.
- **Travel time** The time it takes for a tsunami to travel from the generating source to a particular location.
- **tsunami** A Japanese term that literally translates to "harbor wave." Tsunamis are a series of long–period shallow water waves that are generated by the sudden displacement of water due to subsea disturbances such as earthquakes, submarine landslides, or volcanic eruptions. Less commonly, meteoric impact to the ocean or meteorological forcing can generate a tsunami.

- **Tsunami Hazard Assessment** A systematic investigation of seismically active regions of the world oceans to determine their potential tsunami impact at a particular location. Numerical models are typically used to characterize tsunami generation, propagation, and inundation, and to quantify the risk posed to a particular community from tsunamis generated in each source region investigated.
- **Tsunami Propagation** The directional movement of a tsunami wave outward from the source of generation. The speed at which a tsunami propagates depends on the depth of the water column in which the wave is traveling. Tsunamis travel at a speed of 700 km/hr (450 mi/hr) over the average depth of 4000 m in the open deep Pacific Ocean.
- **Tsunami source** Location of tsunami origin, most typically an underwater earthquake epicenter. Tsunamis are also generated by submarine landslides, underwater volcanic eruptions, or, less commonly, by meteoric impact of the ocean.
- **Wave amplitude** The maximum vertical rise or drop of a column of water as measured from wave crest (peak) or trough to a defined mean water level state.
- **Wave crest or peak** The highest part of a wave or maximum rise above a defined mean water level state, such as mean lower low water.
- **Wave height** The vertical difference between the highest part of a specific wave (crest) and it's corresponding lowest point (trough).
- **Wavelength** The horizontal distance between two successive wave crests or troughs.
- **Wave period** The length of time between the passage of two successive wave crests or troughs as measured at a fixed location.
- **Wave trough** The lowest part of a wave or the maximum drop below a defined mean water level state, such as mean lower low water.