# Operationalizing eDNA Metabarcoding Taxonomic Assignments for Routine Marine Biomonitoring



Zachary Gold<sup>1\*\*</sup>, Katherine Silliman<sup>2,3</sup>, Emily E. Curd<sup>4</sup>, Nastassia Patin<sup>5,6</sup>, Susanna Theroux<sup>6</sup>, Sean M. McAllister<sup>1,7</sup>, Ramon Gallego<sup>8</sup>, Luna Gal<sup>9</sup>, Shaun Nielsen<sup>10</sup>, Erin V. Satterthwaite<sup>5,11</sup>, N. Dean Pentcheff<sup>12</sup>, Adam R. Wall<sup>12</sup>, Regina Wetzer<sup>12</sup>, Brice X. Semmens<sup>5</sup>, Rachel Storo<sup>2,3</sup>, Luke R. Thompson<sup>2,3</sup> \*\*zachary.gold@noaa.gov <sup>1</sup>NOAA PMEL Ocean Molecular Ecology Program, <sup>2</sup>MSU Northern Gulf Institute, <sup>3</sup>NOAA AOML, <sup>4</sup>UV Vermont Biomedical Research Network, <sup>5</sup>CalCOFI - UCSD SIC, <sup>6</sup>SCCWRP, <sup>7</sup>UW CICOES, <sup>8</sup>Universidad Autónoma de Madrid, <sup>9</sup>Landmark College, <sup>10</sup>Independent Research researcher, <sup>11</sup>CA Sea Grant, <sup>12</sup>NHMLAC

# INTRODUCTION

- 1) Environmental DNA (eDNA) is a powerful, costeffective, and scalable tool for marine biomonitoring.
- 2) Improving taxonomic assignment of DNA sequences is needed for operationalizing species identification.
- 3) We outline a suite of tools for conducting accurate, repeatable, and defensible taxonomic assignments.

## **REFERENCE DATABASES**

**Curated, comprehensive reference barcode databases** are key to making accurate taxonomic assignments.

### **EXAMPLE: CA CURRENT FISHES - MIFISH 12S MARKER**

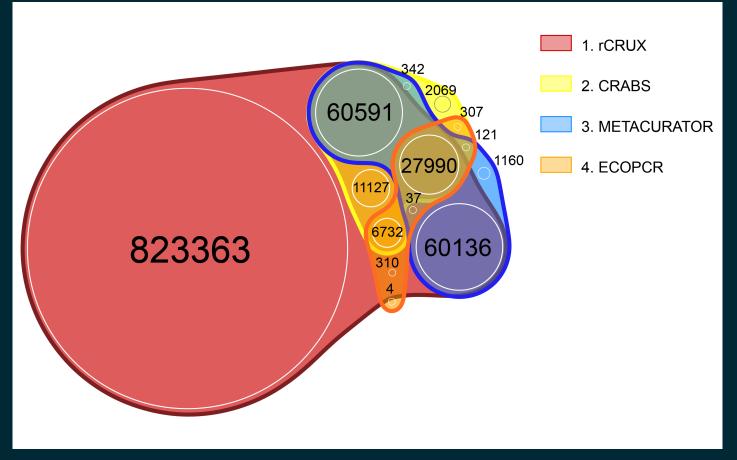
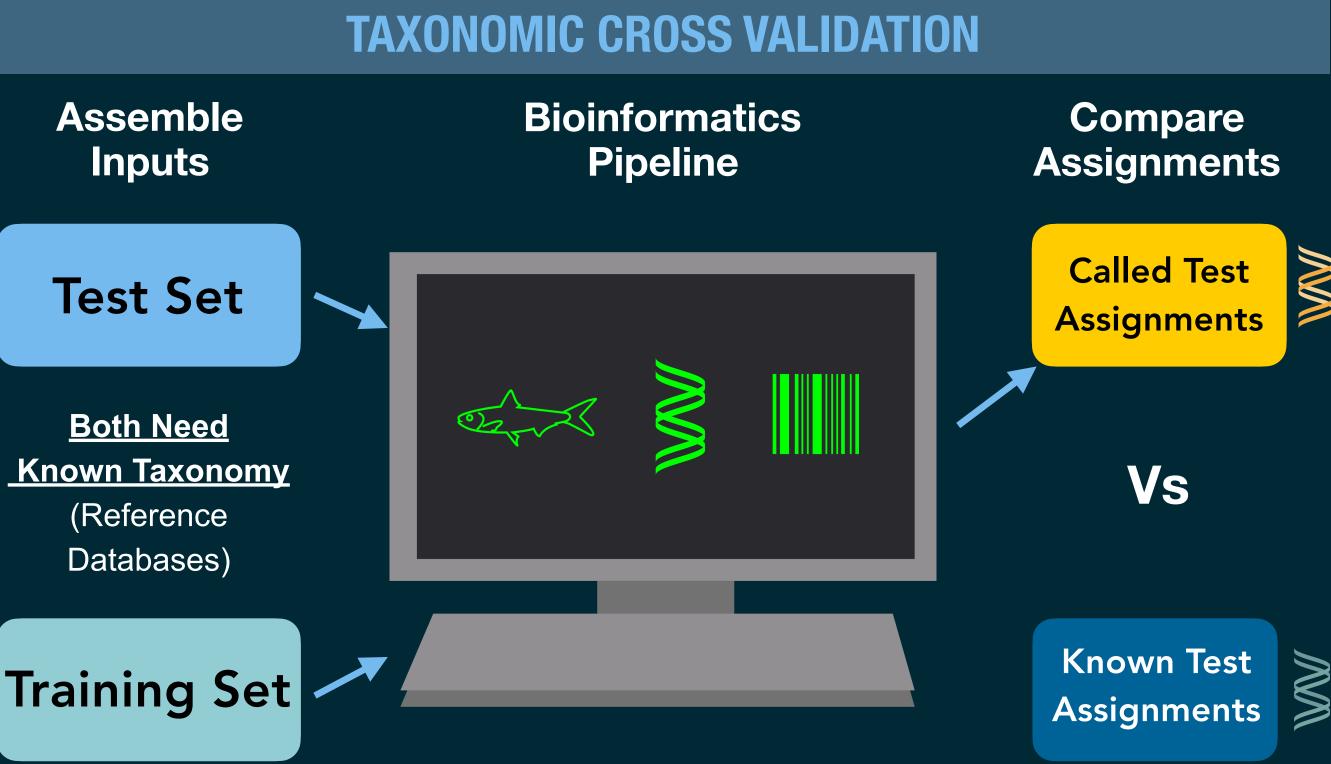
#### **Barcoding Efforts Enhance Accuracy**

