NOAA OAR Special Report



# PMEL Tsunami Forecast Series: Vol. 13 A Tsunami Forecast Model for Elfin Cove, Alaska

Michael C. Spillane



NOAA Center for Tsunami Research (NCTR) Pacific Marine Environmental Laboratory **Front cover image:** Overview of NOAA tsunami forecast system. Top frame illustrates components of the tsunami forecast using the 11 March 2011 Tohoku tsunami as an example: DART systems (black triangles), precomputed tsunami source function database (unfilled black rectangles) and high-resolution forecast models in the Pacific, Atlantic, and Indian oceans (red squares). Colors show computed maximum tsunami amplitudes of the offshore forecast. Black contour lines indicate tsunami travel times in hours. Lower panels show the forecast process sequence left to right: tsunami detection with the DART system (third generation DART ETD is shown); model propagation forecast based on DART observations; coastal forecast with high-resolution tsunami inundation model.

PDF versions of the PMEL Tsunami Forecast Series reports are available at http://nctr.pmel.noaa.gov/forecast\_reports NOAA OAR Special Report

## PMEL Tsunami Forecast Series: Vol. 13 A Tsunami Forecast Model for Elfin Cove, Alaska

M.C. Spillane<sup>1,2</sup>

- 1 Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, WA
- 2 NOAA/Pacific Marine Environmental Laboratory (PMEL), Seattle, WA

September 2015



UNITED STATES DEPARTMENT OF COMMERCE

Penny Pritzker Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Kathy Sullivan Under Secretary for Oceans and Atmosphere/Administrator Office of Oceanic and Atmospheric Research

Craig McLean Assistant Administrator

### NOTICE from NOAA

Mention of a commercial company or product does not constitute an endorsement by NOAA/ OAR. Use of information from this publication concerning proprietary products or the tests of such products for publicity or advertising purposes is not authorized. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration.

Contribution No. 3405 from NOAA/Pacific Marine Environmental Laboratory Contribution No. 2089 from Joint Institute for the Study of the Atmosphere and Ocean (JISAO)

> Also available from the National Technical Information Service (NTIS) (http://www.ntis.gov)

## Contents

| Fo | preword                                                          | xi  |
|----|------------------------------------------------------------------|-----|
| A  | ostract                                                          | 1   |
| 1. | Background and Objectives                                        | 3   |
|    | 1.1 The setting                                                  |     |
|    | 1.2 Tsunami and other coastal hazards                            |     |
|    | 1.3 Tsunami warning and risk assessment                          |     |
| 2. | Forecast Methodology                                             | 7   |
|    | 2.1 The tsunami model                                            |     |
|    | 2.2 NOAA's tsunami forecast system                               | 7   |
| 3. | Model Development                                                | 9   |
|    | 3.1 Digital elevation models                                     |     |
|    | 3.2 Tides and sea level variation                                |     |
|    | 3.3 Signal-to-noise considerations for the Elfin Cove tide gauge |     |
|    | 3.4 The CFL condition and other considerations for grid design   | 13  |
|    | 3.5 Specifics of the model grids                                 |     |
|    | 3.6 Model run input and output files                             |     |
| 4. | Results and Discussion                                           | 17  |
|    | 4.1 The micro-tsunami test                                       |     |
|    | 4.2 The mega-tsunami tests                                       |     |
|    | 4.3 Model intercomparison using historical events                | 21  |
|    | 4.4 Further historical simulations                               | 22  |
|    | 4.5 Simulation of the remaining synthetic mega-tsunami events    | 28  |
| 5. | Conclusions                                                      | 33  |
| 6. | Acknowledgments                                                  | 35  |
| 7. | References                                                       | 37  |
| F  | GURES                                                            | 41  |
| A  | opendix A.                                                       | 99  |
| -  | A1. Reference model *.in file for Elfin Cove, Alaska             | 99  |
|    | A2. Forecast model *.in file for Elfin Cove, Alaska              | 100 |
| A  | opendix B. Propagation Database: Pacific Ocean Unit Sources      | 101 |

| Appendix C. Synthetic Testing Report: Elfin Cove, Alaska | 149 |
|----------------------------------------------------------|-----|
| C1. Purpose                                              |     |
| C2. Testing procedure                                    | 149 |
| C3. Results                                              | 150 |
| Glossary                                                 | 157 |

# List of Figures

| 1  | The northern Gulf of Alaska showing regional digital elevation model resources, tide gauge, and DART tsunami detection assets                                                                                                                                                                                                         | 43 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2  | Southeast Alaska geographic features, communities, and the Alaska Marine Highway.                                                                                                                                                                                                                                                     | 44 |
| 3  | Oblique views of southeast Alaska and Elfin Cove digital elevation<br>models developed by the National Geophysical Data Center                                                                                                                                                                                                        |    |
| 4  | Regional seismic hazards and the unit sources employed to model<br>their tsunamigenic potential. The inset panel is adapted from the<br>USGS Seismic Hazard Maps for Alaska.                                                                                                                                                          | 46 |
| 5  | Extracts from NOAA Chart 17302. Cross Sound to Icy Strait and Elfin Cove sub-chart, annotated with NOS tide gauge location.                                                                                                                                                                                                           | 47 |
| 6  | View southeast into Elfin Cove's inner cove showing boardwalks, finger docks, and other community facilities.                                                                                                                                                                                                                         |    |
| 7  | Elfin Cove tide gauge data from March 2011 illustrating episodes of<br>high-frequency, non-tsunami related signals that can mask tsunami<br>signals such as that associated with the 2011 Tohoku event.                                                                                                                               |    |
| 8  | One year of the standard deviation measure of subsample noise that<br>accompanies the 6 min tide gauge data from Elfin Cove. Only one<br>tsunami event of significance occurred during the year, but noise<br>"bursts" associated with winds and waves are common,<br>particularly during winter months.                              |    |
| 9  | As in Figure 7, but for the Chile tsunami event of February 2010, whose impact in the Gulf of Alaska was comparable to that of the 2011 Tohoku event.                                                                                                                                                                                 | 52 |
| 10 | As in Figures 7 and 9, but illustrating the poor signal-to-noise ratio during the Kuril tsunami event of November 2006.                                                                                                                                                                                                               | 53 |
| 11 | Nested grids employed in the reference model version of the Elfin<br>Cove tsunami model, progressing counterclockwise from the<br>coarsest resolution A grid (upper left), through the extensive,<br>medium resolution B grid, to the finely resolved C grid, which<br>includes the Inian passes.                                     |    |
| 12 | Nested grids employed in the forecast model version of the Elfin<br>Cove tsunami model, progressing clockwise with the innermost<br>C grid, which is much reduced in extent, appearing in the lower left.<br>The Inian passes are best represented in the B grid, while Glacier<br>Bay appears only coarsely in the outermost A grid. | 55 |
| 13 | Synthetic and historic event scenarios employed in intercomparison of the reference and forecast models of Elfin Cove.                                                                                                                                                                                                                |    |

| 14 | Comparison of reference and forecast model predictions for the<br>Elfin Cove tide gauge site for three "micro-tsunami" (very low<br>magnitude) sources, highlighting low-level model instabilities that<br>might be missed in modeling larger events.                                                                                                                     | 57 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 15 | Comparison of reference and forecast model results for the synthetic ACSZ 40-49 mega-tsunami scenario, which is local to Elfin Cove.<br>(a) distribution of maximum amplitude during the 18 hr simulation;<br>(b) distribution of maximum speed; and (c) a snapshot of the current field during the scenario.                                                             |    |
| 16 | Comparison of reference and forecast model results for the synthetic ACSZ 56–65 mega-tsunami scenario, which is representative of the Cascadia Subduction Zone. (a) distribution of maximum amplitude during the 18 hr simulation; (b) distribution of maximum speed; and (c) a snapshot of the current field during the scenario.                                        | 61 |
| 17 | Comparison of reference and forecast model results for the synthetic CSSZ 102–111 mega-tsunami scenario, which is representative of the South American Subduction Zone. (a) distribution of maximum amplitude during the 18 hr simulation; (b) distribution of maximum speed; and (c) a snapshot of the current field during the scenario.                                |    |
| 18 | Comparison of reference and forecast model results for the synthetic MOSZ 1–10 mega-tsunami scenario, which is representative of the Manus Oceanic Convergent plate boundary in the southwest Pacific. (a) distribution of maximum amplitude during the 18 hr simulation; (b) distribution of maximum speed; and (c) a snapshot of the current field during the scenario. |    |
| 19 | Comparison of reference and forecast model solutions for a mild synthetic tsunami near Samoa (single unit source NTSZ B36).                                                                                                                                                                                                                                               | 70 |
| 20 | Comparison of reference and forecast model results for a hindcast<br>of the 2011 Tohoku historic event. (a) distribution of maximum<br>amplitude during the 18 hr simulation; (b) distribution of maximum<br>speed; and (c) a snapshot of the current field during the event.                                                                                             | 71 |
| 21 | Comparison of reference and forecast model results for a hindcast<br>of the 2010 Chile historic event. (a) distribution of maximum<br>amplitude during the 18 hr simulation; (b) distribution of maximum<br>speed; and (c) a snapshot of the current field during the event.                                                                                              |    |
| 22 | Comparison of reference and forecast model results for a hindcast<br>of the 1964 Alaska historic event. (a) distribution of maximum<br>amplitude during the 18 hr simulation; (b) distribution of maximum<br>speed; and (c) a snapshot of the current field during the event.                                                                                             | 77 |
| 23 | Comparison of reference and forecast model results for a hindcast<br>of the 1960 Chile historic event. (a) distribution of maximum<br>amplitude during the 18 hr simulation; (b) distribution of maximum<br>speed; and (c) a snapshot of the current field during the event.                                                                                              | 80 |

| 24 | Propagation of the 2011 Tohoku tsunami across the North Pacific from its epicenter to the Gulf of Alaska                                                                                                                                                                                                                                                                                                                                          |     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 25 | Model validation based on detided and low-passed observations of<br>the 2011 Tohoku tsunami at Elfin Cove model grid locations                                                                                                                                                                                                                                                                                                                    |     |
| 26 | As in Figure 25 but for the 2010 Chile historical event.                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 27 | Model validation based on the 1964 Alaska historic tsunami.                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 28 | Attempted model validation based on digitized marigrams for Sitka associated with the 1946 Unimak, 1952 Kamchatka, and 1960 Chile tsunamis.                                                                                                                                                                                                                                                                                                       |     |
| 29 | Comparison of forecast model hindcasts at the Elfin Cove tide gauge<br>with observations for selection of historic events since 1 min data<br>became available. (a) 2006 Tonga, 2006 Kuril, 2007 Kuril, and 2007<br>Solomon; (b) 2007 Peru, 2007 Chile, and 2009 Samoa.                                                                                                                                                                           |     |
| 30 | Forecast model hindcasts for Elfin Cove during various earlier<br>tsunamis for which tide gauge records are unavailable. Some Sitka<br>runup reports are indicated. (a) 1946 Unimak, 1957 Andreanof,<br>1994 East Kuril, and 1996 Andreanof; (b) 2001 Peru, 2003<br>Hokkaido, and 2003 Rat Island.                                                                                                                                                | 90  |
| 31 | Predicted maximum amplitudes at the Elfin Cove tide gauge asso-<br>ciated with the full suite of mega-tsunami events listed in Table 5.<br>Numerical values are shown, together with great circle distances to<br>Elfin Cove and an indication of the likely main beam direction near<br>the source.                                                                                                                                              |     |
| 32 | Complete time series of forecast model predictions at the Elfin Cove tide gauge site for each of the mega-tsunami scenarios. Time is in hours from the event. (a) KISZ 1–10, KISZ 22–31, KISZ 32–41, and KISZ 56–65; (b) ACSZ 6–15, ACSZ 16–25, ACSZ 22–31, and ACSZ 40–49; (c) ACSZ 50–59, ACSZ 56–65, CSSZ 1–10, and CSSZ 37–46; (d) CSSZ 89–98, CSSZ 102–111, NTSZ 30–39, and NVSZ 28–37; (e) MOSZ 1–10, NGSZ 3–12, EPSZ 6–15, and RNSZ 12–21. | 93  |
| 33 | Current meter sites, instrumented by NOAA's EcoFOCI Program, for<br>which mega-tsunami event speed maxima from the model were<br>extracted and listed in Table 10. Inset: 10-knot contour for the local<br>ACSZ 40–40 scenario, which produces the strongest currents.                                                                                                                                                                            |     |
| B1 | Aleutian–Alaska–Cascadia Subduction Zone unit sources.                                                                                                                                                                                                                                                                                                                                                                                            | 103 |
| B2 | Central and South America Subduction Zone unit sources.                                                                                                                                                                                                                                                                                                                                                                                           | 109 |
| B3 | Eastern Philippines Subduction Zone unit sources.                                                                                                                                                                                                                                                                                                                                                                                                 | 121 |
| B4 | Kamchatka–Bering Subduction Zone unit sources                                                                                                                                                                                                                                                                                                                                                                                                     | 123 |
| B5 | Kamchatka–Kuril–Japan–Izu–Mariana–Yap Subduction Zone<br>unit sources.                                                                                                                                                                                                                                                                                                                                                                            | 125 |

