PMEL Tsunami Forecast Series: Vol. A Tsunami Forecast Model for Atka, Alaska

Hongqiang Zhou^{1,2}

1. NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory, Seattle, WA

2. Joint Institute for the Study of the Atmosphere and Ocean, Seattle, WA $\,$

Contents

Background and Objectives	6
Forecast Methodology	6
Model Development	7
3.1 Forecast area	8
3.2 Bathymetric and topographic data sources	8
3.3 Configuration of grids	8
Model Testing	9
4.1 Accuracy	9
4.2 Stability	10
Summary and Conclusions	11
Model *.in files for Atka, AK	34
A.1 Reference model *.in file	34
A.2 Forecast model *.in file	34
Propagation Database:	
Pacific Ocean Unit Sources	35
Forecast Model Testing	66
C.1 Purpose	66
C.2 Testing procedure	66
	0.
	Background and Objectives Forecast Methodology Model Development 3.1 Forecast area 3.2 Bathymetric and topographic data sources 3.3 Configuration of grids Model Testing 4.1 Accuracy 4.2 Stability Summary and Conclusions Model *.in files for Atka, AK A.1 Reference model *.in file A.2 Forecast model *.in file Propagation Database: Pacific Ocean Unit Sources Forecast Model Testing C.1 Purpose C.1 Purpose A.2 Testing procedure

List of Figures

1	Atka and Amlia Islands. The red triangle indicates the location of the tide gauge in Atka.	14
2	Photograph of Atka, seeing the city from the south. Courtesy of Game McGimsey and the Alaska Volcano Observatory/U.S. Geological Survey (http://doi.org/10.1011/101111111111111111111111111111	
	//www.avo.alaska.edu/image.php?id=12468.)	15
3	Computational grids in the Atka forecast and reference models. The triangles in C grids indicate the location of the tide gauge.	16
4 5	Wave amplitudes measured at the tide station during the 2009 Samoa tsunami. Model results for the 1946 Unimak event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at	17
	the tide gauge in Nazan Bay (e).	18
6	Model results for the 1957 Andrean fevent: computed maximum water sur- face elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations	
7	at the tide gauge in Nazan Bay (e)	19
8	(c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e)	20
	(c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e)	21
9	Model results for the 2006 Tonga event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at	-
10	the tide gauge in Nazan Bay (e). $\dots \dots \dots$	22
	elevations at the tide gauge in Nazan Bay (e)	23
11	Model results for the 2007 Peru event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (a)	94
12	Model results for the 2007 Chile event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e)	24 95
	the fire gauge in Huzun Buy (c)	40

13	Model results for the 2009 Samoa event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c),	
	and reference C grid (d), as well as time series of water surface elevations at	
	the tide gauge in Nazan Bay (e)	26
14	Model results for the 2010 Chile event: computed maximum water surface	
	elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c),	
	and reference C grid (d), as well as time series of water surface elevations at	
	the tide gauge in Nazan Bay (e)	27
15	Model results for the 2011 Tohoku event: computed maximum water surface	
	elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c),	
	and reference C grid (d), as well as time series of water surface elevations at	
	the tide gauge in Nazan Bay (e)	28
16	Time series of water surface elevations at the tide gauge in Nazan Bay for the	
	synthetic Mw 9.3 earthquake scenarios: forecast model (blue) and reference	
	model (red).	29
17	Flooded area in the Atka area due to tsunami scenario ACSZ 16-25. The	
-	maximum inundation is depicted with a red line	30
B1	Aleutian–Alaska–Cascadia Subduction Zone unit sources	36
B2	Central and South America Subduction Zone unit sources	40
B3	Eastern Philippines Subduction Zone unit sources.	47
B4	Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zone unit sources.	49
B5 DC	Manus–Oceanic Convergent Boundary Subduction Zone unit sources.	54
B6	New Guinea Subduction Zone unit sources.	56
B7 Do	New Zealand–Keradec–Tonga Subduction Zone unit sources.	58
B8	New Britain–Solomons–Vanuatu Zone unit sources.	61 C4
B9 C1	Ryukyu-Kyushu-Nankal Zone unit sources.	04
C1	Testing results from the forecast model in scenario KISZ 22-31: maximum $restor = surface elevations in A grid (a) B grid (b) and C grid (c) as well as$	
	water surface elevations in A grid (a), B grid (b), and C grid (c), as well as	69
Co	The series at the warning point (d). \dots	08
\mathbb{C}^{2}	resting results from the forecast model in scenario $ACSZ$ 50-05. maximum water surface elevations in A grid (a) B grid (b) and C grid (c) as well as	
	water surface elevations in A grid (a), D grid (b), and C grid (c), as well as time series at the warning point (d)	60
C_2	Testing regults from the forecast model in geoparic CSS7 80.08: maximum	09
$\bigcirc 3$	resting results from the forecast model in scenario C552 69-96. maximum water surface elevations in A grid (a) B grid (b) and C grid (c) as well as	
	water surface elevations in A grid (a) , D grid (b) , and C grid (c) , as well as time series at the warning point (d)	70
$\mathbf{C}\mathbf{A}$	Tosting results from the forecast model in scenario NTSZ 30.30: maximum	10
04	resting results from the forecast model in scenario (152 50-55). maximum	
	water surface elevations in A grid (a) , D grid (b) , and C grid (c) , as well as time series at the warning point (d)	71
C5	Testing results from the forecast model in the 2011 Toboku event: maximum	11
00	water surface elevations in A grid (a) B grid (b) and C grid (c) as well as	
	time series at the warning point (d)	72
	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	•

List of Tables

1	MOST setup of the reference and forecast models for Atka, Alaska	31
2	Historical events used to test the Atka, Alaska, reference and forecast models.	32
3	Historical events used to test the Atka, Alaska, reference and forecast models.	33
Β1	Earthquake parameters for Aleutian–Alaska–Cascadia Subduction Zone unit	
	sources.	37
B2	Earthquake parameters for Central and South America Subduction Zone unit	
	sources.	41
B3	Earthquake parameters for Eastern Philippines Subduction Zone unit sources.	48
B4	Earthquake parameters for Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduc-	
	tion Zone unit sources.	50
B5	Earthquake parameters for Manus–Oceanic Convergent Boundary Subduction	
	Zone unit sources	55
B6	Earthquake parameters for New Guinea Subduction Zone unit sources	57
B7	Earthquake parameters for New Zealand–Keradec–Tonga Subduction Zone	
	unit sources	59
B8	Earthquake parameters for New Britain–Solomons–Vanuatu Subduction Zone	
	unit sources	62
B9	Earthquake parameters for Ryukyu–Kyushu–Nankai Subduction Zone unit	
	sources.	65
C1	Run time of the Atka, Alaska, forecast model.	73
C2	Table of maximum and minimum amplitudes (cm) at the Atka, Alaska, warn-	
	ing point for synthetic and historical events tested using SIFT 3.2 and obtained	
	during development.	74

Abstract This report documents the development and testing of a tsunami forecast model for Atka, Alaska, which is to be implemented into the tsunami forecast system developed by the National Oceanic and Atmospheric Administration. The model employs the numerical simulating code, MOST (Method of Splitting Tsunami), which simulates the tsunami propagation and runup in real time. With the finest resolution of ~ 46 m applied in the economic and residential center of Atka, the model is capable of finalizing a simulation of 12 hours in roughly 24 minutes of CPU time. A reference inundation model with higher resolutions was also developed. Nine historical tsunami events were simulated with both forecast and reference models. Good agreement is observed between the two models for the leading waves, indicating reasonable accuracy of the forecast model. Numerical stability of the forecast model is also investigated through the simulation of synthetic mega- and micro-tsunamis. The results show the model is robust for a large range of wave heights.

1 Background and Objectives

The National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami Research (NCTR) at the Pacific Marine Environmental Laboratory (PMEL) has developed a tsunami forecasting capability for operational use by NOAA's two Tsunami Warning Centers located in Hawaii and Alaska (Titov et al., 2005). The tsunami forecast system, termed Short-term Inundation Forecasting for Tsunamis (SIFT), is designed to efficiently provide basin-wide warning of approaching tsunami waves accurately and quickly. The system combines real-time tsunami event data with numerical models to produce estimates of tsunami wave arrival time and amplitudes at a coastal community of interest. This system integrates several key components: deep-ocean observations of tsunamis in real time, a basin-wide precomputed propagation database of water levels and flow velocities based on potential seismic unit sources, an inversion algorithm to refine the tsunami source based on deep-ocean observations during an event, and high-resolution tsunami inundation forecast models.

Atka, Alaska, is an incorporated city situated on Atka Island in the Aleutian archipelago. The city has a population of 61 (U.S. Census Bureau, 2010). The major industry is fishing. Atka City maintains a 4,500-ft airplane runway and can be reached by air from Unalaska, the population and economic center of the Aleutian Islands.

South of the Aleutian Islands is the Aleutian Subduction Zone, one of the most seismically active and tsunamigenic regions in the world. Although literary records of historical tsunami hazards on the Atka Island are very rare, the location of this island suggests that it has a high vulnerability to tsunamis. In the 1957 tsunami event triggered by an Mw 8.3 earthquake south of the Andreanof Islands, the waves destroyed several residential and harbor facilities. On the west end of the island, big pilings were washed to a height of 30 ft (Lander, 1996). Historically, most tsunamis affecting the Aleutian Islands were generated locally. The time lapse between earthquake occurrence and tsunami arrival can be very short. This is a challenge for tsunami forecasting in this region.

This report documents the development and testing of a tsunami inundation forecast model for the city of Atka. This project mainly involves the construction of three levels of computational grids based on the best available topographic and bathymetric data, model validation with historical events, and stability tests of the model with a suite of hypothetical mega-tsunami scenarios. The model is designed to be integrated into SIFT.

2 Forecast Methodology

A tsunami forecast model is based on a numerical model simulating the nearshore propagation and inundation of tsunamis at high resolution. All tsunami forecast models are run in real time while a tsunami is propagating across the open ocean. These models are designed and tested to perform under stringent time constraints, given that time is generally the single limiting factor in saving lives and property. The main objective of the forecast models is to provide an accurate, yet rapid, estimate of arrival time, wave heights, and inundation in the minutes following a tsunami event.

The tsunami forecast models are integrated into SIFT to provide real-time tsunami forecasts at selected coastal communities. The models employ the numerical code of MOST (Method of Splitting Tsunami), and high-resolution computational grids based on the digital elevation models (DEMs) constructed by the National Geophysical Data Center (NGDC) and NCTR. MOST solves the nonlinear shallow water equations through a finite difference scheme. It is capable of simulating the entire lifespan of a tsunami event: generation due to earthquake, transoceanic propagation, nearshore propagation and transformation, and inundation on dry land. MOST has been extensively tested against numerous laboratory experiments and benchmarks (Synolakis et al., 2008), and successfully applied to the simulations of numerous historical tsunami events (e.g., Wei et al., 2008; Tang et al., 2008). The technical aspects of forecast model development, validation and stability testing are described by Titov and González (1997). Studies also indicate the magnitude of numerical dispersion of MOST may approximate that of the frequency dispersion at optimized grid resolutions, making it applicable to dispersive propagation of tsunamis (Burwell et al., 2007; Zhou et al., 2012). The details in the forecast methodology are given by Tang et al. (2009).

A basin-wide database of pre-computed water surface elevations and water particle velocities for unit sources has been developed to expedite forecasts (Gica et al., 2008). So far, this database covers all the subduction zones in the Pacific and Atlantic Oceans. The unit sources in the Indian Ocean are currently under development. As the tsunami waves propagate across the ocean and successively reach the DART (Deep-Ocean Assessment and Reporting of Tsunamis) observation sites, recorded sea level is ingested into the tsunami forecast application in near real-time and incorporated into an inversion algorithm to produce an improved estimate of the tsunami source (Percival et al., 2009). A linear combination of the pre-computed database is then performed based on this tsunami source, producing synthetic boundary conditions of water elevations and flow velocities to initiate the computation of forecast models.

Accurate forecasting of tsunami impact on a coastal community largely relies on the accuracy of the bathymetry and topography, as well as the resolution of the computational grids. High resolution is necessary for accurate simulations, but poses a challenge to the real-time forecasts in run-time requirement. Each forecast model consists of three nested grids, namely A, B, and C grids. The outermost A grid has the lowest resolution and the biggest domain coverage among the three grids. Tsunami propagation from deep ocean into coastal water is simulated in this grid with input boundary conditions derived from the propagation database. The B grid has an intermediate resolution and transitions the simulation from A grid to C grid. Tsunami runup onto the community's population and economic center is simulated in the C grid at high resolution. Time steps are reduced successively to keep numerical stability. The grids are developed based on the most recent bathymetric and topographic data sources. The forecast models, including that of Atka, are constructed for at-risk coastal communities in the Pacific and Atlantic Oceans. Previous and present development of forecast models in the Pacific have validated the accuracy and efficiency of each forecast model currently implemented in SIFT (Titov et al., 2005; Titov, 2009; Tang et al., 2008; Wei et al., 2008).

3 Model Development

Tsunami forecast for a coastal community is accomplished through the real-time simulation of tsunami propagation and inundation in three nested grids. The basis for the development of these grids is the high-resolution DEMs compiled from a variety of sources. From these DEMs, three high-resolution, "reference" elevation grids are constructed for the development of a high-resolution reference model. From this reference model, an "optimized" model at lower resolution is constructed to run in an operationally specified period of time, which is 10 min of CPU time for a simulation of 4 hours. This operationally developed model is referred to as the optimized tsunami forecast model, or simply the "forecast model".

3.1 Forecast area

Figure 1 is a topographic map of the Atka and Amlia Islands. The two islands are separated by the narrow Amlia Pass. The island of Atka is composed of two geographically and geologically different parts, joined through a low-elevation isthmus separating the Korovin and Nazan Bays. North of the isthmus is the Korovin volcanic complex. On the south is a mountainous ridge aligned east-westward (Hein et al., 1984). Atka City occupies part of the isthmus. The rest of the island remains a federal wildlife refuge. Figure 2 is a photograph of Atka City. The body of water shown in this picture is Nazan Bay. At the head of this bay are located the majority of the public, commercial, and residential facilities on this island.

3.2 Bathymetric and topographic data sources

The bathymetry and topography used in the development of this forecast model were based on a DEM provided by NGDC and the author considers it to be an adequate representation of the local topography and bathymetry. As new DEMs become available, forecast models will be updated and report updates will be posted at "http://nctr.pmel.noaa.gov/forecast_ reports".

The Atka reference and forecast models are developed based on two topographic and bathymetric datasets. The ETOPO1 1-arc-min global relief model (Amante and Eakins, 2009) is employed for the lower-resolution A grid. The higher-resolution bathymetric and topographic data in B and C grids are derived from the 1-arc-sec Atka DEM (Friday et al., 2010), which is referenced to North American Datum 1983, and the vertical datum is Mean High Water.

3.3 Configuration of grids

Figure 3 shows the extent of the grids in both forecast and reference models. Parameters of the grids can be found in Table 1. The outermost A grid in the forecast model computes tsunami propagation from deep ocean into shallow water offshore of the Andreanof Islands. The grid domain extends southward over the Aleutian Trench into deep ocean. The water depth in the trench area increases sharply from less than 5000 m outside the trench to more than 7000 m at the bottom of the trench. The width of the trench measures around 100 km, which is less than the wavelengths of most tsunamis in open ocean. In most situations, the evolution of leading waves over the Aleutian Trench can be accurately estimated through the linear combination of the tsunami propagation database. On the other hand, shorter trailing waves may experience more complicated transformation while propagating over the trench. For this process, the real-time computation at higher resolution is required. In the A grid of the forecast model, we employ a resolution of 45 arc sec in latitude and 72 arc sec in longitude, which measure 1392 m along the meridian and 1324 to 1431 m along the

longitude respectively in the Cartesian reference frame. The B grid covers the Atka and Amlia Islands and surrounding water at a resolution of 18 arc sec in latitude (557 m) and 30 arc sec in longitude (565 to 572 m). The C grid is the most important domain, where the nearshore propagation and coastal inundation are computed. The resolution of C grid is 1.5 arc sec in latitude (46 m) and 2.4 arc sec in longitude (45.4 to 45.5 m). The grids of the reference model have higher resolutions than those of the forecast model in order to check for numerical convergence. The reference A and C grids have larger extents compared with those in the forecast model. The B grids cover the same domain in both models.

The National Ocean Service has installed a tide gauge in Nazan Bay on August 1, 2006. The location of the tide station (52.232° N, 174.173° W) is presented in Figure 4. The water depth is 7.9 m under Mean High Water, and the mean tidal range is 0.49 m at this station.

4 Model Testing

Before being integrated into SIFT, a model must satisfy two major requirements, i.e., accuracy and stability. The former requires that for a given tsunami event, the arrival time, wave heights, and coastal runup are predicted by the forecast model within an acceptable limit of error. The latter requirement is to make sure that the forecast model can work stably for any plausible scenario.

4.1 Accuracy

The accuracy of a forecast model depends mainly on the accuracy of topographic and bathymetric data, as well as the grid resolution. A numerical model can be validated against historical events if there are reliable sources of data, such as the time series of water surface elevations recorded at tide stations. Since the Atka tide station was established in August 2006, it has recorded several tsunamis affecting the Nazan Bay area. Among these events, the 2010 Chilean Tsunami was generated by an earthquake of Mw 8.8, and caused significant waves in the bay. In the other events, the signals are too weak and noisy to be applied for model validations. For example, Figure 4 presents the wave amplitudes measured by the tide gauge during the 2009 Samoa Tsunami. We note the background waves proceeding and after the event were as strong as those induced by the tsunami itself. Besides employing historical events, we may also check the accuracy of the forecast model by comparing its computational results with those of the reference model. Agreement between the two models can serve as a reference for the accuracy of resolutions.