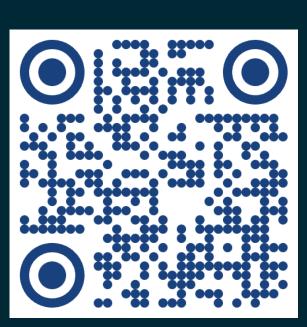
Extensive MiFish 12S barcoding effort added 252 species. Database now covers 92.7% of monitored species.

| Metric                                                   | Before<br>Barcoding | After<br>Barcoding |
|----------------------------------------------------------|---------------------|--------------------|
| Amplicon Sequence Variants<br>(ASVs) Assigned to Species | 145                 | 156                |
| Reads Assigned to Species                                | 192,808             | 248,677            |
| ASVs Assigned to Native Species                          | 25                  | 37                 |

#### **Regional Databases Outperform Global Databases**

| Taxonomic Cross Validation<br>Metric           | Assigned by<br>Global                                                                                                                                                                                                                                                   | Assigned by<br>Regional                               |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Accuracy                                       | 86.5%                                                                                                                                                                                                                                                                   | 90.9%                                                 |
| Sensitivity                                    | 88.0%                                                                                                                                                                                                                                                                   | 92.1%                                                 |
| Specificity                                    | 98.2%                                                                                                                                                                                                                                                                   | 98.7%                                                 |
| Curation Enhances Resolution                   | Cynoscion guatucupa<br>Atractoscion nobilis<br>Cynoscion reticulates<br>Cynoscion regali                                                                                                                                                                                | A Current                                             |
| ASVs →<br>12S ASV Cladogram<br>Distinct ASVs ✓ | Cynoscion accoppa<br>Macrodon ancylodon<br>Isopisthus remifer<br>Cynoscion praedatorius<br>Cynoscion parvipinnis $\longrightarrow$ $\checkmark$<br>Seriphus politus<br>Roncador stearnsii<br>Genyonemus lineatus<br>Cheilotrema saturnum $\longrightarrow$ $\checkmark$ | Natives<br>100%<br>Specie<br>Resolut                  |
| Sciaenidae - Grunts                            | Umbrina roncador $\longrightarrow$<br>Umbrina xanti<br>Menticirrhus americanus<br>Menticirrhus undulatus $\longrightarrow$                                                                                                                                              | PC: Fishbase &<br>Smithsonian Tro<br>Research Institu |



Figure 1. Leray CO1 rCRUX database comparison. rCRUX captured 99.6% (n=990,286) of all species observed across other publicly available databases.



### VERSATILE TOOL FOR GENERATING COMPREHENSIVE REFERENCE LIBRARIES



- 1) eDNA monitoring requires a greater diversity of specialized gene regions than are currently curated by professional staff.
- 2) We present rCRUX: an easy-to-implement tool to generate curated, comprehensive reference libraries for any bespoke locus.