| B6  | Manus–Oceanic Convergent Boundary Subduction Zone unit sources.                                                                                                                                                                                                                                                                         | 133 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| B7  | New Guinea Subduction Zone unit sources.                                                                                                                                                                                                                                                                                                | 135 |
| B8  | New Zealand–Kermadec–Tonga Subduction Zone unit sources.                                                                                                                                                                                                                                                                                |     |
| B9  | New Britain–Solomons–Vanuatu Subduction Zone unit sources.                                                                                                                                                                                                                                                                              |     |
| B10 | New Zealand–Puysegur Subduction Zone unit sources.                                                                                                                                                                                                                                                                                      |     |
| B11 | Ryukyu–Kyushu–Nankai Subduction Zone unit sources.                                                                                                                                                                                                                                                                                      |     |
| C1  | Response of the Elfin Cove forecast model to synthetic scenario KISZ 22–31 ( $\alpha$ =25). Maximum sea surface elevation for A, B, and C grids, and sea surface elevation time series at the C-grid warning point, which can be compared to the equivalent obtained during model development, as displayed in Figure 32a and Table C1. | 152 |
| C2  | Response of the Elfin Cove forecast model to synthetic scenario ACSZ 56–65 ( $\alpha$ =25). Maximum sea surface elevation for A, B, and C grids, and sea surface elevation time series at the C-grid warning point, which can be compared to the equivalent obtained during model development, as displayed in Figure 16 and Table C1.  |     |
| C3  | Response of the Elfin Cove forecast model to synthetic scenario CSSZ 89–98 ( $\alpha$ =25). Maximum sea surface elevation for A, B, and C grids, and sea surface elevation time series at the C-grid warning point, which can be compared to the equivalent obtained during model development, as displayed in Figure 32d and Table C1. |     |
| C4  | Response of the Elfin Cove forecast model to synthetic scenario NTSZ 30–39 ( $\alpha$ =25). Maximum sea surface elevation for A, B, and C grids, and sea surface elevation time series at the C-grid warning point. For extrema computed during development, see Figure 32d and Table C1.                                               | 155 |
| C5  | Response of the Elfin Cove forecast model to the 2011 Tohoku<br>historical event. Maximum sea surface elevation for A, B, and C<br>grids, and sea surface elevation time series at the C-grid warning<br>point, which can be compared to the equivalent obtained during<br>model development, as displayed in Figure 20 and Table C1.   | 156 |

# List of Tables

| 1  | The main features of the Elfin Cove and southeast Alaska digital elevation models.                                                                                                                                             |     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2  | Characteristics of the Elfin Cove tide gauge.                                                                                                                                                                                  | 12  |
| 3  | Specifics of the reference and forecast model grids employed for Elfin Cove, Alaska.                                                                                                                                           | 14  |
| 4  | Grid file names and grid-related parameters for Elfin Cove, Alaska                                                                                                                                                             | 16  |
| 5  | Synthetic tsunami events employed in Elfin Cove, Alaska model testing.                                                                                                                                                         | 18  |
| 6  | Source characterization for historical tsunami events employed in Elfin Cove, Alaska, model testing.                                                                                                                           |     |
| 7  | Ad hoc unit source representation of six local events for southeast<br>Alaska investigated using the Elfin Cove forecast model. Sitka<br>observations are employed where available.                                            | 27  |
| 8  | Comparison of the response at Elfin Cove, Alaska, to that of Point<br>Reyes, California, for synthetic (Mw 9.3) mega-tsunami scenarios.<br>The maximum amplitude at the reference point is used as the<br>measure of response. | 29  |
| 9  | Mega-tsunami scenario impacts, as represented by maximum<br>amplitude (in cm) at several sites within the Elfin Cove model<br>domain.                                                                                          | 30  |
| 10 | Maximum speeds (given in knots) at various locations from Cross<br>Sound to Icy Strait in mega-tsunami simulations using the Elfin<br>Cove forecast model.                                                                     | 31  |
| 11 | Intercomparison of reference and forecast model estimates of peak<br>wave amplitudes and arrival time at Elfin Cove, Alaska.                                                                                                   | 34  |
| B1 | Earthquake parameters for Aleutian–Alaska–Cascadia Subduction Zone unit sources.                                                                                                                                               | 104 |
| B2 | Earthquake parameters for Central and South America Subduction Zone unit sources.                                                                                                                                              | 110 |
| B3 | Earthquake parameters for Eastern Philippines Subduction Zone unit sources.                                                                                                                                                    | 122 |
| B4 | Earthquake parameters for Kamchatka-Bering Subduction Zone unit sources.                                                                                                                                                       | 124 |
| B5 | Earthquake parameters for Kamchatka-Kuril-Japan-Izu-Mariana-<br>Yap Subduction Zone unit sources.                                                                                                                              | 126 |

| B6  | Earthquake parameters for Manus–Oceanic Convergent Boundary<br>Subduction Zone unit sources.                                                                                        | 134 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| B7  | Earthquake parameters for New Guinea Subduction Zone unit sources.                                                                                                                  | 136 |
| B8  | Earthquake parameters for New Zealand–Kermadec–Tonga<br>Subduction Zone unit sources.                                                                                               | 138 |
| B9  | Earthquake parameters for New Britain–Solomons–Vanuatu<br>Subduction Zone unit sources.                                                                                             | 142 |
| B10 | Earthquake parameters for New Zealand–Puysegur Subduction<br>Zone unit sources.                                                                                                     |     |
| B11 | Earthquake parameters for Ryukyu–Kyushu–Nankai Subduction<br>Zone unit sources.                                                                                                     |     |
| C1  | Maximum and minimum amplitudes (cm) at the Elfin Cove, Alaska,<br>warning point for synthetic and historical events tested using<br>SIFT 3.2 and those obtained during development. |     |

# Foreword

Sunamis have been recognized as a potential hazard to United States coastal communities since the mid-twentieth century, when multiple destructive tsunamis caused damage to the states of Hawaii, Alaska, California, Oregon, and Washington. In response to these events, the United States, under the auspices of the National Oceanic and Atmospheric Administration (NOAA), established the Pacific and National Tsunami Warning Centers, dedicated to protecting United States interests from the threat posed by tsunamis. NOAA also created a tsunami research program at the Pacific Marine Environmental Laboratory (PMEL) to develop improved warning products.

The scale of destruction and unprecedented loss of life following the December 2004 Sumatra tsunami served as the catalyst to refocus efforts in the United States on reducing tsunami vulnerability of coastal communities, and on 20 December 2006, the United States Congress passed the "Tsunami Warning and Education Act" under which education and warning activities were thereafter specified and mandated. A "tsunami forecasting capability based on models and measurements, including tsunami inundation models and maps" is a central component for the protection of United States coastlines from the threat posed by tsunamis. The forecasting capability for each community described in the PMEL Tsunami Forecast Series is the result of collaboration between the National Oceanic and Atmospheric Administration office of Oceanic and Atmospheric Research, National Weather Service, National Ocean Service, National Environmental Satellite, Data, and Information Service, the University of Washington's Joint Institute for the Study of the Atmosphere and Ocean, National Science Foundation, and United States Geological Survey.

NOAA Center for Tsunami Research

## PMEL Tsunami Forecast Series: Vol. 13 A Tsunami Forecast Model for Elfin Cove, Alaska

M.C. Spillane<sup>1,2</sup>

**Abstract.** Operational tsunami forecasting by NOAA's Tsunami Warning Centers relies on the detection of tsunami wave trains in the open ocean, inversion of these data (transmitted via satellite) to quantify their source characteristics, and real-time modeling of the impact on threatened coastal communities. The latter phase of the process involves, for each such community, a pre-tested forecast model capable of predicting the impact, in terms of inundation and dangerous inshore currents, with sufficient resolution and within the time constraints appropriate to an emergency response. To achieve this goal, considerable advance effort is required to tune each forecast model to the specific bathymetry and topography, both natural and manmade, of the impact area, and to validate its performance with a broad set of tsunami sources. Where possible, the validation runs should replicate observed responses to historical events, but the sparse instrumental record of these rare but occasionally devastating occurrences dictates that comprehensive testing also include a suite of synthetic scenarios that represent potential extreme events.

During the forecast model design phase, and in research mode outside the pressures of an emergency situation, more detailed and slower-running models can be investigated. These models, referred to as reference models, represent the most credible numerical representation of tsunami response for a study region, using the most detailed bathymetry available and without the run-time constraint of operational use. Once a reference model has been developed, the process of forecast model design is to determine where efficiencies can be gained, by reducing the grid resolution and increasing the model time step, while still adequately representing the salient features of the full solution.

This report addresses the tsunami aspects of the natural hazard spectrum, documenting the reference and forecast model development for Elfin Cove, Alaska, and its vicinity. Though sparsely populated, the region is traversed by several segments of the Alaska Marine Highway and features important marine resources, including commercial and recreational fishing and the potential for tidal power extraction. Additionally, Glacier Bay is a popular venue for cruise ships and other tourist activity. The forecast model performs satisfactorily in hindcasts of major historical tsunamis and its stability in tests of large synthetic events around the Pacific basin has been demonstrated. However, it should be noted that forecast model amplitudes consistently underestimate those produced in reference model runs. The disparity is generally only a few percent in the early phases of the tsunami wave train but may be significantly larger for later waves. It is suggested that a safety factor of the order of 10% be applied in operational use of forecast model projections. During testing, the forecast model simulated 4 hr of real time in 12.92 min. While this exceeds the 10 min target for this metric, the modest increase is justified by the regional coverage provided by the intentionally enlarged model domain.

<sup>1</sup> Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, WA

<sup>2</sup> NOAA/Pacific Marine Environmental Laboratory (PMEL), Seattle, WA

## 1. Background and Objectives

### 1.1 The setting

The "Panhandle" of southeast Alaska (see **Figures 1–3**) extends from Yakutat to the U.S./Canada border and is a region incised with deep channels and complex topography. The mainland is exposed to the open ocean north of Cross Sound, while to the south the islands of the Alexander Archipelago provide a screen. The deep waters of Chatham Strait provide a passage for tsunami waves deep into the interior: to Skagway and Haines via Lynn Canal, to the state capital Juneau, and to several of the larger communities. Cross Sound is linked to Chatham Strait via Icy Strait, along which Glacier Bay and its associated National Park is a major tourist destination.

Tsunami models are being developed for several communities of southeast Alaska in recognition of the threat they face from both local and remote sources. For most of these communities, tide gauge records, or in some cases verbal reports of observed historical events, provide ground truth with which to assess and validate model predictions. One such tide gauge is located in Elfin Cove, approximately midway between Sitka and Yakutat and the subject of this report and tsunami modeling effort. The small community (2010 population: 20; U.S. Census Bureau, 2010), accessible only by water or seaplane, is a census-designated place on the Inian Peninsula of Chichagof Island, and is well-described in the Elfin Cove Community Plan (2007). Although the fifth largest island in the U.S., the entire population of Chichagof Island in 2000 was only 1342 and has declined since. The Inian Peninsula and a cluster of islands of the same name partially block Icy Strait, while to the west several islands screen Elfin Cove from the open Pacific Ocean. The Alaska Marine Highway passes between Elfin Cove and the Inian Islands, with ferry service to Hoonah (2010 population: 760; U.S. Census Bureau, 2010) at the mouth of Port Frederic inlet, Pelican (2010 population: 88; U.S. Census Bureau, 2010) on Lisianski Inlet, and northward to Yakutat and Anchorage. During the summer months there is a significant though transient population increase. Commercial fishing vessels transiting to the Bering Sea or engaged in local recreational fishing swell the population of Elfin Cove to 170 or so, and the community is occasionally visited by tour vessels with up to 100 passengers that can tax its limited infrastructure. Power is generated locally, potable water comes from a spring, and there are no regularly scheduled modes of transportation. Elfin Cove has no roads but is served by a network of boardwalks. Medical services are volunteer-provided; all in all, the community is self-sustaining but at risk if an emergency were to arise.