In this study, the accuracy of the forecast model is evaluated in eleven historical tsunami events. The same processes are simulated with both forecast and reference models. By observing the differences between the two models, we qualitatively evaluate the significance of numerical errors. The details of the historical events are listed in Table 2. Figures 5–15 present the computational results from the two models. Observation of the time series of wave amplitude indicates that, in most events, there is good agreement between the forecast and reference models for the first 4 hours. As the wavelengths become shorter in the trailing waves, numerical dispersion in the forecast model becomes more significant. In general, the forecast model has a numerical accuracy sufficient for the purpose of real-time forecast. In Figure 14, we also compare the computational results of both forecast and reference models

with those measured at the tide station during the 2010 Chilean Tsunami. Both numerical models agree reasonably with the measurement at wave amplitudes. We note to complete a simulation of 12 hours, the forecast model consumes nearly 24 minutes of CPU time, which is approximately 96% less than that of the reference model.

Maximum water surface elevations in the Atka area obtained in both models are also presented in Figures 5–15. Note that in the B grid of the reference model, we only present a part of the domain that coincides with that of the forecast model. It is worthwhile to mention that although there are significant differences in maximum water surface elevations between the forecast and reference models for some events, this may not indicate inaccuracy of the forecast model in predicting coastal runup. In these events, the maximum water surface elevations in the bay are due to trailing waves, which have higher amplitudes but shorter wavelengths compared with the leading waves. Leading waves have very long wavelengths and are usually responsible for the runup. In the development of a forecast model, major effort is focused on the modeling accuracy of the leading waves.

Complicated bathymetry and coastline play a role in the distribution of wave field in Nazan Bay. In all the events, we observe extremely high waves behind the rocky isles and in front of the coastline. The wave heights are amplified in this semi-closed area of shallow water. This phenomenon is observed in both models but is more apparent in the high-resolution reference model. The most severe tsunami impact on the Atka community was caused by the 1957 Andrean f event, which was triggered by an Mw 8.6 earthquake along the Aleutian Trench, south of Atka Island. In this event, a local resident observed a runup of 30 ft (9.14 m) on the west end of the island. The reference model predicts a maximum water surface elevation of 12.9 m in the Nazan Bay, while it is 5.8 m in the forecast model. In contrast, the two models predict very similar wave heights at the warning point. Significant runup on the coast is observed in both models. As in Figure 6 (a) and (b), extremely high waves are observed near the south coast of Atka Island. In some nearshore areas, the maximum water surface elevation is more than 20 m. The resolution of this grid is roughly 280 m in the forecast model, which may be too coarse with regard to the simulation of runup. In these figures, we also note that most wave energy is blocked by the islands before it propagates into the Nazan and Korovin Bays.

4.2 Stability

Numerical stability of the forecast model is first investigated by employing 18 synthetic mega-tsunami scenarios. The specifications of these scenarios are presented in Table 3. The earthquake source of a mega-tsunami event is composed of 20 unit sources, covering an area of $1000 \times 100 \text{ km}^2$ with a slip of 30 m, equivalent to an earthquake of Mw 9.3. Parameters of unit sources can be found in Appendix B. At least one mega-tsunami scenario is tested for every subduction zone in the Pacific basin. Figure 16 shows the time series of water surface elevations at the tide gauge predicted in all mega-tsunami scenarios. The forecast model maintains good stability in all these events. The scenarios with Aleutian–Alaska–Cascadia Subduction Zone (ACSZ) sources are also computed with the reference model. Comparison between the reference and forecast models in these scenarios is presented in Figure 16. Very good agreement is observed, especially in the scenarios of ACSZ 50-59 and ACSZ 56-65, where wavelengths are longer. This comparison further proves the accuracy of the forecast

model. The largest wave height is observed in the scenario of ACSZ 16-25, whose source is located immediately adjacent to Atka and Amlia Islands. The maximum runup on Atka Island exceeds 35 m. A flooding map of Atka City in this scenario is plotted in Figure 17. A large area needs to be evacuated if such an event happens.

Instability may also happen for very low input wave heights. In this situation, the numerical errors may become comparable to the computed variables, and accumulate quickly to make the numerical model unstable. In this study, we further test the model stability for a synthetic tsunami scenario with Mw 7.5 earthquake, and three events with extremely low wave heights. The parameters of these scenarios are also tabulated in Table 3. For the Mw 7.5 event, the forecast model predicts a maximum wave amplitude of 0.84 cm. In the present forecast model, simulations only start when the input wave amplitude exceeds 1.0 mm along the outermost boundaries. This criterion is not reached in the micro-tsunami events. As a result, the operational simulation will not be initiated. In this study, we temporarily reduce this criterion to 0.01 mm for the simulation to be started. The model works stably and the resulting waves are observed to be less than 0.1 mm at the warning point. These tests prove that the present forecast model is able to maintain good stability even under conditions beyond its design capacity.

5 Summary and Conclusions

A tsunami forecast model was developed for the community of Atka. This model is to be implemented into NOAA's tsunami forecast system, SIFT, to provide real-time forecast of tsunami wave heights, arrival time and coastal runup for Atka City. The model grids are constructed based on the best available bathymetric and topographic datasets in this region. An optimized resolution of approximately 46 m is applied to the innermost C grid that covers the population and economic center. The model is designed to complete a simulation of 12 hours in roughly 24 minutes of CPU time. The 12 hours of real time simulation are chosen in order to capture the high wave amplitudes that may appear in the trailing wave groups. This model has also been tested in SIFT and the test results are presented in Appendix C.

Numerical accuracy of the forecast model is investigated through eleven historical tsunami events affecting the Atka area. These events are simulated with both forecast and reference models. We note very strong background waves in this area. Amplitudes of these waves are comparable to the tsunami waves during most historical events. As a result, computational accuracy of the forecast model is mainly evaluated by comparing its results with those of the reference model. The good agreement observed between the two models indicates that the accuracy of the forecast model is acceptable despite its lower resolution. Numerical stability of the forecast model is also tested by simulating a series of synthetic mega- and micro-tsunamis, and the model is proven to be stable for these events.

Acknowledgement

This work is funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement Numbers NA10OAR4320148 and NA08OA R4320899 and is JISAO contribution number No. 2097. This work is also Contribution No. 3396 from NOAA/Pacific Marine Environmental Laboratory.

References

- Amante, C., and Eakins, B. W. (2009), ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis, NOAA Tech. Memo. NESDIS NGDC-24, 25 pp.
- Burwell, D., Tolkova, E., and Chawla, A. (2007), Diffusion and dispersion characterization of a numerical tsunami model, *Ocean Modelling*, 19, 10–30.
- Friday, D.Z., Taylor, L.A., Eakins, B.W., Carignan, K.S., Caldwell, R.J., Grothe, P.R., and Lim, E. (2010), Digital elevation model of Atka, Alaska: Procedures, data sources and analysis, NOAA Tech. Memo., 24 pp.
- Gica, E., Spillane, M.C., Titov, V.V., Chamberlin, C.D., and Newman, J.C. (2008), Development of the forecast propagation database for NOAAs Short-Term Inundation Forecast for Tsunamis (SIFT), NOAA Tech. Memo. OAR PMEL-139, 89 pp.
- Hein, J.R., McLean, H., and Vallier, T. (1984), Reconnaissance geology of Southern Atka Island, Aleutian Islands, Alaska, USGS Bulletin 1609, 21 pp.
- Lander, J.F. (1996), Tsunamis affecting Alaska 1737-1996, NGDC Key to Geophysical Record Documentation No. 31, NOAA, NESDIS, NGDC, 195 pp.
- López, A.M., and Okal, E.A. (2006), A seismological reassessment of the source of the 1946 Aleutian "tsunami" earthquake. *Geophys. J. Int.*, 165(3), 835–849, doi:10.1111/j.1365-246x.2006.02899.x.
- Percival, D.B., Arcas, D., Denbo, D.W., Eble, M.C., Gica, E., Mofjeld, H.O., Spillane, M.C., Tang, L., and Titov, V.V. (2009), Extracting tsunami source parameters via inversion of DART buoy data, NOAA Tech. Memo. OAR PMEL-144, Pacific Marine Environmental Laboratory, NOAA, Seattle, WA, 22 pp.
- Synolakis, C.E., Bernard, E.N., Titov, V.V., Kânoğlu, U., and González, F.I. (2008), Validation and verification of tsunami numerical models, *Pure Appli. Geophys.*, 165(11-12), 2197–2228.
- Tang, L., Titov, V.V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E.N., Chamberlin, C.D., Gica, E., and Newman, J. (2008), Tsunami forecast analysis for the May 2006 Tonga tsunami, J. Geophys. Res., 113, C12015, doi: 10.1029/2008JC004922.
- Tang L., Titov, V.V., and Chamberlin, C.D. (2009), Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting, J. Geophys. Res., 6, doi: 10.1029/2009JC005476.
- Titov, V.V. and González, F.I. (1997), Implementation and testing of the Method of Splitting Tsunami (MOST) model, NOAA Tech. Memo, ERL PMEL-112, Pacific Marine Environmental Laboratory, NOAA, Seattle, WA, 11 pp.
- Titov V.V., González F.I., Bernard E.N., Eble M.C., Mofjeld H.O., Newman J.C., Venturato A.J. (2005), Real-time tsunami forecasting: challenges and solutions, *Nat. Hazards*, 35, 41–58.

- Titov, V.V. (2009), Tsunami forecasting. In: E.N. Bernard and A.R. Robinson (edited) *The Sea*, Vol. 15, Chapter 12, Harvard University Press, Cambridge, MA, and London, U.K., 371–400.
- U.S. Census Bureau (2010): Total Population, 2010 Census Summary File 1, Retrived October 25th, 2011.
- Wei, Y., Bernard, E.N., Tang, L., Weiss, R., Titov, V.V., Moore, C., Spillane, M., Hopkins, M., and Kânoğlu, U. (2008), Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines, *Geophys. Res. Lett.*, 35, L04609, doi:10.1029/2007GL032250.
- Zhou, H., Wei, Y., and Titov, V.V. (2012), Dispersive modeling of the 2009 Samoa tsunami, *Geophys. Res. Lett.*, 39(16), L16603, doi:1029/2012GL053068.

Figure 1: Atka and Amlia Islands. The red triangle indicates the location of the tide gauge in Atka.

Figure 2: Photograph of Atka, seeing the city from the south. Courtesy of Game McGimsey and the Alaska Volcano Observatory/U.S. Geological Survey (http://www.avo.alaska. edu/image.php?id=12468.)

Figure 3: Computational grids in the Atka forecast and reference models. The triangles in C grids indicate the location of the tide gauge.

Figure 4: Wave amplitudes measured at the tide station during the 2009 Samoa tsunami.

Figure 5: Model results for the 1946 Unimak event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 6: Model results for the 1957 Andrean f event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 7: Model results for the 1994 East Kuril event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 8: Model results for the 1996 Andrean f event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 9: Model results for the 2006 Tonga event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 10: Model results for the 2006 Kuril Islands event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 11: Model results for the 2007 Peru event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 12: Model results for the 2007 Chile event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 13: Model results for the 2009 Samoa event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 14: Model results for the 2010 Chile event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 15: Model results for the 2011 Tohoku event: computed maximum water surface elevations (m) in forecast B grid (a), reference B grid (b), forecast C grid (c), and reference C grid (d), as well as time series of water surface elevations at the tide gauge in Nazan Bay (e).

Figure 16: Time series of water surface elevations at the tide gauge in Nazan Bay for the synthetic Mw 9.3 earthquake scenarios: forecast model (blue) and reference model (red).

Figure 17: Flooded area in the Atka area due to tsunami scenario ACSZ 16-25. The maximum inundation is depicted with a red line.

		Reference Model			Forecast Model				
		Coverage	Cell Size	nx×ny	Time	Coverage	Cell Size	nx×ny	Time
		Lat. $(^{\circ}N)$	Lat.		Step	Lat. $(^{\circ}N)$	Lat.		Step
Grid	Region	Lon. ($^{\circ}E$)	Lon.		(sec.)	Lon. ($^{\circ}E$)	Lon.		(sec.)
А	Aleutian	49.5 - 55	30''	1521×661	2.4	50.0 - 53.5	45''	501×281	5.0
	Islands	176.5 - 195.5	40''			180.5 - 190.5	72''		
В	Atka & Amlia	51.9 - 52.5	9''	601×241	1.2	51.9 - 52.5	18''	301×121	3.0
	Islands	184.6 - 187.1	15''			184.6 - 187.1	30"		
С	Atka City	52.08 - 52.29	0.75''	811×1009	0.4	52.14 - 52.285	1.5''	211×349	1.0
		185.72 - 185.99	1.2''			185.75 - 185.89	2.4''		
Minimum offshore depth (m)					1.0				1.0
Water depth for dry land (m)				0.1					0.1
Friction coefficient (n^2)					0.0009				0.0009
CPU time for a 12-hr simulation							\sim	$24 \min$	

Table 1: MOST setup of the reference and forecast models for Atka, Alaska.

		Earthquake/Seismic			Model	
	USGS	\mathbf{GMT}	Magnitude	Tsunami		
-			$\mathbf{M}\mathbf{w}$	Magnitude		—
Even	Date Time (UTC)	Date Time (UTC)			Subduction Zone	Tsunami Source
1046 Unimak	$\frac{12.28}{12.28}$	01 Apr 12:28:56	285	85	Aloutian Alaska Cascadia (ACSZ)	$7.5 \times b23 + 10.7 \times b24 + 3.7 \times b25$
1940 Olimiak	52 75°N 163 50°W	53 32°N 163 10°W	0.0	0.0	Aleutiali-Alaska-Cascaula (AC52)	$7.5 \times 025 + 19.7 \times 024 + 5.7 \times 025$
1057 Andreanof	$00 M_{or} 14.99.21$	$00 M_{02} 14.00.19 W$	306	97	Alautian Alaska Casadia (ACSZ)	21 4 y a15 + 10 6 y a16 + 19 9 y a17
1957 Andreanor	09 Mai 14.22.31 51 569N 175 209W	09 Mai 14.22.31.9 51 202°N 175 620°W	0.0	0.1	Aleutiali–Alaska–Cascaula (ACSZ)	$51.4 \times u_{15} + 10.0 \times u_{10} + 12.2 \times u_{17}$
1004 Fact Kumil	04 Oct 12.22.58	04 Oct 12.222 N	40 2	9 1	Komehatka Kuril Japan	0.0×20
1994 East Kuill	42 72°N 147 221°E	$42 \text{ CO}^{\circ} \text{N} \ 147 \text{ C}^{\circ} \text{C}^{\circ} \text{E}$	0.5	0.1	Lau Marian Van (KISZ)	$9.0 \times a20$
1000 A. J	45.75 N 147.521 E	45.00 N 147.05 E	47.0	7.0	-12u-Marian-Yap (KISZ)	$2.40 \times 15 \pm 0.80 \times 16$
1996 Andreanoi	10 Jun 04:03:35	10 Jun 04:04:03.4	-7.9	1.8	Aleutian–Alaska–Cascadia (ACSZ)	$2.40 \times a_{15} + 0.80 \times b_{10}$
2004 5	51.50°N 175.39°W	51.10° N 177.410° W	40.0	0.0		<i>a a</i> 100
2006 Tonga	03 May 15:26:39	03 May 15:27:03.7	*8.0	8.0	New Zealand–Kermadec	6.6 imes b29
	20.13°S 174.161°W	20.39°S 173.47°W	4		-Tonga (NTSZ)	F
2006 Kuril	15 Nov 11:14:16	15 Nov 11:15:08	48.3	8.1	Kamchatka–Kuril–Japan	$^{5}4 \times a12 + 0.5 \times b12 + 2.0 \times a13$
	$46.607^{\circ}N \ 153.230^{\circ}E$	$46.71^{\circ}N \ 154.33^{\circ}E$	4		-Izu–Marian–Yap (KISZ)	$+1.5 \times b13$
2007 Peru	11 Aug 23:40:57	15 Aug 23:41:57.9	$^{4}8.0$	8.1	Central–South America (CSSZ)	$0.9 \times a61 + 1.25 \times b61 + 5.6 \times a62$
	$13.354^{\circ}S$ 76.509°W	$13.73^{\circ}S$ 77.04°W				$+6.97\times b62 + 3.5\times z62$
2007 Chile	14 Nov 15:40:50	14 Nov 15:41:11.2	$^{3}7.7$	7.6	Central–South America (CSSZ)	$1.65 \times z73$
	$22.204^{\circ}S 69.869^{\circ}W$	$22.64^{\circ}S 70.62^{\circ}W$				
2009 Samoa	29 Sep 17:48:10	29 Sep 17:48:26.8	$^{4}8.1$	8.1	New Zealand–Kermadec	${}^{5}3.96 \times a34 + 3.96 \times b34$
	$15.509^{\circ}S \ 172.034^{\circ}W$	$15.13^{\circ}S \ 171.97^{\circ}W$			-Tonga (NTSZ)	
2010 Chile	72 Feb 06:34:14	27 Feb 06:35:15.4	$^{4}8.8$	8.8	Central–South America (CSSZ)	${}^{5}17.24 \times a88 + 8.82 \times a90 + 11.86 \times b88$
	$33.909^{\circ}S$ $72.733^{\circ}W$	$35.95^{\circ}S$ $73.15^{\circ}W$				$+8.39 \times b89 + 16.75 \times b90$
						$+20.78 \times z88 + 7.06 \times z90$
2011 Tohoku	11 Mar 05:46:23.82	11 Mar 05:47:47.20	$^{4}9.0$	8.8	Kamchatka–Kuril–Japan	$4.66 \times b24 + 12.23 \times b25 + 26.31 \times a26$
	38.308°N 142.383°N	38.486°N 142.597°E			–Izu–Mariana–Yap (KISZ)	$+21.27 \times b26 + 22.75 \times a27 + 4.98 \times b27$

Table 2: Historical events used to test the Atka, Alaska, reference and forecast models.

¹Preliminary source–derived from source and deep-ocean observations.

²López and Okal (2006)
³United States Geological Survey (USGS)
⁴Centroid Moment Tensor
⁵Tsunami source was obtained in real time and applied to the forecast.

Scenario Name	Source Zone	Tsunami Source	$\alpha [m]$
	Mega-tsunami Scenar	io	
KISZ 1-10	Kamchatka-Yap-Mariana-Izu-Bonin	A1-A10, B10-B10	30
KISZ 22-31	Kamchatka–Yap–Mariana–Izu-Bonin	A22-A31, B22-B31	30
KISZ 32-41	Kamchatka-Yap-Mariana-Izu-Bonin	A32-A41, B32-B41	30
KISZ 56-65	Kamchatka-Yap-Mariana-Izu-Bonin	A56-A65, B56-B65	30
ACSZ 6-15	Aleutian–Alaska–Cascadia	A6-A15, B6-B15	30
ACSZ 16-25	Aleutian–Alaska–Cascadia	A16-A25, B16-B25	30
ACSZ 22-31	Aleutian–Alaska–Cascadia	A22-A31, B22-B31	30
ACSZ 50-59	Aleutian–Alaska–Cascadia	A50-A59, B50-B59	30
ACSZ 56-65	Aleutian–Alaska–Cascadia	A56-A65, B56-B65	30
CSSZ 1-10	Central and South America	A1-A10, B1-B10	30
CSSZ 37-46	Central and South America	A37-A46, B37-B46	30
CSSZ 102-111	Central and South America	A102-A111, B102-B111	30
NTSZ 30-39	New Zealand–Kermadec–Tonga	A30-A39, B30-B39	30
NVSZ 28-37	New Britain–Solomons–Vanuatu	A28-A37, B28-B37	30
MOSZ 1-10	ManusOCB	A1-A10, B1-B10	30
NGSZ 3-12	North New Guinea	A3-A12, B3-B12	30
EPSZ 6-15	East Philippines	A6-A15, B6-B15	30
RNSZ 12-21	Ryukus–Kyushu–Nankai	A12-A21, B12-B21	30
	Mw 7.5 Scenario		
NTSZ B36	New Zealand–Kermadec–Tonga	B36	1
	Micro-tsunami Scenar	io	
EPSZ B19	East Philippines	B19	0.01
RNSZ B14	Ryukus–Kyushu–Nankai	B14	0.01
ACSZ B6	Aleutian–Alaska–Cascadia	B6	0.01

Table 3: Historical events used to test the Atka, Alaska, reference and forecast models.

A Model *.in files for Atka, AK

A.1 Reference model *.in file

0.001 Minimum amp. of input offshore wave	(m)
1.0 Minimum depth of offshore (m)	
0.1 Dry land depth of inundation (m)	
0.0009 Friction coefficient $(n^{**}2)$	
1 run up in a and b	
300.0 max wave height meters	
0.4 time step (sec)	
108000 number of steps for 12 h simulation	n
6 Compute "A" arrays every n-th time ste	ep, n=
3 Compute "B" arrays every n-th time ste	ep, n=
60 Input number of steps between snaps	hots
0starting from	
1saving grid every n-th node, $n=$	

A.2 Forecast model *.in file

0.001	Minimum amp. of input offshore wave (m)
1.0	Minimum depth of offshore (m)
0.1	Dry land depth of inundation (m)
0.0009	Friction coefficient (n^{**2})
1	run up in a and b
300.0	max wave height meters
1.0	time step (sec)
43200	number of steps for 12 h simulation
5	Compute "A" arrays every n-th time step, n=
3	Compute "B" arrays every n-th time step, n=
30	Input number of steps between snapshots
0	starting from
1	\dots saving grid every n-th node, n=

B Propagation Database: Pacific Ocean Unit Sources

Figure B1: Aleutian–Alaska–Cascadia Subduction Zone unit sources.
Segment	Description	Longitude(°E)	Latitude(°N)	Strike(°)	Dip(°)	Depth (km)
acsz–1a	Aleutian–Alaska–Cascadia	164.7994	55.9606	299	17	19.61
acsz-1b	Aleutian–Alaska–Cascadia	164.4310	55.5849	299	17	5
acsz-2a	Aleutian–Alaska–Cascadia	166.3418	55.4016	310.2	17	19.61
acsz-2b	Aleutian–Alaska–Cascadia	165.8578	55.0734	310.2	17	5
acsz–3a	Aleutian–Alaska–Cascadia	167.2939	54.8919	300.2	23.36	24.82
acsz–3b	Aleutian–Alaska–Cascadia	166.9362	54.5356	300.2	23.36	5
acsz–4a	Aleutian–Alaska–Cascadia	168.7131	54.2852	310.2	38.51	25.33
acsz–4b	Aleutian–Alaska–Cascadia	168.3269	54.0168	310.2	24	5
acsz–5a	Aleutian–Alaska–Cascadia	169.7447	53.7808	302.8	37.02	23.54
acsz–5b	Aleutian–Alaska–Cascadia	169.4185	53.4793	302.8	21.77	5
acsz–6a	Aleutian–Alaska–Cascadia	171.0144	53.3054	303.2	35.31	22.92
acsz-66	Aleutian–Alaska–Cascadia	170.6813	52.9986	303.2	21	5 20.1 <i>C</i>
acsz-/a	Aleutian–Alaska–Cascadia	172.1500	52.8528	298.2	35.50	20.16
acsz-7b	Aleutian–Alaska–Cascadia	171.8005	52.5307	298.2	17.65	5
acsz–8a	Aleutian–Alaska–Cascadia	173.2726	52.4579	290.8	37.92	20.35
acsz-8b	Aleutian–Alaska–Cascadia	173.0681	52.1266	290.8	17.88	5 01.05
acsz-9a	Aleutian-Alaska-Cascadia	174.5800	52.1434	289	39.09	21.05
acsz-9b	Aleutian-Alaska-Cascadia	175 9794	51.8138	289	18.73	00.97
acsz-10a	Aleutian-Alaska-Cascadia	1/5.8/84	01.8026 51.5045	280.1	40.51	20.87
acsz-10b	Aleutian-Alaska-Cascadia	177 1140	01.0240 51.6499	280.1	18.01	0 17.04
acsz-11a	Aleutian-Alaska-Cascadia	176 0027	51.0488	280	15	17.94
acsz-110	Aleutian-Alaska-Cascadia	170.9957	01.2210 51.5600	260	10	0 17.04
acsz-12a	Aleutian-Alaska-Cascadia	178.4000	51.5090	213	15	17.94
acsz-120	Aleutian-Alaska-Cascadia	170.4130	51.1200	270	10	0 17.04
acsz-15a	Aleutian-Alaska-Cascadia	179.8330	51.0540	271	10	17.94
acsz-150	Aleutian-Alaska-Cascadia	179.0420	51.0650	271	10	0 17.04
acsz-14a	Aleutian-Alaska-Cascadia	101.2340 181.2720	51.5760	207	10	17.94
acsz-140	Aleutian-Alaska-Cascadia	101.2720	51.1290	207	15	17.04
acsz-15a	Aleutian Alaska Cascadia	182.0380	51.0470	205	15	17.94
acsz-150	Aleutian Alaska Cascadia	184.0550	51.2000	205	15	17.04
acsz-16b	Aleutian Alaska Cascadia	184.0000	51.7250	204	15	17.94
acsz=100	Aleutian-Alaska-Cascadia	185 4560	51.8170	262	15	17.94
acsz-17b	Aleutian Alaska Cascadia	185 5560	51 3720	262	15	5
acsz 170	Aleutian Alaska Cascadia	186 8680	51.9/10	261	15	17.94
acsz 10a	Aleutian Alaska Cascadia	186 9810	51 4970	261	15	5
acsz = 100	Aleutian Alaska Cascadia	188 2430	52 1280	257	15	17.94
acsz–19h	Aleutian–Alaska–Cascadia	188 4060	51 6900	257	15	5
acsz = 100	Aleutian-Alaska-Cascadia	189 5810	52 3550	251	15	17 94
acsz–20h	Aleutian–Alaska–Cascadia	189 8180	51 9300	251	15	5
acsz-21a	Aleutian–Alaska–Cascadia	190 9570	52.6470	251	15	17 94
acsz-21h	Aleutian-Alaska-Cascadia	191,1960	52,2220	251	15	5
acsz-21z	Aleutian–Alaska–Cascadia	190.7399	53.0443	250.8	15	30.88
acsz-22a	Aleutian–Alaska–Cascadia	192.2940	52,9430	247	15^{-5}	17.94
acsz–22b	Aleutian–Alaska–Cascadia	192.5820	52.5300	247	15^{-5}	5
acsz-22z	Aleutian–Alaska–Cascadia	192.0074	53.3347	247.8	15^{-5}	30.88
acsz–23a	Aleutian–Alaska–Cascadia	193.6270	53.3070	245	15^{-5}	17.94
acsz–23b	Aleutian–Alaska–Cascadia	193.9410	52.9000	245	15	5
acsz–23z	Aleutian–Alaska–Cascadia	193.2991	53.6768	244.6	15	30.88
acsz–24a	Aleutian–Alaska–Cascadia	194.9740	53.6870	245	15	17.94
acsz–24b	Aleutian–Alaska–Cascadia	195.2910	53.2800	245	15	5
acsz–24v	Aleutian–Alaska–Cascadia	194.3645	54.4604	244.4	15	43.82
acsz-24z	Aleutian–Alaska–Cascadia	194.6793	54.0674	244.6	15	30.88
acsz–25a	Aleutian–Alaska–Cascadia	196.4340	54.0760	250	15	17.94
acsz–25b	Aleutian–Alaska–Cascadia	196.6930	53.6543	250	15	5
acsz–25v	Aleutian–Alaska–Cascadia	195.9009	54.8572	247.9	15	43.82
acsz-25z	Aleutian–Alaska–Cascadia	196.1761	54.4536	248.1	15	30.88
acsz-26a	Aleutian–Alaska–Cascadia	197.8970	54.3600	253	15	17.94
acsz-26b	Aleutian–Alaska–Cascadia	198.1200	53.9300	253	15	5
acsz-26v	Aleutian–Alaska–Cascadia	197.5498	55.1934	253.1	15	43.82
acsz–26z	Aleutian–Alaska–Cascadia	197.7620	54.7770	253.3	15	30.88
acsz-27a	Aleutian–Alaska–Cascadia	199.4340	54.5960	256	15	17.94
					Continued	on next page

Table B1: Earthquake parameters for Aleutian–Alaska–Cascadia Subduction Zone unit sources.

37

Table B1 – continued							
Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)	
acsz-27b	Aleutian–Alaska–Cascadia	199.6200	54.1600	256	15	5	
acsz-27x	Aleutian–Alaska–Cascadia	198.9736	55.8631	256.5	15	56.24	
acsz-27y	Aleutian–Alaska–Cascadia	199.1454	55.4401	256.6	15	43.82	
acsz-27z	Aleutian–Alaska–Cascadia	199.3135	55.0170	256.8	15	30.88	
acsz–28a	Aleutian–Alaska–Cascadia	200.8820	54.8300	253	15	17.94	
acsz–28b	Aleutian–Alaska–Cascadia	201.1080	54.4000	253	15	5	
acsz-28x	Aleutian–Alaska–Cascadia	200.1929	55.6406	202.0	10 15	00.24 13.82	
acsz–20y acsz–28z	Aleutian-Alaska-Cascadia	200.4107	55 2249	252.7	15	45.82	
acsz-29a	Aleutian–Alaska–Cascadia	202.2610	55 1330	202:5	15	17 94	
acsz–29b	Aleutian–Alaska–Cascadia	202.5650	54.7200	247	15	5	
acsz-29x	Aleutian–Alaska–Cascadia	201.2606	56.2861	245.7	15	56.24	
acsz-29y	Aleutian–Alaska–Cascadia	201.5733	55.8888	246	15	43.82	
acsz–29z	Aleutian–Alaska–Cascadia	201.8797	55.4908	246.2	15	30.88	
acsz-30a	Aleutian–Alaska–Cascadia	203.6040	55.5090	240	15	17.94	
acsz-30b	Aleutian–Alaska–Cascadia	203.9970	55.1200	240	15	5	
acsz-30w	Aleutian–Alaska–Cascadia	201.9901	56.9855	239.5	15	69.12	
acsz–30x	Aleutian–Alaska–Cascadia	202.3851	56.6094	239.8	15	56.24	
acsz–30y	Aleutian–Alaska–Cascadia	202.7724	56.2320	240.2	15	43.82	
acsz–30z	Aleutian–Alaska–Cascadia	203.1521	55.8534	240.5	15	30.88	
acsz-31a	Aleutian–Alaska–Cascadia	204.8950	55.9700	236	15	17.94	
acsz-31D	Aleutian-Alaska-Cascadia	205.3400	57.2740	230 224 5	15	0 60.10	
acsz=31w	Aleutian-Alaska-Cascadia	203.0825	57.0189	234.5	15	09.12 56.24	
acsz=31x acsz=31y	Aleutian–Alaska–Cascadia	203.9408	56 6607	235.3	15	43.82	
acsz-31z	Aleutian–Alaska–Cascadia	200.0001 204.4315	56.3016	235.7	15	30.88	
acsz-32a	Aleutian–Alaska–Cascadia	206.2080	56.4730	236	15	17.94	
acsz–32b	Aleutian–Alaska–Cascadia	206.6580	56.1000	236	15	5	
acsz-32w	Aleutian–Alaska–Cascadia	204.4129	57.8908	234.3	15	69.12	
acsz-32x	Aleutian–Alaska–Cascadia	204.8802	57.5358	234.7	15	56.24	
acsz-32y	Aleutian–Alaska–Cascadia	205.3385	57.1792	235.1	15	43.82	
acsz-32z	Aleutian–Alaska–Cascadia	205.7880	56.8210	235.5	15	30.88	
acsz–33a	Aleutian–Alaska–Cascadia	207.5370	56.9750	236	15	17.94	
acsz–33b	Aleutian–Alaska–Cascadia	207.9930	56.6030	236	15	5	
acsz–33w	Aleutian–Alaska–Cascadia	205.7126	58.3917	234.2	15	69.12	
acsz–33x	Aleutian–Alaska–Cascadia	206.1873	58.0371	234.6	15	56.24	
acsz–33y	Aleutian-Alaska-Cascadia	200.0927	07.0808 57.2007	230	15	43.82	
acsz-332	Aleutian-Alaska-Cascadia	207.1091	57 5194	235.4	15	17.04	
acsz=34b	Aleutian-Alaska-Cascadia	208.9371	57 1400	236	15	5	
acsz–34w	Aleutian–Alaska–Cascadia	206.9772	58.8804	233.5	15	69.12	
acsz-34x	Aleutian–Alaska–Cascadia	207.4677	58.5291	233.9	15	56.24	
acsz–34y	Aleutian–Alaska–Cascadia	207.9485	58.1760	234.3	15	43.82	
acsz–34z	Aleutian–Alaska–Cascadia	208.4198	57.8213	234.7	15	30.88	
acsz-35a	Aleutian–Alaska–Cascadia	210.2597	58.0441	230	15	17.94	
acsz-35b	Aleutian–Alaska–Cascadia	210.8000	57.7000	230	15	5	
acsz-35w	Aleutian–Alaska–Cascadia	208.0204	59.3199	228.8	15	69.12	
acsz-35x	Aleutian–Alaska–Cascadia	208.5715	58.9906	229.3	15	56.24	
acsz–35y	Aleutian–Alaska–Cascadia	209.1122	58.6590	229.7	15	43.82	
acsz–35z	Aleutian–Alaska–Cascadia	209.6425	58.3252	230.2	15	30.88	
acsz-30a	Aleutian-Alaska-Cascadia	211.3249	08.0000 E9.2900	218	15	17.94	
acsz-36w	Aleutian-Alaska-Cascadia	212.0000	50 5804	210 215.6	15	0 60.12	
acsz–36v	Aleutian-Alaska-Cascadia	208.3003	59.3894 59.3342	215.0 216.2	15	56 24	
acsz–36v	Aleutian–Alaska–Cascadia	209.8711	59.0753	216.8	15	43.82	
acsz–36z	Aleutian–Alaska–Cascadia	210.5412	58.8129	217.3	15	30.88	
acsz–37a	Aleutian–Alaska–Cascadia	212.2505	59.2720	213.7	15	17.94	
acsz-37b	Aleutian–Alaska–Cascadia	212.9519	59.0312	213.7	15	5	
acsz-37x	Aleutian–Alaska–Cascadia	210.1726	60.0644	213	15	56.24	
acsz-37y	Aleutian–Alaska–Cascadia	210.8955	59.8251	213.7	15	43.82	
acsz-37z	Aleutian–Alaska–Cascadia	211.6079	59.5820	214.3	15	30.88	
acsz–38a	Aleutian–Alaska–Cascadia	214.6555	60.1351	260.1	0	15	
acsz-38b	Aleutian–Alaska–Cascadia	214.8088	59.6927	260.1	0	15	
acsz–38y	Aleutian–Alaska–Cascadia	214.3737	60.9838	259	0	15	

Table B1 – continued							
Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)	
acsz-38z	Aleutian–Alaska–Cascadia	214.5362	60.5429	259	0	15	
acsz-39a	Aleutian–Alaska–Cascadia	216.5607	60.2480	267	0	15	
acsz-39b	Aleutian–Alaska–Cascadia	216.6068	59.7994	267	0	15	
acsz-40a	Aleutian–Alaska–Cascadia	219.3069	59.7574	310.9	0	15	
acsz-40b	Aleutian–Alaska–Cascadia	218.7288	59.4180	310.9	0	15	
acsz–41a	Aleutian–Alaska–Cascadia	220.4832	59.3390	300.7	0	15	
acsz-41b	Aleutian–Alaska–Cascadia	220.0382	58.9529	300.7	0	15	
acsz-42a	Aleutian–Alaska–Cascadia	221.8835	58.9310	298.9	0	15	
acsz-42b	Aleutian–Alaska–Cascadia	221.4671	58.5379	298.9	0	15	
acsz-43a	Aleutian–Alaska–Cascadia	222.9711	58.6934	282.3	0	15	
acsz-43b	Aleutian–Alaska–Cascadia	222.7887	58.2546	282.3	0	15	
acsz-44a	Aleutian–Alaska–Cascadia	224.9379	57.9054	340.9	12	11.09	
acsz-44b	Aleutian–Alaska–Cascadia	224.1596	57.7617	340.9	7	5	
acsz-45a	Aleutian–Alaska–Cascadia	225.4994	57.1634	334.1	12	11.09	
acsz-45b	Aleutian–Alaska–Cascadia	224.7740	56.9718	334.1	7	5	
acsz-46a	Aleutian–Alaska–Cascadia	226.1459	56.3552	334.1	12	11.09	
acsz-46b	Aleutian–Alaska–Cascadia	225.4358	56.1636	334.1	7	5	
acsz-47a	Aleutian–Alaska–Cascadia	226.7731	55.5830	332.3	12	11.09	
acsz-47b	Aleutian–Alaska–Cascadia	226.0887	55.3785	332.3	7	5	
acsz–48a	Aleutian–Alaska–Cascadia	227.4799	54.6763	339.4	12	11.09	
acsz–48b	Aleutian–Alaska–Cascadia	226.7713	54.5217	339.4	7	5	
acsz–49a	Aleutian–Alaska–Cascadia	227.9482	53.8155	341.2	12	11.09	
acsz–49b	Aleutian–Alaska–Cascadia	227.2462	53.6737	341.2	7	5	
acsz–50a	Aleutian–Alaska–Cascadia	228.3970	53.2509	324.5	12	11.09	
acsz–50b	Aleutian–Alaska–Cascadia	227.8027	52.9958	324.5	7	5	
acsz–51a	Aleutian–Alaska–Cascadia	229.1844	52.6297	318.4	12	11.09	
acsz–51b	Aleutian–Alaska–Cascadia	228.6470	52.3378	318.4	7	5	
acsz-52a	Aleutian–Alaska–Cascadia	230.0306	52.0768	310.9	12	11.09	
acsz–52b	Aleutian–Alaska–Cascadia	229.5665	51.7445	310.9	7	5	
acsz-53a	Aleutian–Alaska–Cascadia	231.1735	51.5258	310.9	12	11.09	
acsz-53b	Aleutian–Alaska–Cascadia	230.7150	51.1935	310.9	10	5 11.00	
acsz-54a	Aleutian-Alaska-Cascadia	232.2433	50.8809 50.5655	314.1 214.1	12	11.09	
acsz-540	Aleutian-Alaska-Cascadia	231.7039	20.2022 40.0022	314.1 222 7	(19	0 11.00	
acsz-55b	Aleutian-Alaska-Cascadia	233.3000	49.9032	333.7 999 7	12	11.09	
acsz-550	Aleutian-Alaska-Cascadia	232.0975	49.7080	315	11	10.80	
acsz-56b	Aleutian-Alaska-Cascadia	234.0300	49.1702	315	0	12.02	
acsz=57b	Aleutian-Alaska-Cascadia	233.3849	48.2596	341	11	12.82	
acsz 57a	Aleutian Alaska Cascadia	234.3041	48.1161	341	0	5	
acsz=570	Aleutian-Alaska-Cascadia	234.2797	40.1101	344	11	12.82	
acsz–58b	Aleutian-Alaska-Cascadia	234 6776	47 2597	344	9	5	
acsz–59a	Aleutian–Alaska–Cascadia	235 6432	46 5082	345	11	12.82	
acsz–59b	Aleutian–Alaska–Cascadia	235 0257	46 3941	345	9	5	
acsz-60a	Aleutian–Alaska–Cascadia	235.8640	45.5429	356	11	12.82	
acsz–60b	Aleutian–Alaska–Cascadia	235.2363	45.5121	356	9	5	
acsz–61a	Aleutian–Alaska–Cascadia	235.9106	44.6227	359	11	12.82	
acsz–61b	Aleutian–Alaska–Cascadia	235.2913	44.6150	359	9	5	
acsz–62a	Aleutian–Alaska–Cascadia	235.9229	43.7245	359	11	12.82	
acsz-62b	Aleutian–Alaska–Cascadia	235.3130	43.7168	359	9	5	
acsz–63a	Aleutian–Alaska–Cascadia	236.0220	42.9020	350	11	12.82	
acsz-63b	Aleutian–Alaska–Cascadia	235.4300	42.8254	350	9	5	
acsz–64a	Aleutian–Alaska–Cascadia	235.9638	41.9818	345	11	12.82	
acsz-64b	Aleutian–Alaska–Cascadia	235.3919	41.8677	345	9	5	
acsz-65a	Aleutian–Alaska–Cascadia	236.2643	41.1141	345	11	12.82	
acsz-65b	Aleutian–Alaska–Cascadia	235.7000	41.0000	345	9	5	
acsz-238a	Aleutian–Alaska–Cascadia	213.2878	59.8406	236.8	15	17.94	
acsz-238y	Aleutian–Alaska–Cascadia	212.3424	60.5664	236.8	15	43.82	
acsz-238z	Aleutian–Alaska–Cascadia	212.8119	60.2035	236.8	15	30.88	

Figure B2: Central and South America Subduction Zone unit sources.

Segment	Description	$Longitude(^{o}E)$	Latitude(°N)	$Strike(^{o})$	Dip(°)	Depth (km)
cssz–1a	Central and South America	254.4573	20.8170	359	19	15.4
cssz-1b	Central and South America	254.0035	20.8094	359	12	5
cssz-1z	Central and South America	254.7664	20.8222	359	50	31.67
cssz-2a	Central and South America	254.5765	20.2806	336.8	19	15.4
cssz-2b	Central and South America	254.1607	20.1130	336.8	12	5
cssz-3a	Central and South America	254.8789	19.8923	310.6	18.31	15.27
cssz-3b	Central and South America	254.5841	19.5685	310.6	11.85	5
cssz-4a	Central and South America	255.6167	19.2649	313.4	17.62	15.12
cssz-4b	Central and South America	255.3056	18.9537	313.4	11.68	5
cssz-5a	Central and South America	256.2240	18.8148	302.7	16.92	15
cssz-5b	Central and South America	255.9790	18.4532	302.7	11.54	5
cssz-6a	Central and South America	256.9425	18.4383	295.1	16.23	14.87
cssz-6b	Central and South America	256.7495	18.0479	295.1	11.38	5
$\rm cssz{-}7a$	Central and South America	257.8137	18.0339	296.9	15.54	14.74
$\rm cssz{-}7b$	Central and South America	257.6079	17.6480	296.9	11.23	5
cssz-8a	Central and South America	258.5779	17.7151	290.4	14.85	14.61
cssz-8b	Central and South America	258.4191	17.3082	290.4	11.08	5
cssz–9a	Central and South America	259.4578	17.4024	290.5	14.15	14.47
cssz-9b	Central and South America	259.2983	16.9944	290.5	10.92	5
cssz-10a	Central and South America	260.3385	17.0861	290.8	13.46	14.34
cssz-10b	Central and South America	260.1768	16.6776	290.8	10.77	5
cssz–11a	Central and South America	261.2255	16.7554	291.8	12.77	14.21
cssz–11b	Central and South America	261.0556	16.3487	291.8	10.62	5
cssz–12a	Central and South America	262.0561	16.4603	288.9	12.08	14.08
cssz-12b	Central and South America	261.9082	16.0447	288.9	10.46	5
cssz–13a	Central and South America	262.8638	16.2381	283.2	11.38	13.95
cssz–13b	Central and South America	262.7593	15.8094	283.2	10.31	5
cssz–14a	Central and South America	263.6066	16.1435	272.1	10.69	13.81
cssz–14b	Central and South America	263.5901	15.7024	272.1	10.15	5
cssz–15a	Central and South America	264.8259	15.8829	293	10	13.68
cssz-15b	Central and South America	264.6462	15.4758	293	10	5
cssz–15v	Central and South America	265.1865	16.6971	293	10	31.05
cssz-15z	Central and South America	265.0060	16.2900	293	10	22.36
cssz–16a	Central and South America	265.7928	15.3507	304.9	15	15.82
cssz–16b	Central and South America	265.5353	14.9951	304.9	12.5	5
cssz–16v	Central and South America	266.3092	16.0619	304.9	15	41.7
cssz–16z	Central and South America	266.0508	15.7063	304.9	15	28.76
cssz-17a	Central and South America	266.4947	14.9019	299.5	20	17.94
cssz-17b	Central and South America	266.2797	14.5346	299.5	15	5
cssz-17v	Central and South America	266.9259	15.6365	299.5	20	52.14
cssz-17z	Central and South America	266.7101	15.2692	299.5	20	35.04
cssz-18a	Central and South America	267.2827	14.4768	298	21.5	17.94
cssz-18b	Central and South America	267.0802	14.1078	298	15	5
cssz-18v	Central and South America	267.6888	15.2148	298	21.5	54.59
cssz–18z	Central and South America	267.4856	14.8458	298	21.5	36.27
cssz–19a	Central and South America	268.0919	14.0560	297.6	23	17.94
cssz-19b	Central and South America	267.8943	13.6897	297.6	15	5
cssz-19v	Central and South America	268.4880	14.7886	297.6	23	57.01
cssz-19z	Central and South America	268.2898	14.4223	297.6	23	37.48
cssz-20a	Central and South America	268.8929	13.6558	296.2	24	17.94
cssz-20b	Central and South America	268.7064	13.2877	296.2	15	5
cssz-20v	Central and South America	269.1796	14.2206	296.2	45.5	73.94
cssz-20z	Central and South America	269.0362	13.9382	296.2	45.5	38.28
cssz-21a	Central and South America	269.6797	13.3031	292.6	25	17.94
cssz–21b	Central and South America	269.5187	12.9274	292.6	15	5
cssz–21x	Central and South America	269.8797	13.7690	292.6	68	131.8
cssz–21v	Central and South America	269.8130	13.6137	292.6	68	85.43
cssz-21z	Central and South America	269.7463	13.4584	292.6	68	39.07
cssz-22a	Central and South America	270.4823	13.0079	288.6	25	17.94
cssz–22b	Central and South America	270.3492	12.6221	288.6	15	5
cssz-22x	Central and South America	270.6476	13.4864	288.6	68	131.8
cssz-22y	Central and South America	270.5925	13.3269	288.6	68	85.43

Table B2: Earthquake parameters for Central and South America Subduction Zone unit sources.

Table B2 – continued							
Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	Dip(°)	Depth (km)	
cssz-22z	Central and South America	270.5374	13.1674	288.6	68	39.07	
cssz-23a	Central and South America	271.3961	12.6734	292.4	25	17.94	
cssz-23b	Central and South America	271.2369	12.2972	292.4	15	5	
cssz–23x	Central and South America	271.5938	13.1399	292.4	68	131.8	
cssz–23y	Central and South America	271.5279	12.9844	292.4	68	85.43	
cssz-23z	Central and South America	271.4620	12.8289	292.4	68 25	39.07	
cssz-24a	Central and South America	272.3203	12.2201 11.8734	300.2	20 15	17.94	
cssz=240	Central and South America	272.1107	12 6799	300.2	15 67	131.1	
cssz=24x	Central and South America	272 5012	12.5733 12.5283	300.2	67	85.1	
cssz-24z	Central and South America	272.4107	12.3767	300.2	67	39.07	
cssz-25a	Central and South America	273.2075	11.5684	313.8	25	17.94	
cssz-25b	Central and South America	272.9200	11.2746	313.8	15	5	
cssz-25x	Central and South America	273.5950	11.9641	313.8	66	130.4	
cssz-25y	Central and South America	273.4658	11.8322	313.8	66	84.75	
cssz-25z	Central and South America	273.3366	11.7003	313.8	66	39.07	
cssz-26a	Central and South America	273.8943	10.8402	320.4	25	17.94	
cssz-26b	Central and South America	273.5750	10.5808	320.4	15	5	
cssz–26x	Central and South America	274.3246	11.1894	320.4	66	130.4	
cssz–26y	Central and South America	274.1811	11.0730	320.4	66	84.75	
cssz-20z	Central and South America	274.0377	10.9500	320.4	00	39.07	
cssz-27h	Central and South America	274.4309 274.1500	10.2177	310.1 316 1	20 15	17.94	
cssz-270	Central and South America	274.1390	9.9354	316.1	10 66	39.07	
cssz 212 cssz-28a	Central and South America	274 9586	9 8695	297.1	22	14 54	
cssz–28b	Central and South America	274.7661	9.4988	297.1	11	5	
cssz-28z	Central and South America	275.1118	10.1643	297.1	42.5	33.27	
cssz–29a	Central and South America	275.7686	9.4789	296.6	19	11.09	
cssz-29b	Central and South America	275.5759	9.0992	296.6	7	5	
cssz-30a	Central and South America	276.6346	8.9973	302.2	19	9.36	
$\rm cssz{-}30b$	Central and South America	276.4053	8.6381	302.2	5	5	
cssz-31a	Central and South America	277.4554	8.4152	309.1	19	7.62	
cssz–31b	Central and South America	277.1851	8.0854	309.1	3	5	
cssz–31z	Central and South America	277.7260	8.7450	309.1	19	23.9	
cssz–32a	Central and South America	278.1112	7.9425	303	18.67	8.49	
cssz–32b	Central and South America	277.8775	7.5855	303	4	5	
CSSZ-52Z	Central and South America	278.3407	6.2921 7.6620	303 287.6	21.07 18 33	24.49	
cssz-33b	Central and South America	278.5785	7.0020	287.6	6	5	
cssz=33z	Central and South America	278.8328	8 0522	287.6	24 33	25.95	
cssz–34a	Central and South America	279.3184	7.5592	269.5	18	17.94	
cssz-34b	Central and South America	279.3223	7.1320	269.5	15	5	
cssz-35a	Central and South America	280.0039	7.6543	255.9	17.67	14.54	
cssz-35b	Central and South America	280.1090	7.2392	255.9	11	5	
cssz-35x	Central and South America	279.7156	8.7898	255.9	29.67	79.22	
cssz-35y	Central and South America	279.8118	8.4113	255.9	29.67	54.47	
cssz-35z	Central and South America	279.9079	8.0328	255.9	29.67	29.72	
cssz-36a	Central and South America	281.2882	7.6778	282.5	17.33	11.09	
cssz–36b	Central and South America	281.1948	7.2592	282.5	7	5	
cssz–36x	Central and South America	281.5368	8.7896	282.5	32.33	79.47	
cssz–36y	Central and South America	281.4539	8.4190	282.5	32.33	52.73	
cssz-36z	Central and South America	281.3710	8.0484	282.5	32.33	25.99	
cssz-ə7a	Central and South America	282.0202	0.0209 6 5044	320.9 326 0	17 6	10.25	
cssz=38a	Central and South America	282.9469	5.5973	355.9	17	10.23	
cssz–38h	Central and South America	282.5167	5.5626	355.4	6	5	
cssz-39a	Central and South America	282.7236	4.3108	24.13	17	10.23	
cssz-39b	Central and South America	282.3305	4.4864	24.13	6	5	
cssz-39z	Central and South America	283.0603	4.1604	24.13	35	24.85	
cssz-40a	Central and South America	282.1940	3.3863	35.28	17	10.23	
cssz-40b	Central and South America	281.8427	3.6344	35.28	6	5	
cssz-40y	Central and South America	282.7956	2.9613	35.28	35	53.52	
cssz-40z	Central and South America	282.4948	3.1738	35.28	35	24.85	
cssz-41a	Central and South America	281.6890	2.6611	34.27	17	10.23	

${\bf Table}\; {\bf B2-continued}$						
Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)
cssz-41b	Central and South America	281.3336	2.9030	34.27	6	5
cssz-41z	Central and South America	281.9933	2.4539	34.27	35	24.85
cssz–42a	Central and South America	281.2266	1.9444	31.29	17	10.23
cssz-42b	Central and South America	280.8593	2.1675	31.29	6	5
cssz–42z	Central and South America	281.5411	1.7533	31.29	35	24.85
cssz-43a	Central and South America	280.7297	1.1593	33.3 22.2	17 6	10.23
cssz-430	Central and South America	260.3700	1.5951	00.0 99.9	25	0 24.85
cssz 452	Central and South America	280 3018	0.4491	28.8	17	10.23
cssz–44b	Central and South America	279.9254	0.6560	28.8	6	5
cssz-45a	Central and South America	279.9083	-0.3259	26.91	10	8.49
cssz-45b	Central and South America	279.5139	-0.1257	26.91	4	5
cssz-46a	Central and South America	279.6461	-0.9975	15.76	10	8.49
$\rm cssz{-}46b$	Central and South America	279.2203	-0.8774	15.76	4	5
cssz-47a	Central and South America	279.4972	-1.7407	6.9	10	8.49
$\rm cssz{-}47b$	Central and South America	279.0579	-1.6876	6.9	4	5
cssz–48a	Central and South America	279.3695	-2.6622	8.96	10	8.49
cssz-48b	Central and South America	278.9321	-2.5933	8.96	4	5
cssz-48y	Central and South America	280.2444	-2.8000	8.96	10	25.85
cssz–48z	Central and South America	279.8070	-2.7311	8.96	10	17.17
cssz–49a	Central and South America	279.1802	-3.0070	13.15	10	8.49 F
cssz-49b	Central and South America	278.7930	-3.5064	13.15	4 10	0 25.85
cssz–49y cssz–49z	Central and South America	280.0480 279.6169	-3.7076	13.15 13.15	10	25.85 17.17
cssz–50a	Central and South America	279.0652	-4.3635	4.78	10.33	9.64
cssz–50b	Central and South America	278.6235	-4.3267	4.78	5.33	5
cssz–51a	Central and South America	279.0349	-5.1773	359.4	10.67	10.81
cssz-51b	Central and South America	278.5915	-5.1817	359.4	6.67	5
cssz-52a	Central and South America	279.1047	-5.9196	349.8	11	11.96
cssz-52b	Central and South America	278.6685	-5.9981	349.8	8	5
cssz-53a	Central and South America	279.3044	-6.6242	339.2	10.25	11.74
cssz-53b	Central and South America	278.8884	-6.7811	339.2	7.75	5
cssz–53y	Central and South America	280.1024	-6.3232	339.2	19.25	37.12
cssz–53z	Central and South America	279.7035	-6.4737	339.2	19.25	20.64
cssz-54a	Central and South America	279.6256	-7.4907	340.8	9.5 7 F	11.53
cssz=54b	Central and South America	279.2030	-7.0303	340.8	7.0 20.5	0 37-20
cssz–54z	Central and South America	280.4207	-7.2137	340.8	20.5 20.5	19 78
cssz-55a	Central and South America	279 9348	-8 2452	335.4	8 75	11.76
cssz-55b	Central and South America	279.5269	-8.4301	335.4	7.75	5
cssz-55x	Central and South America	281.0837	-7.7238	335.4	21.75	56.4
cssz-55y	Central and South America	280.7009	-7.8976	335.4	21.75	37.88
cssz-55z	Central and South America	280.3180	-8.0714	335.4	21.75	19.35
cssz-56a	Central and South America	280.3172	-8.9958	331.6	8	11.09
cssz-56b	Central and South America	279.9209	-9.2072	331.6	7	5
cssz-56x	Central and South America	281.4212	-8.4063	331.6	23	57.13
cssz–56y	Central and South America	281.0534	-8.6028	331.6	23	37.59
cssz–56z	Central and South America	280.6854	-8.7993	331.6	23	18.05
cssz-ə/a	Central and South America	280.7492	-9.7300	328.1	8.0 6.6	10.75
cssz=57v	Central and South America	281 8205	-9.9003	328.7	23.4	57.94
cssz=57x	Central and South America	281.8205	-9.0933	328.7	23.4	38.08
cssz = 57z	Central and South America	281.1065	-9.5215	328.7	23.4	18.22
cssz-58a	Central and South America	281.2275	-10.5350	330.5	9.2	10.4
cssz-58b	Central and South America	280.8348	-10.7532	330.5	6.2	5
cssz-58y	Central and South America	281.9548	-10.1306	330.5	23.8	38.57
cssz-58z	Central and South America	281.5913	-10.3328	330.5	23.8	18.39
cssz-59a	Central and South America	281.6735	-11.2430	326.2	9.8	10.05
$\rm cssz{-}59b$	Central and South America	281.2982	-11.4890	326.2	5.8	5
$\rm cssz{-}59y$	Central and South America	282.3675	-10.7876	326.2	24.2	39.06
cssz–59z	Central and South America	282.0206	-11.0153	326.2	24.2	18.56
cssz–60a	Central and South America	282.1864	-11.9946	326.5	10.4	9.71
cssz-bUb	Central and South America	281.8090	-12.2384	320.3 206 5	0.4	0 20 FF
cssz-o0y	Central and South America	202.8821	-11.0438	320.3	24.0	3 9.99

${\bf Table}\; {\bf B2-continued}$						
Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)
cssz-60z	Central and South America	282.5344	-11.7692	326.5	24.6	18.73
cssz-61a	Central and South America	282.6944	-12.7263	325.5	11	9.36
cssz-61b	Central and South America	282.3218	-12.9762	325.5	5	5
cssz-61y	Central and South America	283.3814	-12.2649	325.5	25	40.03
cssz–61z	Central and South America	283.0381	-12.4956	325.5	25	18.9
cssz-62a	Central and South America	283.1980	-13.3556	319	11	9.79
cssz–62b	Central and South America	282.8560	-13.6451	319	5.5	5
cssz–62y	Central and South America	283.8178	-12.8300	319	27	42.03
cssz–62z	Central and South America	283.5081	-13.0928	319	27	19.33
cssz-03a	Central and South America	283.8032	-14.0147	317.9	11 C	10.23
cssz-63z	Central and South America	265.4001	-14.3100 -13.7511	317.9	20	10.77
cssz 052	Central and South America	284 4144	-14 6482	315.7	13	11.96
cssz–64b	Central and South America	284 0905	-14 9540	315.7	8	5
cssz-65a	Central and South America	285.0493	-15.2554	313.2	15	13.68
cssz-65b	Central and South America	284.7411	-15.5715	313.2	10	5
cssz-66a	Central and South America	285.6954	-15.7816	307.7	14.5	13.68
cssz-66b	Central and South America	285.4190	-16.1258	307.7	10	5
cssz-67a	Central and South America	286.4127	-16.2781	304.3	14	13.68
$\rm cssz{-}67b$	Central and South America	286.1566	-16.6381	304.3	10	5
cssz-67z	Central and South America	286.6552	-15.9365	304.3	23	25.78
cssz-68a	Central and South America	287.2481	-16.9016	311.8	14	13.68
$\rm cssz{-}68b$	Central and South America	286.9442	-17.2264	311.8	10	5
cssz–68z	Central and South America	287.5291	-16.6007	311.8	26	25.78
cssz-69a	Central and South America	287.9724	-17.5502	314.9	14	13.68
cssz–69b	Central and South America	287.6496	-17.8590	314.9	10	5
cssz–69y	Central and South America	288.5530	-16.9934	314.9	29	50.02
cssz-09z	Central and South America	288.2029	-17.2718	314.9	29 14	20.78
cssz–70a	Central and South America	200.0731	-18.5527	320.4	9.5	13.20
cssz = 700	Central and South America	289 3032	-17 7785	320.4 320.4	30	50.35
cssz=70y	Central and South America	288 9884	-18 0266	320.4 320.4	30	25.35
cssz-71a	Central and South America	289.3089	-19.1854	333.2	14	12.82
cssz-71b	Central and South America	288.8968	-19.3820	333.2	9	5
cssz-71y	Central and South America	290.0357	-18.8382	333.2	31	50.67
cssz-71z	Central and South America	289.6725	-19.0118	333.2	31	24.92
cssz-72a	Central and South America	289.6857	-20.3117	352.4	14	12.54
cssz-72b	Central and South America	289.2250	-20.3694	352.4	8.67	5
cssz-72z	Central and South America	290.0882	-20.2613	352.4	32	24.63
cssz-73a	Central and South America	289.7731	-21.3061	358.9	14	12.24
cssz–73b	Central and South America	289.3053	-21.3142	358.9	8.33	5
cssz–73z	Central and South America	290.1768	-21.2991	358.9	33	24.34
cssz-74a	Central and South America	289.7610	-22.2671	3.06	14	11.96
CSSZ-74D	Central and South America	289.2909	-22.2438	3.00	8	0 11.06
cssz-75b	Central and South America	209.0902	-23.1905	4.65	14.09 Q	11.90
cssz = 750	Central and South America	289.2201	-24 0831	4.65	1/18	11.96
cssz - 76b	Central and South America	289.0257	-24.0051	4.67	8	5
cssz-77a	Central and South America	289.5538	-24.9729	4.3	14.27	11.96
cssz-77b	Central and South America	289.0750	-24.9403	4.3	8	5
cssz-78a	Central and South America	289.4904	-25.8621	3.86	14.36	11.96
$\rm cssz{-}78b$	Central and South America	289.0081	-25.8328	3.86	8	5
cssz-79a	Central and South America	289.3491	-26.8644	11.34	14.45	11.96
$\rm cssz{-}79b$	Central and South America	288.8712	-26.7789	11.34	8	5
cssz-80a	Central and South America	289.1231	-27.7826	14.16	14.54	11.96
cssz-80b	Central and South America	288.6469	-27.6762	14.16	8	5
cssz-81a	Central and South America	288.8943	-28.6409	13.19	14.63	11.96
cssz-81b	Central and South America	288.4124	-28.5417	13.19	8	5
cssz-82a	Central and South America	288.7113	-29.4680	9.68	14.72	11.96
cssz–82b	Central and South America	288.2196	-29.3950	9.68	8	5
cssz–83a	Central and South America	288.5944	-30.2923	5.36	14.81	11.96
CSSZ-83D	Central and South America	200.0930 288 5222	-30.2517	0.30 २०	ð 14 0	0 11.06
cssz-84h	Central and South America	288.0163	-31,1351	3.8	8	5
5552 0-10	Contrar and South million	200.0100	01.1001	0.0	0	

${\bf Table} {\bf B2-continued}$						
Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)
cssz-85a	Central and South America	288.4748	-32.0416	2.55	15	11.96
cssz-85b	Central and South America	287.9635	-32.0223	2.55	8	5
cssz-86a	Central and South America	288.3901	-33.0041	7.01	15	11.96
cssz–86b	Central and South America	287.8768	-32.9512	7.01	8	5
cssz = 87a	Central and South America	288.1050	-34.0583	19.4	15	11.96
CSSZ-87D	Central and South America	287.0115	-33.9142	19.4	8 15	0 11.06
cssz-88b	Central and South America	287.0309	-34 8086	32.81	8	5
cssz-88z	Central and South America	287.9308	-35.2545	32.81	30	24.9
cssz-89a	Central and South America	287.2380	-35.5993	14.52	16.67	11.96
cssz-89b	Central and South America	286.7261	-35.4914	14.52	8	5
cssz-89z	Central and South America	287.7014	-35.6968	14.52	30	26.3
cssz-90a	Central and South America	286.8442	-36.5645	22.64	18.33	11.96
cssz-90b	Central and South America	286.3548	-36.4004	22.64	8	5
cssz–90z	Central and South America	287.2916	-36.7142	22.64	30	27.68
cssz–91a	Central and South America	286.5925	-37.2488	10.9	20	11.96
cssz–91b	Central and South America	286.0721	-37.1690	10.9	8	5
cssz–91z	Central and South America	287.0726	-37.3224	10.9	30	29.06
cssz-92a	Central and South America	286.4254	-38.0945	8.23	20	11.96
cssz-92D	Central and South America	285.8948	-38.0341	8.23	8 26.67	0 20.06
CSSZ-92Z	Central and South America	286 2047	-36.1320	0.20 13.46	20.07	29.00
cssz–93a cssz–93b	Central and South America	285.6765	-38 9553	13.40 13.46	20	5
cssz-93z	Central and South America	286.7216	-39.1495	13.46	23.33	29.06
cssz–94a	Central and South America	286.0772	-39.7883	3.4	20	11.96
cssz-94b	Central and South America	285.5290	-39.7633	3.4	8	5
cssz–94z	Central and South America	286.6255	-39.8133	3.4	20	29.06
cssz-95a	Central and South America	285.9426	-40.7760	9.84	20	11.96
cssz-95b	Central and South America	285.3937	-40.7039	9.84	8	5
cssz-95z	Central and South America	286.4921	-40.8481	9.84	20	29.06
cssz–96a	Central and South America	285.7839	-41.6303	7.6	20	11.96
cssz–96b	Central and South America	285.2245	-41.5745	7.6	8	5
cssz-96x	Central and South America	287.4652	-41.7977	7.6	20	63.26
cssz-90y	Central and South America	280.9045	-41.7419	7.0	20	40.10
cssz=90z	Central and South America	280.3439 285.6695	-41.0801	7.0 5.3	20	29.00
cssz - 97b	Central and South America	285.0095	-42.4492	5.3	8	5
cssz-97x	Central and South America	287.3809	-42.6052	5.3	20	63.26
cssz-97v	Central and South America	286.8101	-42.5662	5.3	20	46.16
cssz-97z	Central and South America	286.2396	-42.5272	5.3	20	29.06
cssz-98a	Central and South America	285.5035	-43.4553	10.53	20	11.96
cssz-98b	Central and South America	284.9322	-43.3782	10.53	8	5
cssz-98x	Central and South America	287.2218	-43.6866	10.53	20	63.26
cssz–98y	Central and South America	286.6483	-43.6095	10.53	20	46.16
cssz–98z	Central and South America	286.0755	-43.5324	10.53	20	29.06
cssz–99a	Central and South America	285.3700	-44.2595	4.86	20	11.96
cssz-99D	Central and South America	284.7830	-44.2237	4.80	8 20	0 62.06
cssz-99x	Central and South America	201.1002	-44.3009	4.80	20	03.20 46.16
CSSZ 99y	Central and South America	285 9574	-44.3511	4.80	20	29.06
cssz-100a	Central and South America	285.2713	-45.1664	5.68	20	11.96
cssz-100b	Central and South America	284.6758	-45.1246	5.68	8	5
cssz-100x	Central and South America	287.0603	-45.2918	5.68	20	63.26
cssz-100y	Central and South America	286.4635	-45.2500	5.68	20	46.16
cssz-100z	Central and South America	285.8672	-45.2082	5.68	20	29.06
cssz-101a	Central and South America	285.3080	-45.8607	352.6	20	9.36
$\rm cssz{-}101b$	Central and South America	284.7067	-45.9152	352.6	5	5
cssz–101y	Central and South America	286.5089	-45.7517	352.6	20	43.56
cssz-101z	Central and South America	285.9088	-45.8062	352.6	20	26.46
cssz-102a	Central and South America	285.2028	-47.1185	17.72	5	9.36
CSSZ-102D	Central and South America	204.0112 286 1500	-40.9823 _47 3000	17.72 17.79	Э 5	0 18.07
cssz=102y	Central and South America	285 8300	-47.3909	17.72	5	13 79
cssz-103a	Central and South America	284.7075	-48.0396	23.37	7.5	11.53
				•		

Table B2 $-$ continued						
Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)
$\rm cssz{-}103b$	Central and South America	284.0972	-47.8630	23.37	7.5	5
cssz-103x	Central and South America	286.5511	-48.5694	23.37	7.5	31.11
cssz–103y	Central and South America	285.9344	-48.3928	23.37	7.5	24.58
cssz–103z	Central and South America	285.3199	-48.2162	23.37	7.5	18.05
cssz-104a	Central and South America	284.3440	-48.7597	14.87	10	13.68
cssz-104b	Central and South America	283.6962	-48.6462	14.87	10	5 20.72
cssz-104x	Central and South America	280.2902	-49.1002	14.87	10	39.73 21.05
cssz=104y	Central and South America	281 0033	-40.9007	14.07	10	22.00
cssz 1042	Central and South America	284.9955	-49.4198	0.25	9.67	13.4
cssz-105b	Central and South America	283.5518	-49.4179	0.25	9.67	5
cssz-105x	Central and South America	$\bar{2}86.2718$	-49.4255	0.25	9.67	38.59
cssz-105y	Central and South America	285.5908	-49.4236	0.25	9.67	30.2
cssz = 1062	Central and South America	284.9114	-49.4217	0.20	9.07	21.8 13.04
cssz–106b	Central and South America	283.6974	-50.2077	347.5	9.25 9.25	5
cssz-106x	Central and South America	286.3916	-49.8238	347.5	9.25	37.15
cssz-106y	Central and South America	285.7201	-49.9198	347.5	9.25	29.11
cssz-106z	Central and South America	285.0472	-50.0157	347.5	9.25	21.07
cssz-107a	Central and South America	284.7130	-50.9714	346.5	9	12.82
cssz-107b	Central and South America	284.0273	-51.0751	346.5	9	5
cssz=107x cssz=107y	Central and South America	286.0799	-50.0005	340.0 346.5	9	30.29 28.47
cssz = 107y cssz = 107z	Central and South America	285.3972	-50.8677	346.5	9	20.64
cssz–108a	Central and South America	285.0378	-51.9370	352	8.67	12.54
$\rm cssz{-}108b$	Central and South America	284.3241	-51.9987	352	8.67	5
$\rm cssz{-}108x$	Central and South America	287.1729	-51.7519	352	8.67	35.15
cssz-108y	Central and South America	286.4622	-51.8136	352	8.67	27.61
cssz-108z	Central and South America	285.7505	-51.8753	352	8.67	20.07
cssz–109a	Central and South America	260.2000	-52.8459	353 1	0.00 8 33	12.24
cssz = 1090 cssz = 1090	Central and South America	287.4508	-52.6834	353.1	8.33	33.97
cssz-109y	Central and South America	286.7226	-52.7369	353.1	8.33	26.73
cssz-109z	Central and South America	285.9935	-52.7904	353.1	8.33	19.49
cssz-110a	Central and South America	285.5705	-53.4139	334.2	8	11.96
cssz-110b	Central and South America	284.8972	-53.6076	334.2	8	5
cssz-110x	Central and South America	287.5724	-52.8328	334.2	8	32.83
cssz=110y cssz=110z	Central and South America	286 2408	-53 2202	334.2 334.2	8	23.88
cssz-111a	Central and South America	286.1627	-53.8749	313.8	8	11.96
cssz–111b	Central and South America	285.6382	-54.1958	313.8	8	5
cssz-111x	Central and South America	287.7124	-52.9122	313.8	8	32.83
cssz–111y	Central and South America	287.1997	-53.2331	313.8	8	25.88
cssz–111z	Central and South America	286.6832	-53.5540	313.8	8	18.92
cssz-112a	Central and South America	287.3287	-54.5394 54.8462	316.4 316.4	8	11.96
cssz=1120	Central and South America	280.7715	-53 6190	316.4	8	32.83
cssz - 112x cssz - 112y	Central and South America	288.4307	-53.9258	316.4	8	25.88
cssz-112z	Central and South America	287.8817	-54.2326	316.4	8	18.92
cssz-113a	Central and South America	288.3409	-55.0480	307.6	8	11.96
cssz-113b	Central and South America	287.8647	-55.4002	307.6	8	5
cssz–113x	Central and South America	289.7450	-53.9914	307.6	8	32.83
cssz-113y	Central and South America	289.2810	-54.3436	307.6	8	25.88
cssz=113z	Central and South America	289 5342	-55 5026	301.5	8	11.92
cssz-114b	Central and South America	289.1221	-55.8819	301.5	8	5
cssz-114x	Central and South America	290.7472	-54.3647	301.5	8	32.83
cssz-114y	Central and South America	290.3467	-54.7440	301.5	8	25.88
cssz-114z	Central and South America	289.9424	-55.1233	301.5	8	18.92
cssz–115a	Central and South America	290.7682	-55.8485	292.7	8	11.96
cssz-115b	Central and South America	290.4608	-56.2588	292.7	8	5
cssz=115x	Central and South America	291.0714 201 3734	-04.0170 -55 0970	292.1 202 7	ð R	04.80 25.88
cssz-115z	Central and South America	291.0724	-55.4382	292.7	8	18.92

Figure B3: Eastern Philippines Subduction Zone unit sources.

