U.S. Dept. of Commerce / NOAA/ OAR / PMEL / Publications


The influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation

Richard A. Feely

Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington

Rik Wanninkhof

Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida

Taro Takahashi

Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Pieter Tans

Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado

Nature, 398, 597–601 (1999)
Copyright 1999 Macmillan Publishers Ltd. Further electronic distribution is not allowed.

The equatorial oceans are the dominant oceanic source of CO2 to the atmosphere, annually amounting to a net flux of 0.7–1.5 Pg (1015 g) of carbon, up to 72% of which emanates from the equatorial Pacific Ocean (Houghton et al., 1994; Tans et al., 1990; Takahashi et al., 1997). Limited observations indicate that the size of the equatorial Pacific source is significantly influenced by El Niño events (Feely et al., 1995; Wanninkhof et al., 1996; Murray et al., 1994; Feely et al., 1987; Inoue and Sugimura, 1992; Goyet and Peltzer, 1994; Archer et al., 1996), but the effect has not been well quantified. Here we report spring and autumn multiannual measurements of the partial pressure of CO2 in the surface ocean and atmosphere in the equatorial Pacific region. During the 1991–94 El Niño period, the derived net annual sea-to-air flux of CO2 was 0.3 Pg C from autumn 1991 to autumn 1992, 0.6 Pg C in 1993, and 0.7 Pg C in 1994. These annual fluxes are 30–80% of that of 1996, a non-El-Niño year. The total reduction of the regional sea-to-air CO2 flux during the 1991–94 El Niño period is estimated to account for up to one-third of the atmospheric anomaly (the difference between the annual and long-term-average increases in global atmospheric CO2 content) observed over the same period.



Go to text of paper

PMEL Outstanding Papers

PMEL Publications Search

PMEL Homepage