As the most northerly access to the Inland Passage, Cross Sound and Icy Strait are heavily traversed year-round by ferry, cargo, and cruise ship traffic. In summer, cruise ship traffic to Glacier Bay is particularly intense, with two vessels, each carrying up to 3000 passengers and crew arriving each day. Tidal currents through the narrow North and South Inian passes and other navigational channels are very strong and it is important that the tsunami model being designed here should address the impact of tsunami-driven currents in addition to the potential for inundation. While the forecast model is named for Elfin Cove, its choice is largely dictated by the presence of a tide gauge for use in model validation and in operations; the scope of the model must be more regional than is usual. By contrast, models created for the closest communities to the north and south (Yakutat and Sitka, respectively, with greater population and infrastructure) have a more local focus.

Lisianski Strait separates Chichagof Island from the smaller Yakobi Island to the west. Farther south, Peril Strait provides another, albeit far more constricted, connection between the Pacific Ocean and Chatham Strait, allowing ferry service to Sitka (2010 population: 8881; U.S. Census Bureau, 2010) on Baranof Island. At the south end of Baranof Island, just inside the entrance to Chatham Strait, is Port Alexander (2010 population: 52; U.S. Census Bureau, 2010), whose selection as a forecast model site also reflects its strategically located tide gauge.

Though far from the open ocean, Skagway and Juneau have reported substantial tsunami waves, particularly from the major Alaskan earthquake of 1964, but also from more remote events such as 1960 Chile and 2011 Tohoku. The domain of the Elfin Cove model, which must allow for the possibility of waves arriving from the east via Chatham and Icy Straits, will be large enough to permit estimates for Juneau, Skagway, and other communities in its vicinity.

### 1.2 Tsunami and other coastal hazards

In an extensive compilation of tsunami knowledge for Alaska since the earliest records in the 1700s, Lander (1996) distinguishes between the several categories of tsunami to which the region is prone. Together with the National Geophysical Data Center's (NGDC) online hazard database (Dunbar, 2007; see www.ngdc.noaa. gov/hazard/), a wide set of historical cases are available with which to exercise a forecast model. Observations suited to model validation are, however, quite limited. Tide gauge records from Elfin Cove itself are only available after August 2005; reports and observations from other sites in the vicinity (primarily Sitka) will be employed to validate the model for earlier events.

The instrumental record is too short, in the geologic context, to provide samples of the range of tsunami events that may occur at future times within the Pacific basin. Thus, once developed and validated, the model will be exercised with a comprehensive suite of synthetic scenarios. The benefits of this are twofold: 1) to check that the model is robust and unlikely to fail in an operational setting, and; 2) as a byproduct, to identify tsunami source regions to which southeast Alaska is particularly susceptible. It should be noted that, currently, the model is applicable only to tsunamis generated by direct seismic forcing. Lander (1996) discusses other mechanisms related to volcanic activity or landslides, perhaps triggered by seismic action, that are manifested in the observational record. Notorious among the latter is the 1958 event in Lituya Bay, just north of Cross Sound, where the collapse of a steep mountainside caused a surge of over 500 m at the other side of the bay. Though dramatic, such events are generally quite localized, but it should be stressed that in its current form the tsunami model employed in the forecast system does not cover landslide-generated tsunamis.

Earthquake, landslide, and flooding damage can result even without the medium of tsunami waves. Nonetheless, history has shown that death, injury, and property damage associated with tsunamis, both local and remote, have been significant, so the modeling effort and operational forecast capability provide important benefits to the State of Alaska. Equally, since tsunamis generated off southeast Alaska can potentially impact the entire Pacific basin, the degree of success of the Elfin Cove model in a local event can lend credence to the forecast systems projections for more remote and larger communities of the United States and other nations.

An inset to **Figure 4**, taken from the USGS seismic hazard analysis for Alaska (Wesson *et al.*, 2007), shows the major fault ruptures that have occurred in the region since the 1930s. Several are local to the Alaska Panhandle region, though none have caused major tsunami impacts since 1964. The main panel of **Figure 4** shows (in green) several of the faults, together with the unit source rectangles employed to represent them in the NCTR (NOAA Center for Tsunami Research) propagation database. The Fairweather Fault, extending northward from Haida Gwaii, generated the Queen Charlotte event of 1949, the 1958 earthquake associated with the Lituya Bay tsunami, and one near Sitka in 1972 (Doser and Lomas, 2000). It is primarily a strike-slip fault, as is the Transition Zone Fault which angles off to the northwest. The junction near Cross Sound was the site of a series of a cluster of small earthquakes in 1973. Between these faults is the Yakutat Terrane (Worthington *et al.*, 2012) or Yakutat Block (whose submarine portion is crosshatched in **Figure 4**).

The rectangular outlines of the  $100 \times 50$  km unit sources of the NCTR propagation database are shown in **Figure 4**. Those drawn in black are combined for the ACSZ 40-49 mega-tsunami source described later in this report. Representing a Mw 9.3 event, this synthetic source is likely far in excess of any probable occurrence, but should serve as an extreme test of model stability. At the northern end of the Yakutat Block the potential for a larger event becomes more realistic as it subducts beneath the North American Plate in the vicinity of the Chugach–St. Elias Mountains. Major earthquakes occurred near Yakutat in 1899, for which the 1979 event shown in **Figure 4** is considered an aftershock. The rupture zone of the 1964 Alaska earthquake did not extend into the region (Shennan *et al.*, 2009). Often referred to as the "Yakataga Gap," this is a potential site for future large earthquakes in Alaska seismic hazard mapping (Wesson *et al.*, 2007) and Alaska Earthquake Center (AEC) charts (www.aeic.alaska.edu).

### 1.3 Tsunami warning and risk assessment

The forecast model development described here will permit Elfin Cove to be incorporated into the tsunami forecasting system, developed at NCTR and now in operational use at the U.S. Tsunami Warning Centers (TWCs). The system has had considerable success in accurately forecasting the impact of both moderate and severe tsunami events in recent years (Titov, 2009; Tang *et al.*, 2012), and is likely to improve as new detection sites, closer to the source line, are added (Bernard *et al.*, 2014). In the following section, the methodology that permits such forecasts is discussed as prelude to a description of development of the forecast model for Elfin Cove. With the model in hand, validated with historical events and with its stability verified by extensive testing against extreme scenarios, realtime forecasts will be available to inform local emergency response. Additionally, the synthetic scenarios investigated during model development and reported here provide an initial tsunami risk assessment, as described in Section 4.

## 2. Forecast Methodology

### 2.1 The tsunami model

A tsunami forecast model is used to extend a precomputed deep-water solution into the shallows, and onshore as inundation, if appropriate. The model consists of a set of three nested grids, of increasingly fine resolution that, in a real-time application of the MOST (Method of Splitting Tsunami) model (Titov and González, 1997; Titov and Synolakis, 1998) permits forecasts at spatial scales (as small as a few tens of meters) relevant to local emergency management. The utility of the MOST model applied in this manner, and the operational effectiveness of the forecast system built around it, has been demonstrated during unplanned tests triggered by several mild to moderate tsunami events in the years since the 2004 Indian Ocean disaster (Wei et al., 2008). Successful hindcasting of observed historic events (Titov, 2009; Tang et al., 2012; Bernard et al., 2014), even mild ones, during forecast model development lends credence to the ability to accurately forecast the impact of future events. Such validation of tsunami modeling procedures is documented in other volumes of the series. Before proceeding to a description of the forecast model development for Elfin Cove, it is useful to describe the steps in the overall process.

### 2.2 NOAA's tsunami forecast system

Operational tsunami forecasts are generated at TWCs, staffed continuously around the clock in Alaska and Hawaii, using the SIFT (Short-term Inundation Forecasting for Tsunamis) tool developed at NCTR. The semi-automated process facilitates the steps by which TWC operators assimilate data from an appropriate subset of DART (Deep-ocean Assessment and Reporting of Tsunamis) sensors, "invert" the data to determine the linear combination of precomputed propagation solutions that best match the observations, then initiate a set of forecast model runs if coastal communities are threatened, or, if warranted, cancel the warning. Steps in the process are as follows:

- When a submarine earthquake occurs, the global network of seismometers registers it. Based on the epicenter, the unit sources in the propagation database (Gica *et al.*, 2008) that are most likely to be involved in the event and the DART array elements (Spillane *et al.*, 2008) best placed to detect the waves' passage are identified. TWC operators can trigger DARTs into rapid sampling mode in the event that this did not occur automatically in response to the seismic signal.
- There is now a delay while the tsunami waves are in transit to the DARTs. At least a quarter of a cycle of the first wave in the train must be sampled before moving to the "inversion" step. In the interim, the tsunami forecast

system allows the operator to request a "seismic solution," based on the location and reported magnitude of the earthquake. This solution, however, may only poorly represent the tsunami; magnitude estimates may be substantially revised as more seismic data accumulate. Only when sea level fluctuations are detected can the reality and scale of the waves be determined.

- When sufficient data have accumulated at one or more DARTs, the observed time series are compared with the model series from the candidate unit sources. Since the latter are precomputed (using the MOST code), and the dynamics of tsunami waves in deep water are linear, a least squares approach can quickly identify the unit sources (and the appropriate scale factors for each) that best fit the observations. The inversion methodology is described by Percival *et al.* (2011).
- Drawing again on the propagation database, the scale factors are applied to produce a composite basin-wide solution with which to identify the coastal regions most threatened by the radiating waves.
- It is at this point that one or more forecast models are run. The composite propagation solution is employed as the boundary condition to the outermost (A-grid) domain of a nested set of three real-time MOST model grids that telescope with increasingly fine scale to the community of concern. A-grid results provide boundary conditions to the B grid, which, in turn, forces the innermost C grid. Nonlinear processes, including inundation, are modeled so that, relying on the validation procedures during model development, credible forecasts of the current event are available.
- Each forecast model provides quantitative and graphic forecast products with which to inform the emergency response or to serve as the basis for canceling or reducing the warnings. Unless the tsunami source is local, the forecast is generally available before the waves arrive. Even when lead time cannot be provided, the several hour duration of a significant event (in which the first wave may not be the most damaging) gives added value to the multi-hour forecasts provided.

Because multiple communities may be at risk, it may be necessary to run, simultaneously or in a prioritized manner, multiple forecast models. Each must be optimized to run efficiently in as little time as possible. The current standard is that an operational forecast model should be capable of simulating 4 hr of real time within about 10 min of CPU time on a fast workstation computer.

## 3. Model Development

### 3.1 Digital elevation models

Water depth determines local tsunami wave speed, and subaerial topography determines the extent to which tsunami waves inundate the land. Thus, a prerequisite for credible tsunami modeling is the availability of accurate gridded bathymetric and topographic datasets, termed digital elevation models, or DEMs. Given their expertise in this area and the number of coastal communities needing tsunami forecast capability, NCTR relies heavily on the NGDC to provide the DEMs needed. An extract from the South Alaska DEM was used as background in **Figure 1** and the outlines of the more finely resolved southeast Alaska and Elfin Cove DEMs are indicated. In the case of Elfin Cove, a customized high-resolution DEM, a composite of multiple data sources for the region between Cross Sound and the mouth of Glacier Bay, was provided by NGDC. To create this, various datasets were merged and converted to a common datum of Mean High Water (MHW). The main features of the both DEMs are summarized in Table 1. The procedures employed by NGDC in their creation are documented by Caldwell et al. (2012; southeast Alaska) and by Love *et al.* (2011; Elfin Cove). Relying to a large extent on data from NASA's SRTM (Shuttle Radar Topography Mission) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) projects, NGDC quotes the horizontal and vertical accuracies for topography as 20-30 m and 16-20 m, respectively. Bathymetric features are resolved to only a few hundred meters horizontally in deep water but are closer to the topographic resolution in the shallows. Vertical accuracy for bathymetry varies from 0.1 m to 5 percent of water depth. The oblique views of these DEMs, produced by NGDC, are reproduced in **Figure 3** and assist in visualizing the complexity of the terrain and its multiple waterways. All of the DEMs employed were verified for consistency with charts, satellite imagery, and other datasets during the course of MOST grid development.

The use of MHW as the "zero level" is standard in forecast models. The version of MOST currently employed does not explicitly include tidal fluctuations, and, since a tsunami may arrive at any stage of the tide, it is best to employ a "worst-case" approach by assuming high tide when forecasting inundation. For some forecast models, grounding of vessels and the strong and rapidly varying currents often associated with even mild tsunamis are of concern. Even under normal circumstances the tidal currents in North and South Inian passes are very strong. NOAA Chart 17302, a portion of which appears in **Figure 5a**, alerts mariners to currents of 8–10 knots. In light of the importance of cruise ship and ferry traffic, the extent to which these might be accentuated during a tsunami will be assessed. For Elfin Cove itself, there are piers, floating docks, and refueling facilities associated with seaplane and both commercial and recreational fishing activity, as shown in the NOAA chart reproduced as **Figure 5b**. **Figure 6** shows the character of the inner cove of this small community—in particular, the reliance on piers and floating docks that do not substantially impede the circulation.

**Table 1**: The main features of the Elfin Cove and southeast Alaska digital elevation models, whose development is described by Love *et al.* (2011) and Caldwell *et al.* (2012). Values from the southeast Alaska dataset were adjusted from MHHW to the MHW reference level of the Elfin Cove grids.

| Grid Area                                                                                                                                                                       | Elfin Cove, Alaska                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coverage Area                                                                                                                                                                   | 137.27° to 135.97°W; 57.53° to 58.67°N                                                                                                                                                                                                                                                                                                     |
| Coordinate System                                                                                                                                                               | Geographical decimal degrees                                                                                                                                                                                                                                                                                                               |
| Horizontal Datum                                                                                                                                                                | World Geodetic System 1984 (WGS84)                                                                                                                                                                                                                                                                                                         |
| Vertical Datum                                                                                                                                                                  | Mean High Water (MHW)                                                                                                                                                                                                                                                                                                                      |
| Vertical Units                                                                                                                                                                  | Meters                                                                                                                                                                                                                                                                                                                                     |
| Horizontal Accuracy                                                                                                                                                             | Topography: 20–30 m<br>Bathymetry: 20–30 m shallow, 300 m deep                                                                                                                                                                                                                                                                             |
| Vertical Accuracy                                                                                                                                                               | Topography: 16–20 m<br>Bathymetry: 0.1 m to 5% of water depth                                                                                                                                                                                                                                                                              |
| Cell Size                                                                                                                                                                       | 1/3 arc sec                                                                                                                                                                                                                                                                                                                                |
| Grid Format                                                                                                                                                                     | ESRI Arc ASCII grid                                                                                                                                                                                                                                                                                                                        |
| Version Employed                                                                                                                                                                | Update of 31 March 2011                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |
| Grid Area                                                                                                                                                                       | Southeast Alaska                                                                                                                                                                                                                                                                                                                           |
| Grid Area<br>Coverage Area                                                                                                                                                      | <b>Southeast Alaska</b><br>138.21° to 129.19°W; 54.19° to 60.01°N                                                                                                                                                                                                                                                                          |
| Grid Area<br>Coverage Area<br>Coordinate System                                                                                                                                 | Southeast Alaska<br>138.21° to 129.19°W; 54.19° to 60.01°N<br>Geographical decimal degrees                                                                                                                                                                                                                                                 |
| Grid Area<br>Coverage Area<br>Coordinate System<br>Horizontal Datum                                                                                                             | Southeast Alaska<br>138.21° to 129.19°W; 54.19° to 60.01°N<br>Geographical decimal degrees<br>World Geodetic System 1984 (WGS84)                                                                                                                                                                                                           |
| Grid Area<br>Coverage Area<br>Coordinate System<br>Horizontal Datum<br>Vertical Datum                                                                                           | Southeast Alaska<br>138.21° to 129.19°W; 54.19° to 60.01°N<br>Geographical decimal degrees<br>World Geodetic System 1984 (WGS84)<br>Mean Higher High Water (MHHW)                                                                                                                                                                          |
| Grid Area<br>Coverage Area<br>Coordinate System<br>Horizontal Datum<br>Vertical Datum<br>Vertical Units                                                                         | Southeast Alaska<br>138.21° to 129.19°W; 54.19° to 60.01°N<br>Geographical decimal degrees<br>World Geodetic System 1984 (WGS84)<br>Mean Higher High Water (MHHW)<br>Meters                                                                                                                                                                |
| Grid Area<br>Coverage Area<br>Coordinate System<br>Horizontal Datum<br>Vertical Datum<br>Vertical Units<br>Horizontal Accuracy                                                  | Southeast Alaska<br>138.21° to 129.19°W; 54.19° to 60.01°N<br>Geographical decimal degrees<br>World Geodetic System 1984 (WGS84)<br>Mean Higher High Water (MHHW)<br>Meters<br>Topography: 20–30 m<br>Bathymetry: 20–30 m shallow, 300 m deep                                                                                              |
| Grid Area<br>Coverage Area<br>Coordinate System<br>Horizontal Datum<br>Vertical Datum<br>Vertical Units<br>Horizontal Accuracy<br>Vertical Accuracy                             | Southeast Alaska<br>138.21° to 129.19°W; 54.19° to 60.01°N<br>Geographical decimal degrees<br>World Geodetic System 1984 (WGS84)<br>Mean Higher High Water (MHHW)<br>Meters<br>Topography: 20–30 m<br>Bathymetry: 20–30 m shallow, 300 m deep<br>Topography: 16–20 m<br>Bathymetry: 0.1 m to 5% of water depth                             |
| Grid Area<br>Coverage Area<br>Coordinate System<br>Horizontal Datum<br>Vertical Datum<br>Vertical Units<br>Horizontal Accuracy<br>Vertical Accuracy<br>Cell Size                | Southeast Alaska<br>138.21° to 129.19°W; 54.19° to 60.01°N<br>Geographical decimal degrees<br>World Geodetic System 1984 (WGS84)<br>Mean Higher High Water (MHHW)<br>Meters<br>Topography: 20–30 m<br>Bathymetry: 20–30 m shallow, 300 m deep<br>Topography: 16–20 m<br>Bathymetry: 0.1 m to 5% of water depth<br>8 arc sec                |
| Grid Area<br>Coverage Area<br>Coordinate System<br>Horizontal Datum<br>Vertical Datum<br>Vertical Units<br>Horizontal Accuracy<br>Vertical Accuracy<br>Cell Size<br>Grid Format | Southeast Alaska<br>138.21° to 129.19°W; 54.19° to 60.01°N<br>Geographical decimal degrees<br>World Geodetic System 1984 (WGS84)<br>Mean Higher High Water (MHHW)<br>Meters<br>Topography: 20–30 m<br>Bathymetry: 20–30 m shallow, 300 m deep<br>Topography: 16–20 m<br>Bathymetry: 0.1 m to 5% of water depth<br>8 arc sec<br>NetCDF file |

Two different resolutions are available for the Southeast Alaska DEM: eightthirds of an arc sec, and 8 arc sec. The coverage encompasses the region from Skagway in the north to the Haida Gwaii (Queen Charlotte) Islands in British Columbia, Canada. These DEM datasets, together with the Elfin Cove DEM, are employed in the construction of the three nested grids for the Elfin Cove model with an appropriate adjustment of their original MHHW (mean higher high water) vertical datums to the MHW used in the Elfin Cove grids. As noted earlier, the scope of the outer Elfin Cove grid was chosen to permit estimates of tsunami signals at Skagway and Juneau. However, the coarse resolution of the outer grid, required to attain acceptable operational run times, limits the quality of estimates based on the Elfin Cove model compared to what might be attained in models dedicated to these communities.

The elevations and depths used in the development of this forecast model were based on the digital elevation model provided by the NGDC, and the author considers it to be a good representation of the local topography and bathymetry. As new digital elevation models become available, forecast models will be updated, and report updates will be posted at nctr.pmel.noaa.gov/forecast\_reports/.

### 3.2 Tides and sea level variation

The history of tidal observation at Elfin Cove dates back to 1938, though the earlier records are not readily available. Some marigrams are stored in microfiche format at NGDC, and a project to digitize the full collection is underway. The present installation of NOAA's National Ocean Service tide gauge (NOS 9452634) at Elfin Cove was in August 2005 with quality controlled 6 min, and preliminary 1 min records available online.

The tide gauge is located off the seaplane-fueling pier in the outer cove (see **Figure 5b**). The outer cove is screened by an unnamed nearby island; several other islands to the west (George and Three Hill islands) and north (the Inian Islands) further limit its exposure. A narrow channel leads to an inner cove in a steep-sided valley where the remainder of the sea level infrastructure of the community is located (see **Figure 6**). There are no roads; a network of boardwalks links the various structures and facilities.

Station characteristics for NOS 9452634 are provided in **Table 2**, based on the wealth of online tidal information available at NOAA's CO-OPS (Center for Operational Oceanographic Products and Services) website (tidesandcurrents.noaa.gov). Note the sizeable mean diurnal range of over 2.6 m, and that (based on the records at Sitka and Yakutat) there is a significant long-term sea level trend as expected for this tectonically active area of glacial rebound. Seasonal and inter-annual variability are also substantial, as are episodic short-term changes associated with meteorology that are reflected in the extremes listed.

Another feature of the local tidal regime, noted earlier, is the strength of the tidal currents, particularly in the North and South Inian passes that lie between Chichagof Island and the mainland. There is the potential for tidal power generation in these passes and in Icy Strait to the east. If it comes to fruition, electricity generation could positively impact the local economy and supply both southeast Alaska and nearby British Columbia (Polagye and Bedard, 2006). From the perspective of tsunami hazard, however, the bathymetric features that accentuate tidal currents and their spatial variability may pose a significant risk to commercial and recreational marine traffic in the area, including the large cruise vessels that ply the region during the summer months. An unrelated NOAA project, investigating the Cross Sound and Icy Strait region, includes current meter observations from recent years. These have been made available (P. Stabeno, NOAA/PMEL, 2012, personal communication) but do not, unfortunately, cover the recent tsunami events. They do, however, provide a baseline for a discussion of the strength of the additional rapidly varying currents that might arise in a major tsunami event.

### 3.3 Signal-to-noise considerations for the Elfin Cove tide gauge

Unlike the U.S. West Coast, where the Kuril event of November 2006 is a useful test case for model validation, runup reports in the NGDC catalog for the Gulf of Alaska are much weaker (~ 12 cm for Sitka and Yakutat and unreported for Elfin Cove). Other events among the mild tsunamis of recent years were only weakly felt in the region. The number of test cases for model validation at Elfin Cove is further

| Elfin Cove, Alaska: NOS <sup>1</sup> Station 94 | 52634 (58°11.       | 6´N, 136°20.8´W)             |                       |
|-------------------------------------------------|---------------------|------------------------------|-----------------------|
| Present installation: 11 Aug 2005               |                     |                              |                       |
| Tidal Datum and Range Values (Ep                | och 1983–2001       | .)                           |                       |
| MHHW (Mean Higher High Water)                   | 6.250  m            |                              |                       |
| MHW (Mean High Water)                           | $5.977 \mathrm{~m}$ | Great Diurnal                | Mean Range<br>2.648 m |
| MSL (Mean Sea Level)                            | 4.637 m             | Range                        |                       |
| MLW (Mean Low Water)                            | 3.329 m             | 3.367 m                      |                       |
| MLLW (Mean Lower Low Water)                     | 2.883 m             |                              |                       |
| Sea Level Trend (1924–2006) and Cy              | cles from Sitl      | ka, Alaska², NOS             | Station 945160        |
| Long-term Sea Level Trend                       | Decreasing          | $2.05\pm0.32~\mathrm{mm/yr}$ |                       |
| Seasonal Cycle Range                            | Min. –106 r         | nm (Jul); Max. 131           | mm (Dec)              |
| Interannual Variation (from 1980)               | Min. –20 m          | m (1989); Max. +21           | l mm (1998)           |
| Extremes to Date ( June 2012)                   |                     |                              |                       |
| Maximum                                         | 7.435 m on          | 31 Dec 1985                  |                       |
|                                                 |                     |                              |                       |

NOAA's National Ocean Service, whose CO-OPS Program Office disseminates tide gauge information and data.

 $^{2}$  At Yakutat, Alaska (NOS Station 9453220), the long-term trend is  $-11.54 \pm 1.39$  mm/yr.

reduced by weather and wave-related noise background at the tide gauges, particularly during the winter months. In addition to sea level itself, the validated 6 min tide data from CO-OPS provides the standard deviation of the 1 sec subsamples used to form each reported value. In the upper panel of Figure 7 the standard deviation is plotted for the month during which the 2011 Tohoku event occurred (March). The increased high-frequency activity (periods less than 6 min) at the gauge associated with the tsunami's arrival on 11 March is evident in the sharp rise in subsample variability, as well as in the detided 1 min gauge record (highlighted in red). There is, however, another period of high variability (highlighted in blue), of similar duration though of smaller amplitude, which we refer to as a "noise burst." Such bursts are not rare; referring to **Figure 8** where an entire year of the subsample standard deviation is employed as a measure of high-frequency variability, the sole tsunami event does not stand out from the numerous bursts that occur, particularly during the winter months.

The detided 1 min record for one day extracts are contrasted in **Figure 7**, both in the time domain and through a spectral analysis. The spectrum is presented in "energy-preserving" format in the lower panel. Here, the area beneath the curves indicates the partition of energy with wave period. With the exception of a broad peak near 100 min and another near 8 min, the energy of the noise burst is concentrated near the shortest periods detectable. By contrast, during the Tohoku event, the bulk of the energy is in a tsunami band with periods between 10 and 60 min. The 100 min and 8 min peaks are present together with some other "lines" that may represent resonances associated with the topography.

**Figure 9** illustrates a similar analysis to that shown in **Figure 7** but for the month of February 2010 when the 2010 Chile tsunami occurred. One-day subsamples, representing the tsunami (red) and a noise burst (blue), are extracted from the Kalman-filtered 1 min record. Longer period energy again dominates the tsunami subset, while the noise burst is dominated by high-frequency energy. There is, however, more energy in the "tsunami band" than was the case during March 2011. **Figure 10** exposes the limitations of the Elfin Cove tide gauge in discriminating weak tsunami signals in the presence of noise. The first wave peak of the 2006 Kuril event is barely visible and later waves are lost in the high-frequency noise. In the energy-preserving spectra, in the lower panel of **Figure 10**, the tsunami band is barely visible.

The detiding, referred to above and used throughout this report, was achieved using the same procedure applied to tide removal in the DART records (Percival *et al.*, 2011) with an R-code script (D. Percival, University of Washington APL, 2012 personal communication). Based on the spectra presented in **Figures 7**, **9**, and **10**, subsequent smoothing of the residuals seems best achieved with a low-pass filter with a cutoff near 10 min. This is applied with a Butterworth filter implemented in Matlab and provided by E. Tolkova (NCTR, 2009, personal communication).

### 3.4 The CFL condition and other considerations for grid design

Water depth-dependent wave speed, in conjunction with the spacing of the spatial grid representation, places an upper limit on the time step permissible for stable numerical solutions employing an explicit scheme. This is the CFL (Courant-Friedrichs-Levy) limit, which requires careful consideration when the grids employed for a reference or forecast model are being designed. Finer-scale spatial grids or greater water depths require shorter time steps, thereby increasing the amount of computation required to simulate a specific real-time interval.

The shortening that the wave train encounters in moving from deep water onto the shelf needs to be handled carefully when gridded numerical solutions are applied to the tsunami wave problem. In deep water, a grid spacing of 4 arc min (of latitude and longitude, corresponding to  $\sim$ 7 km) is normally used to represent propagating wave trains with a typical wavelength of the order of a few hundred kilometers (Gica *et al.*, 2008; Titov and Gonzalez, 1997). The stored results of such propagation model runs are typically decimated by a factor of 4, resulting in a database of  $\sim$ 30 km spacing (and 1 min temporal sampling) with which to generate the boundary conditions for the outermost (A grid) of the nested grids in a model solution. The extraction of the boundary conditions (of wave height and the two horizontal velocity components) is achieved by linear interpolation in space and time. To provide realistic interpolated values, the stored fields for these variables must be smoothly varying and have adequate sampling in space and time to resolve their structure. This necessitates the placement of the outer boundary of the forecast model domain well offshore.

### 3.5 Specifics of the model grids

After several rounds of experimentation, the extents and resolutions of the nested grids for the reference and forecast models were chosen; these are illustrated in Figures 11 and 12 and details are provided in Table 3. The outermost A grid encompasses the same northern and western limits in both the reference and forecast model versions. The reference A grid extends about two degrees farther east and south to permit confirmation that the multiple passages there can be safely excluded from the operational model. The expanded domain includes the Canadian tide gauge sites of Prince Rupert and Henslung Cove (on Haida Gwaii, see **Figure 11**) for validation purposes. For the B grid, the forecast model domain was somewhat curtailed from its reference model equivalent in order to improve operational run times while retaining sufficient resolution to reasonably represent the Inian Passes. The initial choice for the reference model B grid (Figure 11) included more of Dundas Bay to the north, but the broad tidal flats, barely submerged with the MHW datum, caused numerous minor local instabilities that, in longer runs, impacted areas farther afield. Finally, for the innermost C grid domains, the same resolution was employed for both the reference and forecast model versions in order to reasonably represent inner Elfin Cove and its entrance. The reference model version covers a larger region, as seen in **Figure 11**, extending south into the Port Althorp inlet (see Figure 5a) where a strong response to tsunami waves is felt. For all of the grids, both in the reference and forecast versions, the convergence of the meridians at this northerly latitude allows a reduction of a factor of about two in the eastwest direction, achieving almost square grid cells in distance units and a considerable saving in computational effort.

**Table 3**: Specifics of the reference and forecast model grids employed for Elfin Cove, Alaska. For the paired values in the resolution and grid points columns, the zonal (east to west) value is listed first, followed by the meridional (north to south).

#### **Reference Model for Elfin Cove, Alaska**

Minimum offshore depth: 2.5 m; Water depth for dry land: 0.1 m; Friction coefficient ( $n^2$ ): 0.0009; CPU time for a 4-hr simulation: 6.94 hr

| Grid | Grid Zonal Extent |                    | <b>Meridional Extent</b> |          | Resolution             | <b>Grid Points</b> |
|------|-------------------|--------------------|--------------------------|----------|------------------------|--------------------|
| А    | 138.203°W         | $129.750^{\circ}W$ | 54.190°N                 | 59.610°N | $48"\times24"$         | $635 \times 814$   |
| В    | 137.310°W         | $135.409^{\circ}W$ | 57.830°N                 | 59.110°N | $5.333" \times 2.667"$ | $1284 \times 1729$ |
| С    | 136.430°W         | $136.260^{\circ}W$ | 58.090°N                 | 58.330°N | $4/3" \times 2/3"$     | $460 \times 1297$  |

#### Forecast Model for Elfin Cove, Alaska

Minimum offshore depth: 2.5 m; Water depth for dry land: 0.1 m; Friction coefficient ( $n^2$ ): 0.0009; CPU time for a 4-hr simulation: 12.92 min

| Grid | rid Zonal Extent |                    | Zonal Extent Meridional Extent |          | Resolution        | <b>Grid Points</b> |
|------|------------------|--------------------|--------------------------------|----------|-------------------|--------------------|
| А    | 138.210 °W       | 132.210°W          | 56.010°N                       | 59.610°N | $120" \times 72"$ | $181 \times 181$   |
| В    | 136.630°W        | $136.050^{\circ}W$ | 57.840°N                       | 58.390°N | $8" \times 4"$    | $262 \times 496$   |
| С    | 136.410°W        | 136.337°W          | 58.18°N                        | 58.210°N | 4/3" × $2/3$ "    | $199 \times 163$   |

CPU times for a 4-hr simulation are based on use of a single Intel® Xeon® E5670 2.93GHz processor.

Both C grids for Elfin Cove lie entirely within the NGDC-provided DEM; A and B grids include bathymetry and topography from other DEM datasets available at NCTR. Some smoothing and editing were necessary to eliminate grid features that tend to cause model instability. For example, "point" islands, where an isolated grid cell stands above water, are eliminated, as are narrow channels or inlets one gridunit wide; these tend to resonate in the numerical solution. Large depth changes between adjacent grid cells can also cause numerical problems; customized tools are available to correct many of these grid defects. An additional contraint on the bathymetry (E. Tolkova, NCTR, 2009, personal communication) limits excessive depth changes in the discrete representation.

**Table 4** lists the maximum depth, the CFL time step requirement that must not be exceeded, and the actual time steps chosen for the reference and forecast model runs. Since the numerical solutions in the three grids proceed simultaneously in the current version of MOST employed by SIFT, there is a requirement that the A- and B-grid time steps be integer multiples of the (innermost) C-grid time step, in addition to satisfying the appropriate CFL requirement. For both reference and forecast models, the CFL requirement of the C grid was the most stringent. The values chosen are shown in the fifth column of Table 4, and are such that an integer multiple of each time step is exactly 30 sec, the chosen output time interval for both models. When run on an Intel<sup>®</sup> Xeon<sup>®</sup> E5670 2.93 GHz processor, the Elfin Cove forecast model simulates 4 hr in 12.92 min, exceeding the desired 10 min value for this metric. This is somewhat compensated for by the narrow continental shelf, which reduces the overall simulation time requirement, but the wide range of communities included in the model domain and the need to properly model the alternate wave path via Chatham and Icy Straits is the main argument against curtailment of the grids to achieve shorter run times.

### 3.6 Model run input and output files

In addition to listing the bathymetry file names, the appropriate time step, and A and B grid multiples as provided in **Table 4**, it is necessary to provide a number of additional parameters in an input file. These include the Manning friction coefficient (n), a depth threshold to determine when a grid point becomes inundated, and the threshold amplitude at the A-grid boundary that will start the model. An upper limit on wave amplitude is specified in order to terminate the run if the waves grow beyond reasonable expectation. Standard MOST values are used:  $n^2 =$ 0.0009 for the friction coefficient and 0.1 m for the inundation threshold. The latter causes the inundation calculation to be avoided for insignificant water encroachments that are probably below the level of uncertainty in the topographic data. Inundation can, optionally, be ignored in the A and B grids, as is the norm in the (non-nested) MOST model runs that generate the propagation database. When Aand/or B-grid inundation is excluded, water depths less than a specified "minimum offshore depth" are assumed to be dry; in effect, a "wall" or reflective boundary condition is set at the corresponding isobath. When invoked, a value of 5 m is applied as the threshold, although A and B inundation is normally permitted as a way to gain knowledge of tsunami impact beyond the scope of the C-grid domain. Other parameter settings allow decimation of the output in space and/or time.

| Grid | File Name          | Maximum<br>Depth (m) | Minimum<br>CFL (s) | Model Time<br>Step (s) | Water<br>Cells |
|------|--------------------|----------------------|--------------------|------------------------|----------------|
| Δ    | ElfinCoveAK_RM_A   | 3445                 | 4.031              | 3.0 (12×)              | 225,975        |
| А    | ElfinCoveAK_FM_A   | 2949                 | 11.661             | 5.0 (12×)              | 13,142         |
| В    | ElfinCoveAK_RM_B   | 469.6                | 1.215              | 1.0 (4×)               | 743,650        |
|      | $ElfinCoveAK_FM_B$ | 347.8                | 2.119              | 1.667 (4×)             | 50,619         |
| С    | ElfinCoveAK_RM_C   | 295.1                | 0.383              | 0.25                   | 323,566        |
|      | ElfinCoveAK_FM_C   | 204.2                | 0.461              | 0.41667                | 22,301         |

**Table 4**: Grid file names and grid-related parameters for Elfin Cove, Alaska. The time steps for the A and B grids must be integer multiples of the basic C-grid time step, as indicated in parentheses.

As previously noted, a target of 30 sec output and output at every spatial node is preferred. These choices avoid aliasing in the output fields that may be suggestive of instability (particularly in graphical output) when none, in fact, exists.

Finally, the input file (supplied in Appendix A) provides options that control the output produced. Output of the three variables—wave amplitude, zonal (positive to the east) velocity, and meridional (positive to the north) velocity—can be written (in netCDF format) for any combination of A, B, and C grids. These files can be very large. To accommodate 8 hr of 30 sec output for the Elfin Cove forecast model, 378 MB are required for the A grid, 1497 MB for the B grid, and 375 MB for the C grid. A separate file, referred to as a SIFT file, contains the time series of wave amplitude at each time step at discrete cells of a selected grid. Normally, the time series at a "reference" or warning point, typically the location of a tide gauge, is selected to permit validation in the case of future or historical events. Several additional sites of importance in the region were specified during development and included in subsequent discussion in this report. The SIFT file output also includes the distribution of the overall minimum and maximum wave amplitude and speed in each grid. By contrast with the complete space-time results of a run, the SIFT file (also netCDF) is very compact: only 2.7 MB for the Elfin Cove forecast model.

By default, two additional output files are generated. A "listing" file summarizes run specifications, progress, performance in terms of run time, and documentation of modifications to the grid files applied internally by MOST, as well as information to determine the reason, should a run not start or terminate early. A "restart" file is produced so that a run can be resumed from the time it ended, either normally or by operator intervention.

The input files described above are specific to the model itself. For an actual run, the program must be pointed toward the files that contain the boundary conditions of wave amplitude (H) and velocity components (U, V) to be imposed at the A-grid boundary. Time-varying conditions are generally extracted as a subset of a basin-wide propagation solution (either a single unit source or several, individually scaled and linearly combined) that mimics a particular event. These boundary-forcing files typically consist of 24 hr of values (beginning at the time of the earth-quake), sampled at 1 min intervals and available on a 16 arc min grid. Occasionally, for more remote seismic sources or when delayed arrival of secondary waves due to reflections are a concern (as has been seen at Hawaii), the time span of the propagation run available for forcing is extended beyond one day.

## 4. Results and Discussion

Before proceeding to an extensive suite of model runs that explore the threat to Elfin Cove and southeast Alaska from various source regions, the stability of the model is tested in both low and extreme amplitude situations. The former we refer to as "micro-tsunami" testing, where the boundary forcing is at such a low level (but not precisely zero) that the response is expected to be negligible. With an effective magnitude of 6.17, micro-tsunamis have relevance only during model development where they may reveal localized instabilities that may result from undesirable features of the discretized bathymetry. Inlets or channels that are only one grid-cell wide may "ring" or resonate in a non-physical way in the numerical solution. An instability may not grow large enough to cause the model to fail but, in a run with typical tsunami amplitudes, may be masked by actual wave variability.

Forcing by extreme events, termed "mega-tsunami" events, is also tested. These supplement the limited historical record of tsunamis generated by "Great Earthquakes." In addition to the need to test model stability under such circumstances, there is a parameter in the input file that truncates the run if a prescribed threshold for wave height is exceeded in any of the nested grids. For operational use, the threshold must be set high enough so that an extreme event run is not unnecessarily terminated, and for Elfin Cove, where potential seismic sources are within the model domain, a threshold of 900 m is chosen. Both tests should be performed for synthetic sources whose waves enter the model domain from different directions since, although stable for one set of incoming waves, an instability may be encountered for another. The micro- and mega-tsunami testing of the forecast and reference models is reported in the following subsections; the placement of sources for these tests is illustrated in Figure 13. Further evidence of forecast model stability is provided by a more extensive set of scenarios described in this section and used in independent testing (see Appendix C) by other members of the NCTR team prior to the model's release for operational use.

### 4.1 The micro-tsunami tests

Three micro-tsunami test cases (see **Table 5**) were run representing sources in the western Aleutians, the Philippines, and south of Japan. Based on sources from the propagation database (Gica *et al.*, 2008), their amplitudes were scaled down by a factor of 100 to mimic a Mw 6.17 / Slip 0.01 m source rather than the Mw 7.5 / Slip 1 m standard. A number of grid cells in the B and C grids emerged as potential sources of instability. Generally, these were minor indentations of the coastline, barely resolved by the grids, or narrow channels. The region contains several inlets extending far inland and straits that, at a practical level of spatial resolution, proved difficult to accommodate. Minor grid corrections were made to retain features of potential importance, for example, the branch of Lisianski Strait extending westward from near the community of Pelican along the south shore

| Scenario                        | Source Zone                           | Tsunami Source     | α<br>[m] |  |  |  |
|---------------------------------|---------------------------------------|--------------------|----------|--|--|--|
| Mega-tsunami (Mw 9.3) Scenario  |                                       |                    |          |  |  |  |
| KISZ 1–10                       | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | A1–10, B1–10       | 25       |  |  |  |
| KISZ 22–31                      | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | A22-31, B22-31     | 25       |  |  |  |
| KISZ 32–41                      | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | A32-41, B32-41     | 25       |  |  |  |
| m KISZ~56-65                    | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | A56-65, B56-65     | 25       |  |  |  |
| ACSZ 6-15                       | Aleutian-Alaska-Cascadia              | A6–15, B6–15       | 25       |  |  |  |
| ACSZ 16-25                      | Aleutian-Alaska-Cascadia              | A16-25, B16-25     | 25       |  |  |  |
| ACSZ 22-31                      | Aleutian-Alaska-Cascadia              | A22-31, B22-31     | 25       |  |  |  |
| ACSZ 40-49                      | Aleutian-Alaska-Cascadia              | A40-49, B40-49     | 25       |  |  |  |
| ACSZ 50-59                      | Aleutian-Alaska-Cascadia              | A50-59, B50-59     | 25       |  |  |  |
| ACSZ 56-65                      | Aleutian-Alaska-Cascadia              | A56-65, B56-65     | 25       |  |  |  |
| CSSZ 1–10                       | Central and South America             | A1–10, B1–10       | 25       |  |  |  |
| CSSZ 37–46                      | Central and South America             | A37-46, B37-46     | 25       |  |  |  |
| CSSZ 89–98                      | Central and South America             | A89-98, B89-98     | 25       |  |  |  |
| CSSZ 102-111                    | Central and South America             | A102–111, B102–111 | 25       |  |  |  |
| NTSZ 30-39                      | New Zealand-Kermadec-Tonga            | A30-39, B30-39     | 25       |  |  |  |
| NVSZ 28–37                      | New Britain-Solomons-Vanuatu          | A28–37, B28–37     | 25       |  |  |  |
| MOSZ 1-10                       | Manus–Oceanic Convergent Boundary     | A1–10, B1–10       | 25       |  |  |  |
| NGSZ 3–12                       | North New Guinea                      | A3–12, B3–12       | 25       |  |  |  |
| EPSZ 6-15                       | East Philippines                      | A6–15, B6–15       | 25       |  |  |  |
| RNSZ 12–21                      | Ryukyu-Kyushu-Nankai                  | A12–21, B12–21     | 25       |  |  |  |
| Mw 7.5 Scenario                 |                                       |                    |          |  |  |  |
| NTSZ B36                        | New Zealand-Kermadec-Tonga            | B36                | 1        |  |  |  |
| Micro-tsunami (Mw 6.5) Scenario |                                       |                    |          |  |  |  |
| EPSZ B19                        | East Philippines                      | B19                | 0.01     |  |  |  |
| RNSZ B14                        | Ryukyu-Kyushu-Nankai                  | B14                | 0.01     |  |  |  |
| ACSZ B6                         | Aleutian-Alaska-Cascadia              | B6                 | 0.01     |  |  |  |

**Table 5**: Synthetic tsunami events employed in Elfin Cove, Alaska, model testing. The reference and forecast model solutions of those shown in bold text were intercompared extensively.

of Yakobi Island. Also retained was Peril Strait between Chichagof and Baranof islands, which, though narrow in places, is a route for the Alaska Ferry System serving Sitka (see **Figure 2**). A limited number of grid cells in the outermost (A) grid required correction. These were generally associated with non-physical features in the topographic database, such as a track of ship-based soundings that were improperly merged with other data sources. After an iterative process of grid correction and retesting using these micro-tsunami sources, both the reference and forecast model grids were deemed satisfactory and the testing of extreme and historical events could begin. The lower panel of **Figure 14** illustrates a step in the process where a deficiency in the reference model grid generated a mild instability (in the ACSZ B06 micro-tsunami scenario—see **Table 5**), causing the reference

model time series at the reference point, initially in close agreement with the forecast model, to develop unrealistic, high-frequency oscillations. Though still generally tracking the forecast model result and not growing without bound, the feature could behave erratically in simulating real events. Modification of the reference model bathymetry eliminated the problem, as seen in the third panel of **Figure 14**, and tests involving other micro-tsunami sources (RNSZ B14 and EPSZ B19) did not reveal other issues.

#### 4.2 The mega-tsunami tests

The record of tsunami impact on the southeast Alaskan coast, included in the comprehensive report on the region by Lander (1996; also searchable in the NGDC catalog online at www.ngdc.noaa.gov/hazard/) reveals that sources around the entire periphery of the Pacific can be felt. Indeed, the catastrophic Indian Ocean tsunami of 2004 was detected at nearby Sitka and Yakutat, though it preceded the current installation of the Elfin Cove gauge. A broad suite of 20 extreme events (so-called mega-tsunamis), whose locations are standard for testing of Pacific basin forecast models, are described in **Table 5**. The normal list is supplemented by one, ACSZ 40–49, which overlays the study area (see **Figure 4**) and is expected to generate the largest response at Elfin Cove. The locations of the full set are discussed in Section 4.4. To simulate each mega-tsunami source, ten A–B pairs of unit sources (as illustrated in Figure 13) are used, with an evenly distributed slip of 25 m in each. As described by Gica et al. (2008), each unit source represents a  $100 \times 50$  km area of the fault surface with the long axis parallel to the plate boundary. Row B is shallowest, sloping from a nominal depth of 5 km (unless a depth estimate has been provided by the USGS based on the earthquake catalogs), row A is deeper, followed by rows Z, Y, X,... where appropriate. Thus, the mega-tsunami sources represent 1000 km long ruptures with a width of 100 km; the corresponding moment magnitude is Mw 9.3. Note that recent (and future) additions to the propagation database extend portions of the source domain seaward as a row C. The aim is to represent outer-rise earthquake events where they are likely to occur, such as off the Kuril Islands as evidenced by the January 2007 normal fault event.

Discussion of the entire set of mega-tsunamis in greater detail is provided in Section 4.5, once the validity of the forecast model has been established by the modeling of historic events. Here we focus on a subset of four, highlighted in **Figure 13** and **Table 5**, to contrast the forecast model with the more highly resolved reference model. Results are presented in **Figures 15–18**, which share a common format. Panel (a) contrasts the reference and forecast model maximum amplitude fields in the sub-region of the forecast model C grid. The larger C grid of the reference model is shown at the right to broaden the scope of the result and confirm that nothing untoward happens at the smaller C grid's boundary. The lower panel compares the time series at the reference and forecast model, respectively. Panel (b) is similar but contrasts the maximum speed fields with the speed time series at the tide gauge in the lower panel. Finally, panel (c) for each scenario compares the speed and velocity fields for a single time step, identified by the green line in the lower panel. It is noticeable that, in the lower panels of (a) for all four of the cases shown, the reference and forecast model are in almost perfect agreement for the amplitude of the earliest waves. Phase differences appear later, though the envelope of later wave amplitude is in essential agreement. However, there is a tendency for the largest peaks and troughs to appear in the reference model solution. This bias is reflected in the maximum wave distributions. Though the structure of the reference and forecast model maximum amplitude fields is similar, the common color bar can suggest a greater disparity.

The level of agreement for speed is less for the local event ACSZ 40-49 than was seen for its amplitude. After initially close agreement, reference model speeds can be several times larger than those of the forecast model later in the event (**Figure 15b**). For the more remote sources tested, the level of speed mismatch is far less pronounced. The velocity comparison of **Figure 15c** is for an early time in the record, as the first wave ebbs. The circulation patterns of the two model results are quite similar, though, away from Elfin Cove itself, the reference model speeds are somewhat higher.

This larger response of the reference model version quite likely reflects a physical reality: the more highly resolved bathymetry and coastline of the reference model provide greater scope for non-linear features or reflected waves to develop. This observation suggests a caveat to operational use of the forecast model. While accurate portrayal of the early history of an event is to be expected, the duration of the event and the amplitude of some later waves may be underestimated. Tide gauge data will be needed to verify this conjecture, which is pursued later in the report. It is worth noting too that, although the ACSZ 56–65 mega-tsunami event (**Figure 16**) represents a massive Cascadia tsunami, the scale of its impact to the Elfin Cove area (60 cm) is not substantially different from those caused by remote sources: CSSZ 102–111 off southern Chile (**Figure 17**) or MOSZ 01–10 near New Guinea (**Figure 18**).

The comparison time in **Figure 17c** was intentionally chosen much later in the CSSZ 102–111 mega-tsunami scenario, although still at a time where the amplitudes at the tide gauge are in good agreement. This agreement clearly extends to the velocity field throughout the C-grid domain of the forecast model. The same is true when, in the case of the MOSZ 01–10 synthetic event (**Figure 18c**), the comparison time is at the leading edge of the wave's arrival at the tide gauge. Note that in **Figure 18a** the spatial structure of maximum amplitude is consistent between the reference and forecast model solutions, though peaks in the former raise the level. In conclusion, it would appear that, while the solutions may temporarily deviate from each other, overall they maintain general agreement over several hours of simulation.

One further confirmatory test of the agreement between the reference and forecast versions of the model is usual—a mild source of Mw 7.5 at a remote location. A single unit source near Samoa (NTSZ B36) was employed for this purpose, and its representations by the reference and forecast model are compared in **Figure 19**. Such an event results in a response of less than a centimeter in Elfin Cove sea level, and there is excellent agreement between both model representations in the early portion of the record. Later, there is an onset of a high-frequency but low-level instability in the reference model result. Since the forcing fields for NTSZ B36, drawn from the propagation database terminate at 24 hr, it appears that the forecast model more realistically represents the tapering to zero of the forcing imposed in the MOST model.

### 4.3 Model intercomparison using historical events

Before proceeding to illustrate the validation of model predictions with observations from tide gauges in the region, intercomparisons of the reference and forecast model simulations of four major events are presented in Figures 20-23 using the format of Figures 15-18. Figure 20 represents the Tohoku event of 11 March 2011 with a comparable level of agreement between models as was seen for the synthetic mega-tsunami events. Agreement is best for wave amplitude (Figure 20a), both at the Elfin Cove reference point and for the overall maximum within the C-grid domain. For wave speed (Figure 20b), the reference point time series shows the tendency for higher values to occur in the reference model than in the forecast model representation. A snapshot comparison of wave height and vector currents in **Figure 20c** shows that both models produce similar patterns for tsunami-induced circulation. Another recent event observed at Elfin Cove was the 2010 Chile event, whose model representations are intercompared, with satisfactory results, in **Figure 21**. More substantial impacts to the region resulted from the 1964 Alaska (Figure 22) and 1960 Chile (Figure 23) events; these, however, predate the availability of observations at the Elfin Cove reference point. Overall, the results shown in Figures 20–23 confirm the agreement between model versions seen in the purely synthetic scenarios. We now proceed to examine how model results match regional tide gauge observations and runup reports for these and other historical events.

In **Figure 24**, the eastward progression of predicted tsunami waves from the 2011 Tohoku event across the North Pacific, as observed by the DART array, is illustrated and compared with the forecasts produced in real-time using SIFT. As described earlier, the first phase in the forecast process is to ingest observations from the closest DART(s) and determine the linear combination of unit sources from the propagation database that best matches those observations. In addition to providing the boundary conditions for the community-specific forecast models, the linearly combined propagation solution can be directly interrogated to provide forecasts for DARTs not involved in its selection. It is this set of forecasted DART time series that is compared with the observations in **Figure 24**.

There is clearly a strong agreement between the first wave of the tsunami, as detected by the DART sensors (drawn as black curves), and model predictions (drawn in red), although the observations increasingly lag the predictions, and the ratio of their amplitudes varies with location. Ultimately, on reaching DART 46410, the model "waves" are seen to be about 9 min early, a difference that is small compared to the several hours of transit time. Perhaps coincidently, the amplitude ratio for the leading wave (denoted by R in **Figure 24**) is closest to unity for the DART (46410) closest to Elfin Cove. Four DARTs between Oregon and southern California (46404, 46407, 46411, and 46412, not shown in **Figure 24**) have amplitude ratios of approximately 1.5–2.0 and time lags of about 8 min. Early

arrival is typical model behavior, and is associated with the limited resolution of the basin-wide bathymetry. Finer-scale features in the actual bathymetry, such as the Emperor Seamount chain in the western Pacific (south of ACSZ B06 in **Figure 13**), slow down the real wave trains. As part of the ongoing testing and evaluation process to determine the suitability of SIFT for operational use, the forecast procedures are applied in hindsight using accuracy metrics based on the success of a set of forecast models in replicating tide gauge observations. While such ongoing efforts may determine the "best" propagation solution, for the purpose of model validation in this report, we employ the real time source characterization defined in **Table 6**. It is one of the sources employed by Tang *et al.* (2012) in characterizing the energy released by the 2011 Tohoku event.

Figure 25 compares reference and forecast model predictions with observations at several sites within the model domain (Ketchikan falls outside the forecast model grids, though it lies within the reference model). The observed time series are 1 min tide gauge data (6 min in the case of Skagway), detided using the Kalman Filter (Percival et al., 2011), and low-pass filtered. Black and red curves represent reference and forecast model predictions; the green curves are the detided and filtered observations. Runup values, from the NGDC catalog, are indicated in this and subsequent figures. At Elfin Cove itself, the focus of the innermost C grid, the result is satisfactory. The model waves arrive early and slightly underestimate the amplitude of the leading wave (but consistent with expectation based on Figure 24), and the later waves sustain a level consistent with the data. The other sites are in the outermost A grid, whose reduced spatial resolution has limited ability to reflect complex topography. In particular, the Gastineau Channel leading to Juneau is not resolved at all in the forecast model A grid (and only poorly in the reference model version) and forecast model results are, of necessity, drawn from a location well outside the channel. A higher-resolution DEM is available for Juneau (Caldwell *et al.*, 2012) and could be employed in a dedicated model of that region.

Nonetheless, results for these A grid sites are, in most cases, quite gratifying (Skagway and Ketchikan are underestimated by the model). For Sitka, close to the open ocean, the results are best both for the leading wave and the amplitude of the later waves. At Port Alexander, the match for the leading wave is acceptable but the excessive noise in the observed record obscures the later waves. For the remaining sites, which currently do not have dedicated forecast models, the degree of agreement suggests their utility as a significant improvement over a Green's law coastal forecast. When the forecast models specific to Sitka and Port Alexander are validated, the degree of agreement with the Elfin Cove A-grid results should be used to cast further light on this conjecture. Elfin Cove A grids are extensive by design, mainly to ensure that tsunami waves entering Cross Sound and Icy Strait from the east are appropriately represented. The relative success in replicating the observations for Juneau and Skagway suggests that this goal has been met.

#### 4.4 Further historical simulations

Before proceeding with the discussion of the historical simulations, the contents of **Table 6** should be defined. Two specifications of source location and time are given: one based on the epicenter and reported early in the event, the other coming
later as seismic waveforms from a more widespread set of stations are assimilated. The centroid moment tensor (CMT) solution provides details of the source mechanism and moment magnitude (listed in **Table 6**). The right-hand side of **Table 6** provides the specifics of the combination of unit sources employed to represent the tsunami waves. The subduction zone in which the event occurred is given by a 4-character acronym: ACSZ, for example, refers to a line of unit sources extending from the western Aleutians to Cascadia. Individual unit sources are identified by a character-number combination. Further details on each unit source can be found in Gica *et al.* (2008) and in Appendix B of this report.

As discussed earlier, a linear combination of unit source functions provides the time varying forcing of the model that simulates a tsunami event. The coefficient applied to each source function is a weight assigned to the  $100 \times 50$  km sub-fault it represents. Thus, in the final column of **Table 6**, the term "19.7 × B24" in the characterization of the 1946 Unimak event implies a scaling by a factor of 19.7 of unit source B24 in the Aleutian to Cascadia subduction zone. Each unit source represents a Mw 7.5 event; by combining the coefficients, a "Tsunami Magnitude" can be produced. It should be stressed that this is not an alternate estimate of the magnitude of the seismic event. Rather, it summarizes the combined effect of the unit sources in generating tsunami waves.

Since the advent of the tsunameter array and the SIFT system to invert its observations, the "recipes" (linear combinations of unit source functions) for events are being produced in "real-time" and are classified as such in **Table 6**. The tsunamigenic description of earlier events have, in some instances, been reconstructed from tide gauge observations and reported in the literature. Others in **Table 6** are listed as "preliminary," in the sense that they have not been thoroughly studied but show some skill in representing an event. Included in **Table 6** are several sources considered "ad hoc." Generally chosen as equally weighted groupings of unit sources whose location and scaling are based on the epicenter and magnitude of an event, ad hoc sources should be considered as exploratory, providing a "reality check" on the waves that might be hindcast for the model domain. In reality, tsunami waves may be less than the magnitude of the earthquake would suggest, or exceed expectation if, for example, a submarine landslide were triggered. Therefore, the quality of the ad hoc cases will likely be poor, though the arrival time of the simulated waves may be of use for comparison with observations.

Model validation, based on a DART-derived propagation solution, is possible for the 2010 Chile event and is illustrated in **Figure 26**. The source characterization given in **Table 6** was derived in real-time as the waves were detected at DART sites in the southeast Pacific and were successfully employed to forecast impacts to Hawaii and the U.S. West Coast. With regard to timing and overall amplitude, the model predictions are satisfactory in the Gulf of Alaska, but neither the reference nor forecast model versions capture the leading trough apparent in the observed time series at Elfin Cove and Sitka. Port Alexander is again noisy, but at the remaining sites the amplitude of the response is reasonably rendered.

The 1964 earthquake in Prince William Sound and the associated tsunami has, to date, been the defining event for south and southeast Alaska. Though preceding open ocean tsunami detection, the source characteristics were elucidated though

|                 | Earthquake /                          | / Seismic                                                                      |                 |                      |                    | Model                                                                                                |
|-----------------|---------------------------------------|--------------------------------------------------------------------------------|-----------------|----------------------|--------------------|------------------------------------------------------------------------------------------------------|
| Event           | USGS<br>Date Time (UTC)<br>Epicenter  | CMT<br>Date Time (UTC)<br>Centroid                                             | Magnitude<br>Mw | Tsunami<br>Magnitude | Subduction<br>Zone | Tsunami Source (Reference/Derivation)                                                                |
| 1946 Unimak     | 01 Apr 12:28:56<br>52.75°N 163.50°W   | Not Available                                                                  | 8.5             | 8.5                  | ACSZ               | 7.5 × B23 + 19.7 × B24 + 3.7 × B25<br>(López and Okal, 2006)                                         |
| 1952 Kamchatka  | 04 Nov 16:58:26.0<br>52.76°N 160.06°E | Not Available                                                                  | 9.0             | 9.0                  | KISZ               | $19.71 \times (A4 + Y4 + Z4 + A5 + Y5 + Z5 + A6 + Y6 + Z6)$<br>[ad hoc]                              |
| 1957 Andreanof  | 09 Mar 14:22:31<br>51.56°N 175.39°W   | Not Available                                                                  | 8.6             | 8.7                  | ACSZ               | $31.4 \times A15 + 10.6 \times A16 + 12.2 \times A17$ [preliminary]                                  |
| 1960 Chile      | 22 May 19:11:14<br>38.29°S 73.05°W    | Not Available                                                                  | 9.5             | 9.5                  | CSSZ               | 125 × (A93 + B93 + Z93 + A94 + B94 + Z94 + A95 + B95)<br>(Kanamori and Cipar, 1974)                  |
| 1964 Alaska     | 28 Mar 03:36:00<br>61.02°N 147.65°W   | Not Available                                                                  | 9.2             | 8.9                  | ACSZ               | 15.4 × A34 + 18.3 × B34 + 48.3 × Z34 +<br>19.4 × A35 + 15.1 × B35 (Tang <i>et al.</i> 2006, 2009)    |
| 1994 East Kuril | 04 Oct 13:22:58<br>43.73°N 147.321°E  | 04 Oct 13:23:28.5<br>43.60°N 147.63°E                                          | 8.3             | 8.1                  | KISZ               | 9.0 × A20 [ad hoc]                                                                                   |
| 1996 Andreanof  | 10 Jun 04:03:35<br>51.56°N 175.39°W   | 10 Jun 04:04:03.4<br>51.10°N 177.410°W                                         | 7.9             | 7.8                  | ACSZ               | 2.40 × A15 + 0.80 × B16 [preliminary]                                                                |
| 2001 Peru       | 23 Jun 20:33:14<br>16.265°S 73.641°W  | 23 Jun 20:34:23.3<br>17.28°S 72.71°W                                           | 8.4             | 8.2                  | CSSZ               | 5.7 × A15 + 2.9 × B16 + 1.98 × A16 [preliminary]                                                     |
| 2003 Hokkaido   | 25 Sep 19:50:06<br>41.775°N 143.904°E | $25 \text{ Sep } 19:50:38.2 \\ 42.21^{\circ}\text{N} \ 143.84^{\circ}\text{E}$ | 8.3             | 8.3                  | KISZ               | 3.95 × (A22 + B22 + A23 + B23) [ad hoc]                                                              |
| 2003 Rat Island | 17 Nov 06:43:07<br>51.13°N 178.74°E   | 17 Nov 06:43:31.0<br>51.14°N 177.86°E                                          | 7.7             | 7.8                  | ACSZ               | 2.81 × B11 [real-time]                                                                               |
| 2006 Tonga      | 03 May 15:26:39<br>20.13°S 174.161°W  | 03 May 15:27:03.7<br>20.39°S 173.47°W                                          | 8.0             | 8.0                  | ZSTN               | 6.6 × B29 [ad hoc]                                                                                   |
| 2006 Kuril      | 15 Nov 11:14:16<br>46.607°N 153.230°E | 15 Nov 11:15:08<br>46.71°N 154.33°E                                            | 8.3             | 8.1                  | KISZ               | $4.0 \times A12 + 0.5 \times B12 + 2.0 \times A13 + 1.5 \times B13$<br>[real-time]                   |
| 2007 Kuril      | 13 Jan 04:23:20<br>46.272°N 154.455°E | 13 Jan 04:23:48.1<br>46.17°N 154.80°E                                          | 8.1             | 7.9                  | KISZ               | -3.64 × B13 [real-time]                                                                              |
| 2007 Solomon    | 01 Apr 20:39:56<br>8.481°S 156.978°E  | 01 Apr 20:40:38.9<br>7.76°S 156.34°E                                           | 8.1             | 8.2                  | NVSZ               | 12.0 × B10 [preliminary]                                                                             |
| 2007 Peru       | 15 Aug 23:40:57<br>13.354°S 76.509°W  | 15 Aug 23:41:57.9<br>13.73°S 77.04°W                                           | 8.0             | 8.1                  | CSSZ               | $0.9 \times A61 + 1.25 \times B61 + 5.6 \times A62 + 6.97 \times B62 + 3.5 \times Z62$ [preliminary] |