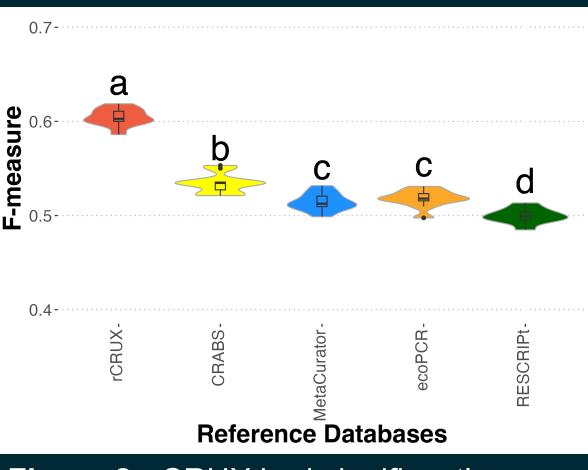




Figure 2. rCRUX had significantly higher F-measure for cross-validation at the species level across MiFish 12S databases (paired *t*-test, p < 0.05).



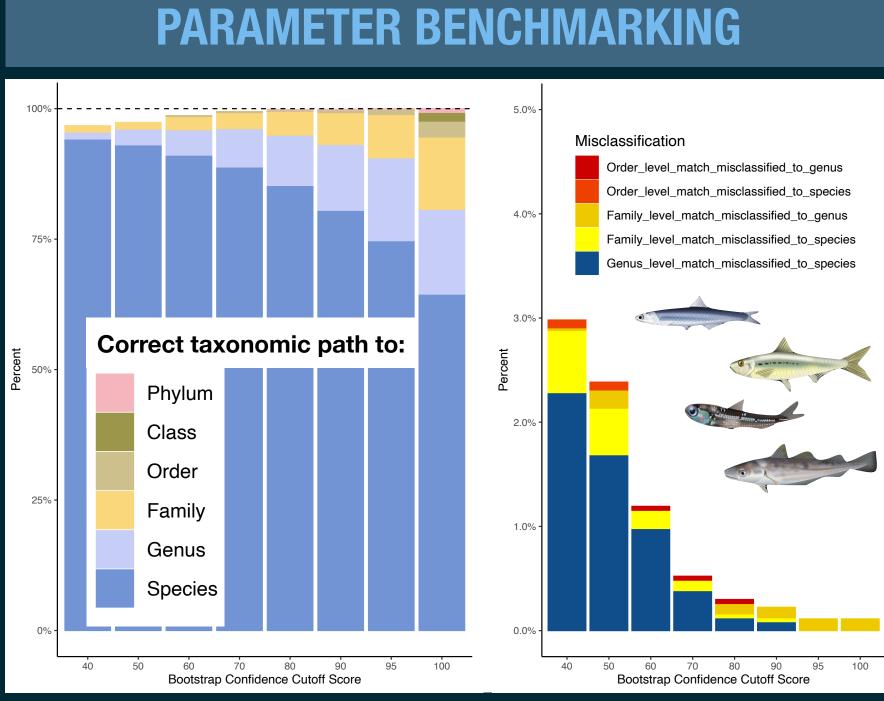



Figure 3. Parameter testing reveals confidence vs. resolution tradeoff. Relaxed confidence results in increased accuracy and misclassification rates. Optimization for invasive & protected species requires more stringency.

#### **DEFENSIBLE STRINGENT TAXONOMIC BEST PRACTICES:**

- 1) Anacapa Classifier 95% identity & query coverage
- 2) Unambiguous BLAST top hit
- 3) Reference sequences for target & sister natives exist
- 4) Documented in region (e.g. Invasive Species Profiles List)

# **FUTURE DIRECTIONS**

Formal comparison of metabarcoding pipelines



- Curd, E. E. et al. (2023). rCRUX: A rapid and versatile tool for generating metabarcoding reference libraries in R. Environmental DNA
- . Curd, E. E. et al. (2019). Anacapa Toolkit: An environmental DNA toolkit for processing multilocus metabarcode datasets. MEE 10.9: 1469-1475. 21). Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ec<u>osystem. MER 21.7: 2546-2564</u>
- A manager's guide to using eDNA metabarcoding in marine ecosystems. *PeerJ* 10: e1407
- ourmaline: A containerized workflow for rapid & iterable amplicon sequence analysis using QIIME 2 & Snakemake. GigaSci. nus N. (2022). A rapid phylogeny-based method for accurate community profiling of large-scale metabarcoding datasets. *bioRxiv* : 2022-12.
- 5. M. et al. (2023). REVAMP Rapid Exploration and Visualization through an Automated Metabarcoding Pipeline. Oceanography 36.2/3: 114-119. mzadeh, Ali et al. (2023). A pile of pipelines: An overview of the bioinformatics software for metabarcoding data analyses. Molecular Ecology Resources.

9. Bokulich, N.A. et al. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome.