

Ecosystems

Ocean Acidification Program – Simone Alin Richard Feely, Adrienne Sutton, Chris Sabine, Jeremy Mathis

Pacific Northwest hatchery failures

Relevance

Photos: Taylor Shellfish

"Between 2005 and 2009, disastrous production failures at Pacific Northwest oyster hatcheries signaled a shift in ocean chemistry that has profound implications for Washington's marine environment."

Washington Blue Ribbon Panel on Ocean Acidification 2012

CO₂

Ocean Acidification (OA) Chemistry 101

CO₂ + H₂O
$$\rightarrow$$
 H₂CO₃ carbonic acid hydrogen hydrogen H⁺ + HCO₃ bicarbonate ion $+$ H⁺ + CO₃ carbonic acid acid hydrogen hydrogen hydrogen $+$ H⁺ + HCO₃ bicarbonate ion starte (Ω)

How CO₂ in seawater affects marine life

Changes in chemistry

Biological effects

Increase in photosynthesis

Decrease in calcification

Changes in physiology

Temp Oxygen

Overfishing
Pollution
Oil spills

Socioeconomic implications of ocean acidification

Washington Blue Ribbon Panel on Ocean Acidification 2012

A brief history since 2008

- **2009** FOARAM Act passed by Congress
- **2010** NOAA OA Research Plan, PMEL heavy contributor
- 2010 NOAA Ocean Acidification Program officially starts, first NOAA OA funding to PMEL
- 2014 Interagency Working Group on OA releases Strategic Plan

PMEL AND ATMOSPHERICA TO THE PROPERTY OF THE PARTY OF THE

Relevance to NOAA Goals

NOAA Ocean Acidification Program Themes

NOAA Next Generation Strategic Plan

Climate Adaptation and Mitigation

- Improved scientific understanding
- Assessments identify impacts, inform decisions
- Climate-literate public

Healthy Oceans

- Improved understanding of ecosystems
- Sustainable fisheries, safe seafood

Resilient
Coastal
Communities
& Economies

- Resilient coastal communities
- Improved coastal water quality

Key questions

- How rapidly is ocean carbon chemistry changing?
- What will the effects be on marine ecosystems and the human communities that depend on them?

Open-ocean observations

Ocean acidification in global ocean basins

Anthropogenic CO₂ inventory

Sabine et al. 2004

Saturation state depths

Feely et al. 2004

Key findings:

- Oceans had taken up roughly half of the anthropogenic CO₂ emitted between 1800 and 1994.
- Acidification driven by this uptake causes saturation horizons to shoal by 1–3 m/yr.

First coastal observations of ocean acidification May-June 2007

Saturation state depths

Corrosive water at the surface

Feely et al. 2008

Key finding:

Water undersaturated with respect to aragonite was observed upwelling to the surface along northern California coast, decades sooner than expected based on open-ocean observations and models.

Ocean acidification in estuaries: Puget Sound

Quality

Key findings:

 Since 2008, we have observed pCO₂ values over 3000 ppm near the surface in Hood Canal.

Distance along transect (km)

Feely et al. 2010, Alin et al. in prep.

Ocean acidification in estuaries: Puget Sound

Key findings:

• Since 2008, we have observed Ω_{arag} values as low as 0.26 in Puget Sound.

Distance along transect (km)

Feely et al. 2010, Alin et al. in prep.

Oyster production declines with elevated CO₂

Quality

Photos: G. Waldbusser, E. Brunner

Key outcomes:

- Break-even point identified between net growth and mortality.
- Larvae have smaller shells with signs of dissolution at lower saturation states.
- Monitoring at hatcheries facilitates adaptation strategies.

Barton et al. 2012

Key result: First seasonal forecast of pH and aragonite saturation state (Ω_{arag}) in 2013 captured large-scale patterns and most of upwelling season patterns quite well.

Policy linkages from shellfish-science partnership Performance

- Washington State Blue Ribbon Panel on Ocean Acidification – Outgrowth of partnership with shellfish growers (2011– 2012)
- West Coast OA & Hypoxia Science Panel –
 California, Oregon, Washington, and British
 Columbia (2013–present)

Creating an OA observing system

Performance since 2008

- Partnering with over 100 international scientists from 30 countries to build a global observing network for OA.
- Deployment of 21 OA moorings with two carbonate system measurements.
- Leading West Coast OA cruises in 2011, 2012, 2013.
- Continued carbonate measurements in Puget Sound.
- Surface pCO₂ and pH measurements on West Coast and Alaska fisheries and research cruises.
- See poster by Cathy Cosca for details.

PAP

Global OA Observing Network (GOA-ON)

Discovering impacts on species and ecosystems Performance

Key findings:

- We are observing dissolution impacts on zooplankton in the field, with implications for marine food webs.
- See poster by Nina Bednaršek for details.

Outreach, education, and science facilitation

Performance

Into the future...

Photos: G. Waldbusser, E. Brunner

- Maintain and strategically expand the OA observing system.
- Incorporate new sensors and platforms into GOA-ON.
- Facilitate better chemical observations through partnerships and outreach.
- Expand partnerships with biologists and modelers to understand processes and impacts.

Support policy and water quality monitoring/regulation community.