Segment	Description	Longitude(°E)	Latitude(°N)	Strike(°)	Dip(°)	Depth (km)
epsz–0a	Eastern Philippines	128.5264	1.5930	180	44	26.92
epsz–0b	Eastern Philippines	128.8496	1.5930	180	26	5
epsz–1a	Eastern Philippines	128.5521	2.3289	153.6	44.2	27.62
epsz–1b	Eastern Philippines	128.8408	2.4720	153.6	26.9	5
epsz–2a	Eastern Philippines	128.1943	3.1508	151.9	45.9	32.44
epsz–2b	Eastern Philippines	128.4706	3.2979	151.9	32.8	5.35
epsz–3a	Eastern Philippines	127.8899	4.0428	155.2	57.3	40.22
epsz–3b	Eastern Philippines	128.1108	4.1445	155.2	42.7	6.31
epsz-4a	Eastern Philippines	127.6120	4.8371	146.8	71.4	48.25
epsz–4b	Eastern Philippines	127.7324	4.9155	146.8	54.8	7.39
epsz–5a	Eastern Philippines	127.3173	5.7040	162.9	79.9	57.4
epsz-5b	Eastern Philippines	127.3930	5.7272	162.9	79.4	8.25
epsz–6a	Eastern Philippines	126.6488	6.6027	178.9	48.6	45.09
epsz–6b	Eastern Philippines	126.9478	6.6085	178.9	48.6	7.58
epsz-7a	Eastern Philippines	126.6578	7.4711	175.8	50.7	45.52
epsz-7b	Eastern Philippines	126.9439	7.4921	175.8	50.7	6.83
epsz–8a	Eastern Philippines	126.6227	8.2456	163.3	56.7	45.6
epsz-8b	Eastern Philippines	126.8614	8.3164	163.3	48.9	7.92
epsz–9a	Eastern Philippines	126.2751	9.0961	164.1	47	43.59
epsz–9b	Eastern Philippines	126.5735	9.1801	164.1	44.9	8.3
epsz–10a	Eastern Philippines	125.9798	9.9559	164.5	43.1	42.25
epsz-10b	Eastern Philippines	126.3007	10.0438	164.5	43.1	8.09
epsz–11a	Eastern Philippines	125.6079	10.6557	155	37.8	38.29
epsz–11b	Eastern Philippines	125.9353	10.8059	155	37.8	7.64
epsz-12a	Eastern Philippines	125.4697	11.7452	172.1	36	37.01
epsz-12b	Eastern Philippines	125.8374	11.7949	172.1	36	7.62
epsz–13a	Eastern Philippines	125.2238	12.1670	141.5	32.4	33.87
epsz–13b	Eastern Philippines	125.5278	12.4029	141.5	32.4	7.08
epsz–14a	Eastern Philippines	124.6476	13.1365	158.2	23	25.92
epsz–14b	Eastern Philippines	125.0421	13.2898	158.2	23	6.38
epsz–15a	Eastern Philippines	124.3107	13.9453	156.1	24.1	26.51
epsz–15b	Eastern Philippines	124.6973	14.1113	156.1	24.1	6.09
epsz-16a	Eastern Philippines	123.8998	14.4025	140.3	19.5	21.69
epsz-16b	Eastern Philippines	124.2366	14.6728	140.3	19.5	5
epsz–17a	Eastern Philippines	123.4604	14.7222	117.6	15.3	18.19
epsz–17b	Eastern Philippines	123.6682	15.1062	117.6	15.3	5
epsz–18a	Eastern Philippines	123.3946	14.7462	67.4	15	17.94
epez_18h	Eastern Philippines	123.2219	15.1467	67.4	15	5

Table B3: Earthquake parameters for Eastern Philippines Subduction Zone unit sources.

Figure B4: Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zone unit sources.

Segment	Description	Longitude(°E)	$Latitude(^{o}N)$	Strike(°)	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)
kisz–1a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	162.4318	55.5017	195	29	26.13
kisz–1b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	163.1000	55.4000	195	25	5
kisz–1y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.0884	55.7050	195	29	74.61
kisz–1z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.7610	55.6033	195	29	50.37
kisz–2a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.9883	54.6784	200	29	26.13
kisz–2b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	162.6247	54.5440	200	25	5
kisz–2y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.7072	54.9471	200	29	74.61
kisz–2z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.3488	54.8127	200	29	50.37
kisz–3a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.4385	53.8714	204	29	26.13
kisz–3b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	162.0449	53.7116	204	25	5
kisz–3y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.2164	54.1910	204	29	74.61
kisz–3z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.8286	54.0312	204	29	50.37
kisz–4a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.7926	53.1087	210	29	26.13
kisz–4b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	161.3568	52.9123	210	25	5
kisz-4y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	159.6539	53.5015	210	29	74.61
kisz-4z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.2246	53.3051	210	29	50.37
kisz–5a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.0211	52.4113	218	29	26.13
kisz–5b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	160.5258	52.1694	218	25	5
kisz–5y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	159.0005	52.8950	218	29	74.61
kisz–5z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	159.5122	52.6531	218	29	50.37
kisz–6a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	159.1272	51.7034	218	29	26.13
kisz–6b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	159.6241	51.4615	218	25	5
kisz–6y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	158.1228	52.1871	218	29	74.61
kisz–6z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	158.6263	51.9452	218	29	50.37
kisz–7a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	158.2625	50.9549	214	29	26.13
kisz–7b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	158.7771	50.7352	214	25	5
kisz–7y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	157.2236	51.3942	214	29	74.61
kısz–7z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	157.7443	51.1745	214	29	50.37
kisz–8a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	157.4712	50.2459	218	31	27.7
kisz–8b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	157.9433	50.0089	218	27	5
kisz–8y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	156.5176	50.7199	218	31	79.2
kisz–8z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	156.9956	50.4829	218	31	53.45
kisz-9a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	150.0114	49.5585	220	31	21.1
kisz-9b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	157.0038	49.3109	220	27	0 70.0
kisz–9y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	155.0974	20.0233	220	31 21	(9.2 E2.4E
kisz-9z	Kamehatka-Kuril Japan Izu Mariana-Yap	155 7204	49.0030	220	01 91	05.40 97.7
kisz-10a	Kamehatka-Kuril Japan Izu Mariana-Yap	156,1600	40.0004	221	31 97	21.1
kisz-100	Kamehatka-Kuril Japan Izu Mariana-Tap	154 8412	40.0210	221	21	70.2
kisz-10y	Kamchatka-Kuril Japan Izu Mariana-Tap	155 2865	49.3630	221	31 21	19.2 53.45
kisz-10z	Kamchatka Kuril Japan Izu Mariana Van	154 8480	49.1000	221	21	07.40 07.7
kisz–11b	Kamchatka-Kuril-Japan-Izu-Mariana-Tap	155 2955	47 9398	213	27	5
kisz-11v	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.9472	48 6667	210	31	79.2
kisz–11z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	154 3991	48 4244	219	31	53 45
kisz–12a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.9994	47.4729	217	31	27.7
kisz–12b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	154.4701	47.2320	217	27	5
kisz–12v	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.0856	47.9363	217	31	79.2
kisz–12z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.5435	47.7046	217	31	53.45
kisz–13a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.2239	46.7564	218	31	27.7
kisz–13b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	153.6648	46.5194	218	27	5
kisz–13v	Kamchatka-Kuril-Japan-Izu-Mariana-Yan	152.3343	47.2304	218	31	79.2
kisz–13z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	152.7801	46.9934	218	31	53.45
kisz–14a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	152.3657	46.1514	225	23	24.54
kisz–14b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	152.7855	45.8591	225	23	5
kisz–14y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	151.5172	46.7362	225	23	63.62
kisz–14z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	151.9426	46.4438	225	23	44.08
kisz–15a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	151.4663	45.5963	233	25	23.73
kisz–15b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	151.8144	45.2712	233	22	5
kisz–15y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	150.7619	46.2465	233	25	65.99
kisz–15z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	151.1151	45.9214	233	25	44.86
kisz–16a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	150.4572	45.0977	237	25	23.73
kisz–16b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	150.7694	44.7563	237	22	5

Table B4: Earthquake parameters for Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zone unit sources.

${\bf Table}{\bf B4-continued}$							
Segment	Description I	Longitude(°E)	Latitude(°N)	Strike(°)	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)	
kisz–16y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	149.8253	45.7804	237	25	65.99	
kisz–16z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	150.1422	45.4390	237	25	44.86	
$ m kisz{-}17a$	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	149.3989	44.6084	237	25	23.73	
kisz–17b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	149.7085	44.2670	237	22	5	
$_{ m kisz-17y}$	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	148.7723	45.2912	237	25	65.99	
kisz–17z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	149.0865	44.9498	237	25	44.86	
kisz–18a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	148.3454	44.0982	235	25	23.73	
kisz–18b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	148.6687	43.7647	235	22	5	
kisz–18y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.6915	44.7651	235	25	65.99	
kisz–18z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	148.0194	44.4316	235	25	44.86	
kisz–19a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.3262	43.5619	233	25	23.73	
kisz-19D	Kamenatka-Kuril-Japan-Izu-Mariana-Yap	147.0020	43.2308	233	22	0 65 00	
kisz–19y	Kamenatka-Kuril Japan-Izu-Mariana-Tap	140.0405	44.2121	200 000	20	05.99	
kisz-19z	Kamehatka-Kuril Japan Izu Mariana-Yap	140.9872	43.0010	200 097	20	44.00	
kisz-20a	Kamehatka-Kuril Japan Izu Mariana-Yap	140.5515	43.0033 42.7210	201	20	23.73	
kisz-200	Kamchatka-Kuril Japan Izu Mariana Vap	140.0551 145.7410	42.7219	237	22	65.00	
kisz-20y	Kamehatka Kuril Japan Izu Mariana Vap	146.0470	43.7401	237	25	44.86	
kisz-21a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145 3331	42 5948	237	25	23.73	
kisz–21b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.6163	42.0040 42.2459	239	20	20.10	
kisz–21v	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.7603	43.2927	239	25	65.99	
kisz–21z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145 0475	42 9438	239	25	44.86	
kisz–22a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.3041	42,1631	242	25	23.73	
kisz–22b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.5605	41.8037	242	22	5	
kisz–22v	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.7854	42.8819	242	$25^{}$	65.99	
kisz–22z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.0455	42.5225	242	25	44.86	
kisz–23a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.2863	41.3335	202	21	21.28	
kisz–23b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.8028	41.1764	202	19	5	
kisz–23v	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.6816	42.1189	202	21	110.9	
kisz–23w	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.2050	41.9618	202	21	92.95	
kisz–23x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.7273	41.8047	202	21	75.04	
kisz–23y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.2482	41.6476	202	21	57.12	
kisz–23z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.7679	41.4905	202	21	39.2	
kisz–24a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.9795	40.3490	185	21	21.28	
kisz–24b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.5273	40.3125	185	19	5	
kisz-24x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.3339	40.4587	185	21	75.04	
kisz–24y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.8827	40.4221	185	21	57.12	
kisz–24z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.4312	40.3856	185	21	39.2	
kisz-25a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.8839	39.4541	185	21	21.28	
kisz–25b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.4246	39.4176	185	19	5	
kisz–25y	Kamenatka-Kuril-Japan-Izu-Mariana-Yap	141.8012	39.3272	180	21	07.12 20.2	
kisz-20z	Kamenatka-Kuril Japan-Izu-Mariana-Tap	142.5420	39.4907 20 5027	100	21	09.2 01.09	
kisz-20a	Kamchatka-Kuril Japan Izu Mariana Vap	142.7022	38 5254	100	21 10	5	
kisz-26v	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.2350 141.1667	38.7588	188	21	75.04	
kisz–26v	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.6990	38.7004	188	21	57.12	
kisz–26z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.2308	38.6421	188	21	39.2	
kisz–27a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.5320	37.7830	198	21	21.28	
kisz–27b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.0357	37.6534	198	19	5	
kisz–27x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.0142	38.1717	198	21	75.04	
kisz–27y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.5210	38.0421	198	21	57.12	
kisz–27z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.0269	37.9126	198	21	39.2	
kisz–28a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.1315	37.0265	208	21	21.28	
kisz–28b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.5941	36.8297	208	19	5	
kisz-28x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.7348	37.6171	208	21	75.04	
kisz–28y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.2016	37.4202	208	21	57.12	
kisz-28z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.6671	37.2234	208	21	39.2	
kisz–29a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.5970	36.2640	211	21	21.28	
kisz-29b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.0416	36.0481	211	19	5	
kisz–29y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.7029	36.6960	211	21	57.12	
kisz–29z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.1506	36.4800	211	21	39.2	
kisz–30a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.0553	35.4332	205	21	21.28	
kisz–30b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.5207	35.2560	205	19	5	
kisz–30y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.1204	35.7876	205	21	57.12	

	Table B4	– continued				
Segment	Description L	ongitude(°E)	Latitude(°N)	Strike(°)) Dip(°)]	Depth (km)
kisz–30z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.5883	35.6104	205	21	39.2
kisz–31a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.6956	34.4789	190	22	22.1
kisz–31b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.1927	34.4066	190	20	5
kisz–31v	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	138.2025	34.8405	190	22	115.8
kisz–31w	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	138.7021	34.7682	190	22	97.02
kisz–31x	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	139.2012	34.6958	190	22	78.29
kisz–31y	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	139.6997	34.6235	190	22	59.56
kisz–31z	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	140.1979	34.5512	190	22	40.83
kisz–32a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.0551	33.0921	180	32	23.48
kisz–32b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.5098	33.0921	180	21.69	5
kisz–33a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.0924	32.1047	173.8	27.65	20.67
kisz–33b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.5596	32.1473	173.8	18.27	5
kisz–34a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.1869	31.1851	172.1	25	18.26
kisz–34b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.6585	31.2408	172.1	15.38	5
kisz-35a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.4154	30.1707	163	25	17.12
kisz-35D	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.8662	30.2899	163	14.03	5
kisz-36a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	141.6261	29.2740	101.7	25.73	18.71
kisz-36b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.0670	29.4012	161.7	15.91	5 14 5 4
kisz-3/a	Kamehatka-Kuril-Japan-izu-Mariana-Yap	142.0120	28.3322 28 F194	154.7	20	14.04
KISZ-J(D	Kamehatka-Kuril Japan-Izu-Mariana-Yap	142.4403 142.2254	20.0124	104.7	20	9 14 54
kisz-Joa	Kamehatka Kuril Japan Jay Mariana Var	142.2204	27.0940	170.9	20 11	14.04
KISZ-JÖD	Kamehatka-Kuril Japan Izu Mariana-Yap	142.0900 149 2005	21.1009 26.0197	177 9	11 9/ 99	0 1749
kisz-39a	Kamchatka-Kuril, Japan-Jzu-Mariana Van	142.3065 142.7674	20.9127 26.0325	177.9	24.20 14 38	5
kisz-40a	Kamchatka-Kuril-Japan-Izu-Mariana-Tap	142.7074	20.3525	180 /	26.40	22.26
kisz 40a	Kamchatka-Kuril-Japan-Izu-Mariana-Tap	142.2015	26.1925	180 /	20.43	5
kisz-400	Kamchatka-Kuril-Japan-Izu-Mariana-Tap	142.7090 142.1595	20.1204 25.0720	109.4 173.7	20.2 22.07	19.08
kisz–41b	Kamchatka-Kuril-Japan-Izu-Mariana-Tap	142.1055 142.6165	25.0723	173.7 173.7	16.36	5
kisz-42a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	142.0100 142.7641	23 8947	143.5	21.50	18.4
kisz–42b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.1321	24,1432	143.5	15.54	5
kisz-43a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	1435281	23 0423	129.2	23.02	18 77
kisz–43b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	143.8128	23.3626	129.2	15.99	5
kisz–44a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.2230	22.5240	134.6	28.24	18.56
kisz–44b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.5246	22.8056	134.6	15.74	5
kisz–45a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.0895	21.8866	125.8	36.73	22.79
kisz–45b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.3171	22.1785	125.8	20.84	5
kisz–46a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.6972	21.3783	135.9	30.75	20.63
kisz–46b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.9954	21.6469	135.9	18.22	5
kisz–47a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.0406	20.9341	160.1	29.87	19.62
kisz–47b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.4330	21.0669	160.1	17	5
kisz–48a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.3836	20.0690	158	32.75	19.68
kisz–48b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.7567	20.2108	158	17.07	5
kisz-49a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.6689	19.3123	164.5	25.07	21.41
kisz–49b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.0846	19.4212	164.5	19.16	5
kisz–50a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.9297	18.5663	172.1	22	22.1
kisz–50b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.3650	18.6238	172.1	20	5
kisz–51a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.9495	17.7148	175.1	22.06	22.04
kisz–51b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.3850	17.7503	175.1	19.93	5
kisz–52a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.9447	16.8869	180	25.51	18.61
kisz–52b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.3683	16.8869	180	15.79	5
kisz–53a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.8626	16.0669	185.2	27.39	18.41
kisz–53b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.2758	16.0309	185.2	15.56	5
kisz–54a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.7068	15.3883	199.1	28.12	20.91
kisz–54b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	147.0949	15.2590	199.1	18.56	5
kısz–55a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.4717	14.6025	204.3	29.6	26.27
kısz–55b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.8391	14.4415	204.3	25.18	5
kısz–56a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.1678	13.9485	217.4	32.04	26.79
kısz–56b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	146.4789	13.7170	217.4	25.84	5
kisz-57a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.6515	13.5576	235.8	37	24.54
kısz–57b	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	145.8586	13.2609	235.8	23	5
kisz-58a	Kamchatka-Kuril-Japan-Izu-Mariana-Yap	144.9648	12.9990	237.8	37.72	24.54
kisz-58b	Kamehatka-Kuril-Japan-Izu-Mariana-Yap	145.1589	12.6984	237.8	23	5 99.21
kisz-59a	Kamenatka-Kuril-Japan-Izu-Mariana-Yap	144.1799	12.0914	242.9	34.33 20.25	22.31 E
kisz–59d	Kamchatka-Kurii-Japan-Izu-Mariana-Yap	144.3531	12.3613	242.9	20.25	Ð

	Table B	4 - continued				
Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)
kisz–60a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 143.3687	12.3280	244.9	30.9	20.62
kisz–60b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 143.5355	11.9788	244.9	18.2	5
kisz–61a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 142.7051	12.1507	261.8	35.41	25.51
kisz–61b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 142.7582	11.7883	261.8	24.22	5
kisz–62a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 141.6301	11.8447	245.7	39.86	34.35
kisz–62b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 141.7750	11.5305	245.7	35.94	5
kisz–63a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 140.8923	11.5740	256.2	42	38.46
kisz–63b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 140.9735	11.2498	256.2	42	5
kisz–64a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 140.1387	11.6028	269.6	42.48	38.77
kisz–64b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 140.1410	11.2716	269.6	42.48	5
kisz–65a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 139.4595	11.5883	288.7	44.16	39.83
kisz–65b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 139.3541	11.2831	288.7	44.16	5
kisz–66a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 138.1823	11.2648	193.1	45	40.36
kisz–66b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 138.4977	11.1929	193.1	45	5
kisz–67a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 137.9923	10.3398	189.8	45	40.36
kisz–67b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 138.3104	10.2856	189.8	45	5
kisz–68a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 137.7607	9.6136	201.7	45	40.36
kisz–68b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 138.0599	9.4963	201.7	45	5
kisz–69a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 137.4537	8.8996	213.5	45	40.36
kisz–69b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 137.7215	8.7241	213.5	45	5
kisz–70a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 137.0191	8.2872	226.5	45	40.36
kisz–70b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 137.2400	8.0569	226.5	45	5
kisz–71a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 136.3863	7.9078	263.9	45	40.36
kisz–71b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 136.4202	7.5920	263.9	45	5
kisz–72a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 135.6310	7.9130	276.9	45	40.36
kisz–72b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 135.5926	7.5977	276.9	45	5
kisz–73a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 134.3296	7.4541	224	45	40.36
kisz–73b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 134.5600	7.2335	224	45	5
kisz–74a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 133.7125	6.8621	228.1	45	40.36
kisz–74b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 133.9263	6.6258	228.1	45	5
kisz–75a	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 133.0224	6.1221	217.7	45	40.36
kisz-75b	Kamchatka-Kuril-Japan-Izu-Mariana-Ya	p 133.2751	5.9280	217.7	45	5

Figure B5: Manus–Oceanic Convergent Boundary Subduction Zone unit sources.

Segment	Description	Longitude(°E)	$Latitude(^{o}N)$	$Strike(^{o})$	Dip(°)	Depth (km)
mosz–1a	Manus–Oceanic Convergent Boundary	154.0737	-4.8960	140.2	15	15.88
mosz–1b	Manus–Oceanic Convergent Boundary	154.4082	-4.6185	140.2	15	5
mosz-2a	Manus–Oceanic Convergent Boundary	153.5589	-4.1575	140.2	15	15.91
mosz-2b	Manus–Oceanic Convergent Boundary	153.8931	-3.8800	140.2	15	5.35
mosz–3a	Manus–Oceanic Convergent Boundary	153.0151	-3.3716	143.9	15	16.64
mosz–3b	Manus–Oceanic Convergent Boundary	153.3662	-3.1160	143.9	15	6.31
mosz-4a	Manus–Oceanic Convergent Boundary	152.4667	-3.0241	127.7	15	17.32
mosz-4b	Manus–Oceanic Convergent Boundary	152.7321	-2.6806	127.7	15	7.39
mosz-5a	Manus–Oceanic Convergent Boundary	151.8447	-2.7066	114.3	15	17.57
mosz-5b	Manus–Oceanic Convergent Boundary	152.0235	-2.3112	114.3	15	8.25
mosz–6a	Manus–Oceanic Convergent Boundary	151.0679	-2.2550	115	15	17.66
mosz-6b	Manus–Oceanic Convergent Boundary	151.2513	-1.8618	115	15	7.58
mosz-7a	Manus–Oceanic Convergent Boundary	150.3210	-2.0236	107.2	15	17.73
mosz-7b	Manus–Oceanic Convergent Boundary	150.4493	-1.6092	107.2	15	6.83
mosz-8a	Manus–Oceanic Convergent Boundary	149.3226	-1.6666	117.8	15	17.83
mosz-8b	Manus–Oceanic Convergent Boundary	149.5251	-1.2829	117.8	15	7.92
mosz-9a	Manus–Oceanic Convergent Boundary	148.5865	-1.3017	112.7	15	17.84
mosz-9b	Manus–Oceanic Convergent Boundary	148.7540	-0.9015	112.7	15	8.3
mosz-10a	Manus–Oceanic Convergent Boundary	147.7760	-1.1560	108	15	17.78
mosz-10b	Manus–Oceanic Convergent Boundary	147.9102	-0.7434	108	15	8.09
mosz–11a	Manus–Oceanic Convergent Boundary	146.9596	-1.1226	102.5	15	17.54
mosz–11b	Manus–Oceanic Convergent Boundary	147.0531	-0.6990	102.5	15	7.64
mosz-12a	Manus–Oceanic Convergent Boundary	146.2858	-1.1820	87.48	15	17.29
mosz-12b	Manus–Oceanic Convergent Boundary	146.2667	-0.7486	87.48	15	7.62
mosz-13a	Manus–Oceanic Convergent Boundary	145.4540	-1.3214	83.75	15	17.34
mosz-13b	Manus–Oceanic Convergent Boundary	145.4068	-0.8901	83.75	15	7.08
mosz-14a	Manus–Oceanic Convergent Boundary	144.7151	-1.5346	75.09	15	17.21
mosz-14b	Manus–Oceanic Convergent Boundary	144.6035	-1.1154	75.09	15	6.38
mosz-15a	Manus–Oceanic Convergent Boundary	143.9394	-1.8278	70.43	15	16.52
mosz-15b	Manus–Oceanic Convergent Boundary	143.7940	-1.4190	70.43	15	6.09
mosz-16a	Manus–Oceanic Convergent Boundary	143.4850	-2.2118	50.79	15	15.86
mosz-16b	Manus–Oceanic Convergent Boundary	143.2106	-1.8756	50.79	15	5
mosz-17a	Manus–Oceanic Convergent Boundary	143.1655	-2.7580	33	15	16.64
${ m mosz-17b}$	Manus–Oceanic Convergent Boundary	142.8013	-2.5217	33	15	5

Table B5: Earthquake parameters for Manus–Oceanic Convergent Boundary Subduction Zone unit sources.

Figure B6: New Guinea Subduction Zone unit sources.

Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)
ngsz–1a	New Guinea	143.6063	-4.3804	120	29	25.64
ngsz–1b	New Guinea	143.8032	-4.0402	120	29	1.4
ngsz–2a	New Guinea	142.9310	-3.9263	114	27.63	20.1
ngsz–2b	New Guinea	143.0932	-3.5628	114	21.72	1.6
ngsz–3a	New Guinea	142.1076	-3.5632	114	20.06	18.73
ngsz–3b	New Guinea	142.2795	-3.1778	114	15.94	5
ngsz–4a	New Guinea	141.2681	-3.2376	114	21	17.76
ngsz–4b	New Guinea	141.4389	-2.8545	114	14.79	5
ngsz–5a	New Guinea	140.4592	-2.8429	114	21.26	16.14
ngsz–5b	New Guinea	140.6296	-2.4605	114	12.87	5
ngsz–6a	New Guinea	139.6288	-2.4960	114	22.72	15.4
ngsz–6b	New Guinea	139.7974	-2.1175	114	12	5
ngsz–7a	New Guinea	138.8074	-2.1312	114	21.39	15.4
ngsz–7b	New Guinea	138.9776	-1.7491	114	12	5
ngsz–8a	New Guinea	138.0185	-1.7353	113.1	18.79	15.14
ngsz–8b	New Guinea	138.1853	-1.3441	113.1	11.7	5
ngsz–9a	New Guinea	137.1805	-1.5037	111	15.24	13.23
ngsz–9b	New Guinea	137.3358	-1.0991	111	9.47	5
ngsz–10a	New Guinea	136.3418	-1.1774	111	13.51	11.09
ngsz–10b	New Guinea	136.4983	-0.7697	111	7	5
ngsz–11a	New Guinea	135.4984	-0.8641	111	11.38	12.49
ngsz–11b	New Guinea	135.6562	-0.4530	111	8.62	5
ngsz–12a	New Guinea	134.6759	-0.5216	110.5	10	13.68
ngsz–12b	New Guinea	134.8307	-0.1072	110.5	10	5
ngsz–13a	New Guinea	133.3065	-1.0298	99.5	10	13.68
ngsz–13b	New Guinea	133.3795	-0.5935	99.5	10	5
ngsz–14a	New Guinea	132.4048	-0.8816	99.5	10	13.68
ngsz–14b	New Guinea	132.4778	-0.4453	99.5	10	5
ngsz–15a	New Guinea	131.5141	-0.7353	99.5	10	13.68
ngsz–15b	New Guinea	131.5871	-0.2990	99.5	10	5

Table B6: Earthquake parameters for New Guinea Subduction Zone unit sources.

Figure B7: New Zealand–Keradec–Tonga Subduction Zone unit sources.

Segment	Description	Longitude(°E)	Latitude(°N)	Strike(°)	Dip(°)	Depth (km)
ntsz–1a	New Zealand–Tonga	174.0985	-41.3951	258.6	24	25.34
ntsz-1b	New Zealand–Tonga	174.2076	-41.7973	258.6	24	5
ntsz-2a	New Zealand–Tonga	175.3289	-41.2592	260.6	29.38	23.17
ntsz-2b	New Zealand–Tonga	175.4142	-41.6454	260.6	21.31	5
ntsz-3a	New Zealand–Tonga	176.2855	-40.9950	250.7	29.54	21.74
ntsz-3b	New Zealand–Tonga	176.4580	-41.3637	250.7	19.56	5
ntsz-4a	New Zealand–Tonga	177.0023	-40.7679	229.4	24.43	18.87
ntsz-4b	New Zealand–Tonga	177.3552	-41.0785	229.4	16.1	5
ntsz-5a	New Zealand–Tonga	177.4114	-40.2396	210	18.8	19.29
ntsz-5b	New Zealand–Tonga	177.8951	-40.4525	210	16.61	5
ntsz-6a	New Zealand–Tonga	177.8036	-39.6085	196.7	18.17	15.8
ntsz-6b	New Zealand–Tonga	178.3352	-39.7310	196.7	12.48	5
ntsz-7a	New Zealand–Tonga	178.1676	-38.7480	197	28.1	17.85
ntsz-7b	New Zealand–Tonga	178.6541	-38.8640	197	14.89	5
ntsz-8a	New Zealand–Tonga	178.6263	-37.8501	201.4	31.47	18.78
ntsz-8b	New Zealand–Tonga	179.0788	-37.9899	201.4	16	5
ntsz–9a	New Zealand–Tonga	178.9833	-36.9770	202.2	29.58	20.02
ntsz–9b	New Zealand–Tonga	179.4369	-37.1245	202.2	17.48	5
ntsz–10a	New Zealand–Tonga	179.5534	-36.0655	210.6	32.1	20.72
ntsz–10b	New Zealand–Tonga	179.9595	-36.2593	210.6	18.32	5
ntsz–11a	New Zealand–Tonga	179.9267	-35.3538	201.7	25	16.09
ntsz–11b	New Zealand–Tonga	180.3915	-35.5040	201.7	12.81	5
ntsz–12a	New Zealand–Tonga	180.4433	-34.5759	201.2	25	15.46
ntsz–12b	New Zealand–Tonga	180.9051	-34.7230	201.2	12.08	5
ntsz–13a	New Zealand–Tonga	180.7990	-33.7707	199.8	25.87	19.06
ntsz–13b	New Zealand–Tonga	181.2573	-33.9073	199.8	16.33	5
ntsz–14a	New Zealand–Tonga	181.2828	-32.9288	202.4	31.28	22.73
ntsz–14b	New Zealand–Tonga	181.7063	-33.0751	202.4	20.77	5
ntsz–15a	New Zealand–Tonga	181.4918	-32.0035	205.4	32.33	22.64
ntsz–15b	New Zealand–Tonga	181.8967	-32.1665	205.4	20.66	5
ntsz–16a	New Zealand–Tonga	181.9781	-31.2535	205.5	34.29	23.59
ntsz–16b	New Zealand–Tonga	182.3706	-31.4131	205.5	21.83	5
ntsz-17a	New Zealand–Tonga	182.4819	-30.3859	210.3	37.6	25.58
ntsz-17b	New Zealand–Tonga	182.8387	-30.5655	210.3	24.3	5
ntsz–18a	New Zealand–Tonga	182.8176	-29.6545	201.6	37.65	26.13
ntsz-18b	New Zealand–Tonga	183.1985	-29.7856	201.6	25	5
ntsz–19a	New Zealand–Tonga	183.0622	-28.8739	195.7	34.41	26.13
ntsz–19b	New Zealand–Tonga	183.4700	-28.9742	195.7	25	5
ntsz–20a	New Zealand–Tonga	183.2724	-28.0967	188.8	38	26.13
ntsz–20b	New Zealand–Tonga	183.6691	-28.1508	188.8	25	5
ntsz–21a	New Zealand–Tonga	183.5747	-27.1402	197.1	32.29	24.83
ntsz–21b	New Zealand–Tonga	183.9829	-27.2518	197.1	23.37	5
ntsz–22a	New Zealand–Tonga	183.6608	-26.4975	180	29.56	18.63
ntsz–22b	New Zealand–Tonga	184.0974	-26.4975	180	15.82	5
ntsz–23a	New Zealand–Tonga	183.7599	-25.5371	185.8	32.42	20.56
ntsz–23b	New Zealand–Tonga	184.1781	-25.5752	185.8	18.13	5
ntsz–24a	New Zealand–Tonga	183.9139	-24.6201	188.2	33.31	23.73
ntsz–24b	New Zealand–Tonga	184.3228	-24.6734	188.2	22	5
ntsz–25a	New Zealand–Tonga	184.1266	-23.5922	198.5	29.34	19.64
ntsz–25b	New Zealand–Tonga	184.5322	-23.7163	198.5	17.03	5
ntsz–26a	New Zealand–Tonga	184.6613	-22.6460	211.7	30.26	19.43
ntsz–26b	New Zealand–Tonga	185.0196	-22.8497	211.7	16.78	5
ntsz–27a	New Zealand–Tonga	185.0879	-21.9139	207.9	31.73	20.67
ntsz-27b	New Zealand–Tonga	185.4522	-22.0928	207.9	18.27	5
ntsz–28a	New Zealand–Tonga	185.4037	-21.1758	200.5	32.44	21.76
ntsz–28b	New Zealand–Tonga	185.7849	-21.3084	200.5	19.58	5
ntsz–29a	New Zealand–Tonga	185.8087	-20.2629	206.4	32.47	20.4
ntsz-29b	New Zealand–Tonga	186.1710	-20.4312	206.4	17.94	5
ntsz-30a	New Zealand–Tonga	186.1499	-19.5087	200.9	32.98	22.46
ntsz–30b	New Zealand–Tonga	186.5236	-19.6432	200.9	20.44	5
ntsz-31a	New Zealand–Tonga	186.3538	-18.7332	193.9	34.41	21.19
ntsz-31b	New Zealand–Tonga	186.7339	-18.8221	193.9	18.89	5

Table B7: Earthquake parameters for New Zealand–Keradec–Tonga Subduction Zone unit sources.

Table B7 – continued								
Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	$\operatorname{Dip}(^{\mathrm{o}})$	Depth (km)		
ntsz–32a	New Zealand–Tonga	186.5949	-17.8587	194.1	30	19.12		
ntsz–32b	New Zealand–Tonga	186.9914	-17.9536	194.1	16.4	5		
ntsz–33a	New Zealand–Tonga	186.8172	-17.0581	190	33.15	23.34		
ntsz–33b	New Zealand–Tonga	187.2047	-17.1237	190	21.52	5		
ntsz-34a	New Zealand–Tonga	186.7814	-16.2598	182.1	15	13.41		
ntsz–34b	New Zealand–Tonga	187.2330	-16.2759	182.1	9.68	5		
ntsz–34c	New Zealand–Tonga	187.9697	-16.4956	7.62	57.06	6.571		
ntsz-35a	New Zealand–Tonga	186.8000	-15.8563	149.8	15	12.17		
ntsz-35b	New Zealand–Tonga	187.1896	-15.6384	149.8	8.24	5		
ntsz-35c	New Zealand–Tonga	187.8776	-15.6325	342.4	57.06	6.571		
ntsz–36a	New Zealand–Tonga	186.5406	-15.3862	123.9	40.44	36.72		
ntsz–36b	New Zealand–Tonga	186.7381	-15.1025	123.9	39.38	5		
ntsz–36c	New Zealand–Tonga	187.3791	-14.9234	307	57.06	6.571		
ntsz–37a	New Zealand–Tonga	185.9883	-14.9861	102	68.94	30.99		
ntsz–37b	New Zealand–Tonga	186.0229	-14.8282	102	31.32	5		
ntsz–38a	New Zealand–Tonga	185.2067	-14.8259	88.4	80	26.13		
ntsz–38b	New Zealand–Tonga	185.2044	-14.7479	88.4	25	5		
ntsz–39a	New Zealand–Tonga	184.3412	-14.9409	82.55	80	26.13		
ntsz–39b	New Zealand–Tonga	184.3307	-14.8636	82.55	25	5		

Table B7 – continued

Figure B8: New Britain–Solomons–Vanuatu Zone unit sources.

Table B8: Earthquake parameters	for New Britain–Solomons–Vanuatu Sub-
duction Zone unit sources.	

Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$\operatorname{Strike}(^{\mathrm{o}})$	Dip(°)	Depth (km)
nvsz–1a	New Britain–Solomons–Vanuatu	148.6217	-6.4616	243.2	32.34	15.69
nvsz-1b	New Britain–Solomons–Vanuatu	148.7943	-6.8002	234.2	12.34	5
nvsz-2a	New Britain–Solomons–Vanuatu	149.7218	-6.1459	260.1	35.1	16.36
nvsz-2b	New Britain–Solomons–Vanuatu	149.7856	-6.5079	260.1	13.13	5
nvsz–3a	New Britain–Solomons–Vanuatu	150.4075	-5.9659	245.7	42.35	18.59
nvsz–3b	New Britain–Solomons–Vanuatu	150.5450	-6.2684	245.7	15.77	5
nvsz–4a	New Britain–Solomons–Vanuatu	151.1095	-5.5820	238.2	42.41	23.63
nvsz–4b	New Britain–Solomons–Vanuatu	151.2851	-5.8639	238.2	21.88	5
nvsz–5a	New Britain–Solomons–Vanuatu	152.0205	-5.1305	247.7	49.22	32.39
nvsz–5b	New Britain–Solomons–Vanuatu	152.1322	-5.4020	247.7	33.22	5
nvsz–6a	New Britain–Solomons–Vanuatu	153.3450	-5.1558	288.6	53.53	33.59
nvsz-od	New Britain–Solomons–Vanuatu	153.2090	-5.4089	288.0	34.87 20.72	0 10.19
nvsz-7a	New Britain-Solomons-Valuatu	154.3614	-5.0508	208.2	16 49	19.10
nvsz-70	New Britain-Solomons-Vanuatu	154.1056 155.1007	-0.9017	308.3 217 9	10.40	0 22.02
nvsz-8h	New Britain-Solomons-Vanuatu	154 8764	-6 5656	317.2 317.2	40.00 91	5
nvsz-9a	New Britain-Solomons-Vanuatu	155 5027	-6.7430	290.5	48 75	22 92
nvsz–9h	New Britain–Solomons–Vanuatu	155 3981	-7.0204	290.5	21	5
nvsz-10a	New Britain–Solomons–Vanuatu	156.4742	-7.2515	305.9	36.88	27.62
nvsz–10b	New Britain–Solomons–Vanuatu	156.2619	-7.5427	305.9	26.9	5
nvsz–11a	New Britain–Solomons–Vanuatu	157.0830	-7.8830	305.4	32.97	29.72
nvsz–11b	New Britain–Solomons–Vanuatu	156.8627	-8.1903	305.4	29.63	5
nvsz–12a	New Britain–Solomons–Vanuatu	157.6537	-8.1483	297.9	37.53	28.57
nvsz–12b	New Britain–Solomons–Vanuatu	157.4850	-8.4630	297.9	28.13	5
nvsz–13a	New Britain–Solomons–Vanuatu	158.5089	-8.5953	302.7	33.62	23.02
nvsz–13b	New Britain–Solomons–Vanuatu	158.3042	-8.9099	302.7	21.12	5
nvsz-14a	New Britain–Solomons–Vanuatu	159.1872	-8.9516	293.3	38.44	34.06
nvsz-14b	New Britain–Solomons–Vanuatu	159.0461	-9.2747	293.3	35.54	5
nvsz-15a	New Britain–Solomons–Vanuatu	159.9736	-9.5993	302.8	46.69	41.38
nvsz-15b	New Britain–Solomons–Vanuatu	159.8044	-9.8584	302.8	46.69	5
nvsz–16a	New Britain–Solomons–Vanuatu	160.7343	-10.0574	301	46.05	41
nvsz–16b	New Britain–Solomons–Vanuatu	160.5712	-10.3246	301	46.05	5
nvsz–17a	New Britain–Solomons–Vanuatu	161.4562	-10.5241	298.4	40.12	37.22
nvsz–17b	New Britain–Solomons–Vanuatu	161.2900	-10.8263	298.4	40.12	5
nvsz–18a	New Britain–Solomons–Vanuatu	162.0467	-10.6823	274.1	40.33	29.03
nvsz–18b	New Britain–Solomons–Vanuatu	162.0219	-11.0238	274.1	28.72	5
nvsz–19a	New Britain–Solomons–Vanuatu	162.7818	-10.5645	261.3	34.25	24.14
nvsz–190	New Britain-Solomons-valuatu	102.0392	-10.9515	201.5	22.01 E0.25	0 06 0
nvsz–20a	New Britain-Solomons-Vanuatu	105.7222	-10.3014	202.9	00.00 05 00	20.5
nvsz=200	New Britain-Solomons-Vanuatu	164 9445	-10.7858	202.9	40.31	
nvsz - 21a	New Britain-Solomons-Vanuatu	164 8374	-10.4105	287.9	$\frac{40.31}{21.47}$	20.0
nvsz-22a	New Britain–Solomons–Vanuatu	166.0261	-11.1069	317.1	42.39	20.78
nvsz–22b	New Britain–Solomons–Vanuatu	165.7783	-11.3328	317.1	18.4	5
nvsz–23a	New Britain–Solomons–Vanuatu	166.5179	-12.2260	342.4	47.95	22.43
nvsz–23b	New Britain–Solomons–Vanuatu	166.2244	-12.3171	342.4	20.4	5
nvsz–24a	New Britain–Solomons–Vanuatu	166.7236	-13.1065	342.6	47.13	28.52
nvsz–24b	New Britain–Solomons–Vanuatu	166.4241	-13.1979	342.6	28.06	5
nvsz-25a	New Britain–Solomons–Vanuatu	166.8914	-14.0785	350.3	54.1	31.16
nvsz-25b	New Britain–Solomons–Vanuatu	166.6237	-14.1230	350.3	31.55	5
nvsz-26a	New Britain–Solomons–Vanuatu	166.9200	-15.1450	365.6	50.46	29.05
nvsz-26b	New Britain–Solomons–Vanuatu	166.6252	-15.1170	365.6	28.75	5
nvsz-27a	New Britain–Solomons–Vanuatu	167.0053	-15.6308	334.2	44.74	25.46
nvsz-27b	New Britain–Solomons–Vanuatu	166.7068	-15.7695	334.2	24.15	5
nvsz-28a	New Britain–Solomons–Vanuatu	167.4074	-16.3455	327.5	41.53	22.44
nvsz-28b	New Britain–Solomons–Vanuatu	167.1117	-16.5264	327.5	20.42	5
nvsz–29a	New Britain–Solomons–Vanuatu	167.9145	-17.2807	341.2	49.1	24.12
nvsz–29b	New Britain–Solomons–Vanuatu	167.6229	-17.3757	341.2	22.48	5
nvsz–30a	New Britain–Solomons–Vanuatu	168.2220	-18.2353	348.6	44.19	23.99
nvsz-30b	New Britain-Solomons-Vanuatu	107.8895	-18.2991	348.0 245 C	42.32	0 00.06
nvsz_91b	New Britain-Solomons-Vanuatu	168 1611	-19.0010	345.0 345.6	42.2 20.2	22.20 5
11132 010	1.0W Dimani Solomons-Vanuatu	100.1011	-19.1000	040.0	40.4	0

Table B8 – continued Segment Description Longitude(°E) Latitude(°N) Strike(°) Dip(°) Depth (km) nvsz–32a New Britain–Solomons–Vanuatu 168.8775-19.6724331.142.0321.68New Britain–Solomons–Vanuatu 168.5671-19.8338 19.49nvsz–32b 331.15nvsz–33a New Britain–Solomons–Vanuatu 169.3422 -20.4892332.9 40.2522.4nvsz–33b New Britain–Solomons–Vanuatu 169.0161-20.6453332.920.375nvsz–34a New Britain–Solomons–Vanuatu 169.8304-21.2121 329.13922.73 nvsz–34b New Britain–Solomons–Vanuatu 169.5086-21.3911329.120.775nvsz–35a New Britain–Solomons–Vanuatu 170.3119 -21.694522.13311.939nvsz–35b New Britain–Solomons–Vanuatu 170.0606-21.9543311.920.035New Britain–Solomons–Vanuatu nvsz–36a 170.9487-22.1585300.439.4223.5nvsz–36b New Britain–Solomons–Vanuatu 170.7585 -22.4577300.421.715New Britain–Solomons–Vanuatu 171.6335nvsz-37a-22.3087281.33022.1New Britain–Solomons–Vanuatu 171.5512 -22.6902 20nvsz–37b 281.35

Figure B9: Ryukyu–Kyushu–Nankai Zone unit sources.

Segment	Description	$Longitude(^{o}E)$	$Latitude(^{o}N)$	$Strike(^{o})$	Dip(°)	Depth (km)
rnsz–1a	Ryukyu–Kyushu–Nankai	122.6672	23.6696	262	14	11.88
rnsz–1b	Ryukyu–Kyushu–Nankai	122.7332	23.2380	262	10	3.2
rnsz–2a	Ryukyu–Kyushu–Nankai	123.5939	23.7929	259.9	18.11	12.28
rnsz–2b	Ryukyu–Kyushu–Nankai	123.6751	23.3725	259.9	10	3.6
rnsz–3a	Ryukyu–Kyushu–Nankai	124.4604	23.9777	254.6	19.27	14.65
rnsz–3b	Ryukyu–Kyushu–Nankai	124.5830	23.5689	254.6	12.18	4.1
rnsz-4a	Ryukyu–Kyushu–Nankai	125.2720	24.2102	246.8	18	20.38
rnsz-4b	Ryukyu–Kyushu–Nankai	125.4563	23.8177	246.8	16	6.6
rnsz-5a	Ryukyu–Kyushu–Nankai	125.9465	24.5085	233.6	18	20.21
rnsz-5b	Ryukyu–Kyushu–Nankai	126.2241	24.1645	233.6	16	6.43
rnsz–6a	Ryukyu–Kyushu–Nankai	126.6349	25.0402	228.7	17.16	19.55
rnsz-6b	Ryukyu–Kyushu–Nankai	126.9465	24.7176	228.7	15.16	6.47
rnsz-7a	Ryukyu–Kyushu–Nankai	127.2867	25.6343	224	15.85	17.98
rnsz-7b	Ryukyu–Kyushu–Nankai	127.6303	25.3339	224	13.56	6.26
rnsz-8a	Ryukyu–Kyushu–Nankai	128.0725	26.3146	229.7	14.55	14.31
rnsz-8b	Ryukyu–Kyushu–Nankai	128.3854	25.9831	229.7	9.64	5.94
rnsz–9a	Ryukyu–Kyushu–Nankai	128.6642	26.8177	219.2	15.4	12.62
rnsz–9b	Ryukyu–Kyushu–Nankai	129.0391	26.5438	219.2	8	5.66
rnsz-10a	Ryukyu–Kyushu–Nankai	129.2286	27.4879	215.2	17	12.55
rnsz-10b	Ryukyu–Kyushu–Nankai	129.6233	27.2402	215.2	8.16	5.45
rnsz–11a	Ryukyu–Kyushu–Nankai	129.6169	28.0741	201.3	17	12.91
rnsz–11b	Ryukyu–Kyushu–Nankai	130.0698	27.9181	201.3	8.8	5.26
rnsz-12a	Ryukyu–Kyushu–Nankai	130.6175	29.0900	236.7	16.42	13.05
rnsz–12b	Ryukyu–Kyushu–Nankai	130.8873	28.7299	236.7	9.57	4.74
rnsz-13a	Ryukyu–Kyushu–Nankai	130.7223	29.3465	195.2	20.25	15.89
rnsz–13b	Ryukyu–Kyushu–Nankai	131.1884	29.2362	195.2	12.98	4.66
rnsz-14a	Ryukyu–Kyushu–Nankai	131.3467	30.3899	215.1	22.16	19.73
rnsz–14b	Ryukyu–Kyushu–Nankai	131.7402	30.1507	215.1	17.48	4.71
rnsz-15a	Ryukyu–Kyushu–Nankai	131.9149	31.1450	216	15.11	16.12
rnsz-15b	Ryukyu–Kyushu–Nankai	132.3235	30.8899	216	13.46	4.48
rnsz–16a	Ryukyu–Kyushu–Nankai	132.5628	31.9468	220.9	10.81	10.88
rnsz-16b	Ryukyu–Kyushu–Nankai	132.9546	31.6579	220.9	7.19	4.62
rnsz-17a	Ryukyu–Kyushu–Nankai	133.6125	32.6956	239	10.14	12.01
rnsz-17b	Ryukyu–Kyushu–Nankai	133.8823	32.3168	239	8.41	4.7
rnsz-18a	Ryukyu–Kyushu–Nankai	134.6416	33.1488	244.7	10.99	14.21
rnsz-18b	Ryukyu–Kyushu–Nankai	134.8656	32.7502	244.5	10.97	4.7

Table B9: Earthquake parameters for Ryukyu–Kyushu–Nankai Subduction Zone unit sources.

C Forecast Model Testing

Authors: Nazila Merati, Yong Wei, and Jean Newman

C.1 Purpose

The Atka forecast model was tested with NOAA's tsunami forecast system, SIFT version 3.2, with MOST version 2. Forecast models are tested with synthetic tsunami events covering a range of tsunami source locations. Testing is also done with selected historical tsunami events when available.

The purpose of forecast model testing is three-fold. The first objective is to assure that the results obtained with SIFT, which has been released to the Tsunami Warning Centers for operational use, are identical to those obtained by the researcher during the development of the forecast model. The second objective is to test the forecast model for consistency, accuracy, time efficiency, and quality of results over a range of possible tsunami locations and magnitudes. The third objective is to identify bugs and issues in need of resolution by the researcher who developed the forecast model or by the forecast software development team before the next version release to NOAA's two Tsunami Warning Centers.

Local hardware and software applications, and tools familiar to the researcher(s), are used to run the MOST model during the forecast model development. The test results presented in this report lend confidence that the model performs as developed and produces the same results when initiated within the forecast application in an operational setting as those produced by the researcher during the forecast model development. The test results assure those who rely on the Atka tsunami forecast model that consistent results are produced irrespective of system.

C.2 Testing procedure

The general procedure for forecast model testing is to run a set of synthetic tsunami scenarios and a selected set of historical tsunami events through the forecast system application and compare the results with those obtained by the researcher during the forecast model development and presented in the Tsunami Forecast Model Report. Specific steps taken to test the model include:

- 1. Identification of testing scenarios, including the standard set of synthetic events, appropriate historical events, and customized synthetic scenarios that may have been used by the researcher(s) in developing the forecast model.
- 2. Creation of new events to represent customized synthetic scenarios used by the researcher(s) in developing the forecast model, if any.
- 3. Submission of test model runs with the forecast system, and export of the results from A, B, and C grids, along with time series.
- 4. Recording applicable metadata, including the specific version of the forecast system used for testing.

- 5. Examination of forecast model results from the forecast system for instabilities in both time series and plot results.
- 6. Comparison of forecast model results obtained through the forecast system with those obtained during the forecast model development.
- 7. Summarization of results with specific mention of quality, consistency, and time efficiency.
- 8. Reporting of issues identified to modeler and forecast software development team.
- 9. Retesting the forecast models in the forecast system when reported issues have been addressed or explained.

Synthetic model runs were tested on a DELL PowerEdge R510 computer equipped with two Xeon E5670 processors at 2.93 Ghz, each with 12 MBytes of cache and 32GB memory. The processors are hex core and support hyper threading, resulting in the computer performing as a 24 processor core machine. Additionally, the testing computer supports 10 Gigabit Ethernet for fast network connections. This computer configuration is similar or the same as the configurations of the computers installed at the Tsunami Warning Centers so the compute times should only vary slightly.

C.3 Results

The Atka forecast model was tested with four synthetic scenarios and one historical tsunami event (Table C1). Test results from the forecast system and comparisons with the results obtained during the forecast model development are shown numerically in Table C2 and graphically in Figures C1 to C5. The results show that the forecast model is stable and robust, with consistent and high quality results across geographically distributed tsunami sources and mega-event tsunami magnitudes. The model run time (wall clock time) was under 26 minutes for 12 hours of simulation time, and under 9 minutes for 4 hours. This run time is within the 10 minute run time for 4 hours of simulation time and satisfies time efficiency requirements.

Four synthetic events were run on the Atka forecast model. The computational results of CSSZ 89-98 are not presented in the report. Computed maximum and minimum wave amplitudes of this scenario are provided by the author of this report and compared with those obtained in the model testing in Table C2. The modeled scenarios were stable for all cases tested, with no instabilities or ringing. Results show that the largest modeled height was 196.82 cm and originated in the Central and South America (CSSZ 89-98) source. Amplitudes greater than 100 cm were recorded for the four test sources. The smallest signal of 66.22 cm was recorded for the historical event (2011 Tohoku) source. Comparison between the SIFT output and that obtained in model development for the 2011 Tohoku event demonstrated the results were similar in wave shape, pattern, and amplitude.

Note: There were no maximum or minimum amplitudes listed in the report.

Figure C1: Testing results from the forecast model in scenario KISZ 22-31: maximum water surface elevations in A grid (a), B grid (b), and C grid (c), as well as time series at the warning point (d).

Figure C2: Testing results from the forecast model in scenario ACSZ 56-65: maximum water surface elevations in A grid (a), B grid (b), and C grid (c), as well as time series at the warning point (d).

Figure C3: Testing results from the forecast model in scenario CSSZ 89-98: maximum water surface elevations in A grid (a), B grid (b), and C grid (c), as well as time series at the warning point (d).

Figure C4: Testing results from the forecast model in scenario NTSZ 30-39: maximum water surface elevations in A grid (a), B grid (b), and C grid (c), as well as time series at the warning point (d).

Figure C5: Testing results from the forecast model in the 2011 Tohoku event: maximum water surface elevations in A grid (a), B grid (b), and C grid (c), as well as time series at the warning point (d).
Model	Modeled Time	Wall Time	4-hour Time	Space	12-hour Space	
	[hrs]	$[\min]$	$[\min]$	[Gb]	[Gb]	
LW-acsz56-65-03.IF_ATK	11.99	23.88	07.96	0.00	0.00	
LW-cssz89-98.03.IF_ATK	11.99	25.67	08.56	0.00	0.00	
LW-kisz22-31.03a.IF_ATK	11.99	23.83	07.92	0.00	0.00	
LW-ntsz30-39.03a.IF_ATK	11.99	25.77	08.56	0.00	0.00	
LW-Tohoku11-01.02.IF_ATK	11.99	24.90	08.28	0.00	0.00	

Table C1: Run time of the Atka, Alaska, forecast model.

Table C2: Table of maximum and minimum amplitudes (cm) at the Atka, Alaska, warning point for synthetic and historical events tested using SIFT 3.2 and obtained during development.

Scenario	Source Zone	Tsunami Source	α [m]	SIFT Max (cm)	Development	SIFT Min (cm)	Development			
Name					Max (cm)		Min (cm)			
Mega-tsunami Scenarios										
KISZ 22-31	Kamchatka-Yap-Mariana-Izu-Bonin	A22-A31, B22-B31	30	119.304	119.295	-230.472	-230.431			
ACSZ 56-65	Aleutian–Alaska–Cascadia	A56-A65, B56-B65	30	149.459	148.949	-199.948	-199.733			
CSSZ 89-98	Central and South America	A89-A98, B89-B98	30	196.824	196.716	-174.262	-174.235			
NTSZ 30-39	New Zealand–Kermadec–Tonga	A30-A39, B30-B39	30	146.146	145.837	-125.418	-125.231			
Historical Events										
Tohoku 2011	Kamchatka-Yap-Marina-Izu-Bonin	B24, B25, A26-B27	varies	66.217	66.227	-67.595	-67.592			