Table 6: Continued.

| Model      | ami Source (Reference/Derivation)    | Z73 [real-time]                      | A34 + 3.96 × B34 [real-time]          | × A88 + 8.82 × A90 + 11.84 × B88 + 18.39 × B89 +<br>× B90 + 20.78 × Z88 + 7.06 × Z90 [real-time] | $\begin{array}{l} {\rm B24+12.23\times B25+26.31\times A26+21.27\times B26+} \\ {\rm \times A27+4.98\times B27\ (Tang\ et\ al.,\ 2012)\ \ [real-time] \end{array}$ |  |
|------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            | Tsun                                 | $1.65 \times$                        | 3.96 ×                                | 17.24<br>16.75                                                                                   | $4.66 \times 22.75$                                                                                                                                                |  |
|            | Subduction<br>Zone                   | CSSZ                                 | NTSZ                                  | CSSZ                                                                                             | KISZ                                                                                                                                                               |  |
|            | Tsunami<br>Magnitude                 | 7.6                                  | 8.1                                   | 8.8                                                                                              | 9.0                                                                                                                                                                |  |
|            | Magnitude<br>Mw                      | 7.7                                  | 8.1                                   | 8.8                                                                                              | 9.0                                                                                                                                                                |  |
| Seismic    | CMT<br>Date Time (UTC)<br>Centroid   | 14 Nov 15:41:11.2<br>22.64°S 70.62°W | 29 Sep 17:48:26.8<br>15.13°S 171.97°W | 27 Feb 06:35:15.4<br>35.95°S 73.15°W                                                             | 11 Mar 05:47:47.2<br>38.486°N 142.597°E                                                                                                                            |  |
| Earthquake | USGS<br>Date Time (UTC)<br>Enicenter | 14 Nov 15:40:50<br>22.204°S 69.869°W | 29 Sep 17:48:10<br>15.509°S 172.034°W | 27 Feb 06:34:14<br>35.909°S 72.733°W                                                             | 11 Mar 05:46:24<br>38.297°N 142.372°E                                                                                                                              |  |
|            | Event                                | 2007 Chile                           | 2009 Samoa                            | 2010 Chile                                                                                       | 2011 Tohoku                                                                                                                                                        |  |

a number of studies incorporating seismic and tide gauge records. The unit source selection and slip assignments provided in **Table 6** are discussed by Tang *et al.* (2006, 2009) and used successfully in modeling the impact on Hawaii. In **Figure 27**, the predictions of the impacts at several sites in the Elfin Cove model domain are presented. Only for Sitka is an observed time series available, but several runup values are available from the NGDC catalog. The Sitka time series is based on a digitized marigram, available in the West Coast and Alaska Tsunami Warning Center (WCATWC) archives and detided and filtered using the same methods employed throughout this study. The comparison with the reported runup values at Sitka, Juneau, and Ketchikan is satisfactory. At Elfin Cove itself the model results are only about 50% of the reported runup. This was derived from the tide gauge, but the marigram is not available. The Skagway runup (eyewitness report) is also underpredicted by the model, but overall the success in replicating the character of this huge event, together with the results from the 2011 Tohoku analysis discussed earlier, strongly support the validity of the Elfin Cove models.

Two other historical events are represented by digitized marigrams for Sitka in the WCATWC archives: 1952 Kamchatka and 1960 Chile. The results for these are provided in **Figure 28**. Perhaps because these are remote events, so that the source characterizations (in **Table 6**) are less appropriate to the Gulf of Alaska, the level of success in validating the Elfin Cove model with these cases is much less than for the local 1964 Alaska tsunami. The model prediction at Sitka for the 1960 Chile event is too large by a factor of 4-5, as is that for 1952 Kamchatka. Further effort is clearly needed to more appropriately define these sources in terms of the propagation database. Then the application of the model to these historically important events should be revisited.

Next, in **Figure 29**, simulated historical events from **Table 6** (since the advent of the DART array) are presented. The results confirm a feature of the region noted earlier: Elfin Cove is less impacted by trans-basin tsunami sources than other U.S. interests in the Pacific. On a less positive note, the frequent noise bursts in recorded sea level, associated with wind and waves and illustrated in **Figure 8**, limit the suitability of Elfin Cove as a monitoring site for weak tsunami signals, thereby limiting the number of recent events available for model validation.

The modeling results for the remaining standard cases, those prior to the advent of the DART array and lacking any time series in the vicinity of Elfin Cove, are presented in **Figure 30**. The time series represent Elfin Cove, but NGDC runup values from nearby Sitka are shown when available. These model time series do little beyond demonstrating the absence of stability issues in the application of the model.

A number of other local events, not included in **Table 6** but mentioned earlier in the context of seismic hazard, deserve investigation. On 10 September 1899, a major earthquake occurred in Yakutat Bay, and was one of the earliest events measured by a seismograph. Several tsunami observations outside the immediate vicinity of Yakutat were reported (Lander, 1996), though some may have been associated with secondary generation through landslides. An icefall was reported in Glacier Bay, but no tide gauges were operational in Alaska at the time. On 24 October 1927, a magnitude 7.1 earthquake occurred that affected the Alexander Archipelago with widespread qualitative (but no quantitative) reports. The Queen Charlotte earthquake of 22 August 1949 had reported observations in the Sitka area, but only an unreliable 8 cm measurement on the marigram. The Fairweather earthquake of 10 July 1958 is best known for the Lituya Bay landslide and tsunami it triggered. There were reports of seiching in Cross Sound, and a weak wave of about 10 cm was reported on the Sitka tide gauge. A magnitude 7.6 earthquake near Sitka on 30 July 1972 was felt over a wide area but registered only 10 cm at Juneau and 8 cm at Sitka itself. The Cross Sound sequence of earthquakes in mid-1973 have been discussed in the seismological literature (Doser and Lomas, 2000), but no reports appear in the tsunami catalogs.

None of these local events are well enough described or observed to merit a full investigation or inclusion in **Table 6** as well-documented tsunami sources. Instead, approximate (ad hoc) source definitions were adopted and run to ensure no untoward behavior of the model. The results are summarized in **Table 7** and, where observations at Sitka are reported in the catalogs, they are approximately confirmed. When sources are designated as ad hoc in **Table 6**, they may not be uniformly implemented in other forecast model reports.

One other event was noted in the runup catalog statistics for Sitka: on 29 November 1975, a magnitude 7.2 earthquake on the island of Hawaii triggered the Kalapana landslide off the southeast coast, generating waves that were seen at several sites around the Pacific. Sitka was among them, with an amplitude of about 10 cm. The marigram shown in Lander (1996) was digitized. Although the MOST model in its current form does not apply to landslide-generated tsunamis, and there are no unit sources near Hawaii, a similar modeling approach to ours was applied by Ma *et al.* (1999) to study the local impact. An ad hoc source was created (J. Newman, NCTR, 2012, personal communication), mimicking that of Ma *et al.* (1999), and applied to the Elfin Cove model. The result was of the appropriate amplitude and consistent with the reported arrival time. Given the typical noise environment of the Gulf of Alaska in November, this side exercise is not conclusive but does perhaps provide indirect support to the model.

|                   | м    |                         |                | Unit                 | Max. Ampli | tude (cm) | Sitka |
|-------------------|------|-------------------------|----------------|----------------------|------------|-----------|-------|
| Event             | Est. | Date                    | Location       | Used                 | Elfin Cove | Sitka     | (cm)  |
| Yakutat Bay       | 8.2  | 10 Sep 1899             | 60°N 140°W     | 40–42 A,B            | 17.4       | 30.5      | n/a   |
| Sitka Region      | 7.4  | $24 {\rm \ Oct\ } 1927$ | 57.7°N 136.1°W | 44 B                 | 7.4        | 5.5       | n/a   |
| Queen Charlotte   | 8.1  | $22~{\rm Aug}~1949$     | 53.6°N 133.3°W | $47{-}51~\mathrm{B}$ | 4.1        | 16.4      | 8     |
| Fairweather Fault | 7.7  | 10 Jul 1958             | 58.3°N 136.5°W | $43\mathrm{A}$       | 26.8       | 12.2      | 10    |
| Sitka Region      | 7.6  | 4 Aug 1972              | 56.2°N 135.3°W | $46 \mathrm{B}$      | 6.1        | 33.4      | 8     |
| Cross Sound       | 6.7  | 1 Jul 1973              | 57.8°N 137.3°W | 43 B                 | 1.2        | 0.9       | n/a   |

**Table 7**: Ad hoc unit source representation of six local events for southeast Alaska investigated using the Elfin Cove forecast model. Sitka observations are employed where available.

#### 4.5 Simulation of the remaining synthetic mega-tsunami events

We conclude this section with a summary of other model runs that were made in order to verify model stability and which provide useful information on the exposure of the Elfin Cove region to potentially hazardous future events within the Pacific. As noted earlier, the sparse instrumental record of actual events needs to be augmented with credible scenarios to permit risk assessment. While not pretending to be a full-blown risk assessment for the region, the full set of megatsunami events modeled during stability testing can provide some early estimates.

Mega-tsunami sources not highlighted in **Table 5** were investigated with the forecast model alone; results for the entire set of 20 are provided in Table 8 and Figures 31 and 32. Each source is a composite of 20 unit sources (see Figure 13) from A and B rows with an evenly distributed slip representing an Mw 9.3 event. A color-coded square, drawn at the geometric center of each synthetic source, represents the impact at the Elfin Cove tide gauge predicted for that source. The measure of impact employed in **Table 8** and **Figure 31** is the maximum amplitude of the predicted time series at the reference point. Great circle distances to Elfin Cove are provided, and a vector, normal to the source line, is drawn as a crude indicator of the initial main beam orientation. The impact of the local mega-tsunami source (ACSZ 40-49) dominates all others. Moderate impacts are associated with the closer sources (ACSZ 22-31 near the Alaskan Peninsula and ACSZ 50-59 and ACSZ 56–65, representing the northern and southern portions of Cascadia) but otherwise, impacts are only loosely related to distance. Sources in the southwest Pacific (NVSZ 28-37 near the New Hebrides and MOSZ 01-10 near Manus) have almost as large an impact, but with one exception beyond the local source, the impact predicted for Elfin Cove is much less than that expected along the U.S. West Coast (see **Table 8** where Point Reves, California, is used for comparison).

The results provided in **Table 8** and **Figures 31** and **32** are specific to the reference site: the Elfin Cove tide gauge. Based on the 20 mega-tsunami simulations, impact statistics were extracted for several communities in the region. The results are presented in **Table 9**, whose footnote identifies the site name abbreviations. Values provided for Sitka and Port Alexander would be better represented by their specific forecast models, which better resolve local bathymetry. With the exception of Elfin Cove itself, the other sites are represented by A-grid cells close to their geographic coordinates. Several of the communities are marked in **Figure 2**. Pelican, though unlabeled in **Figure 2**, is at the northwestern terminus of the Alaska ferry routes shown and can also be seen in **Figure 5a**. Bartlett Cove, north of Point Gustavus in **Figure 5a**, is offshore of the Visitor Center where cruise ships take on their National Park guides at the entrance to Glacier Bay. Auke Bay, also unlabeled in **Figure 2**, is northwest of Juneau and home to an Alaska Fisheries Science Center laboratory.

Figures produced earlier, showing the distribution of maximum current speed in the reference model C grid, confirmed the strength of tsunami-induced currents in the Inian passes north of Elfin Cove. Since these are already well known for strong tidal currents, are traversed by ferries and cruise ships plying the Alaska Marine Highway, and have potential for tidal power generation, it seems worthwhile to extract from the model results estimates of the additional rapidly varying current speeds that might accompany a major tsunami event. A comprehensive treatment would jointly model tides and tsunamis, so the results provided in **Table 10** are incomplete. Results are given for a selection of sites, shown in **Figure 33**, instrumented by NOAA's EcoFOCI program during 2010 and 2011. The sampling interval of the Acoustic Doppler current profilers is not suited to tsunami study, and the instruments were not deployed during the 2011 Tohoku event. The final row of **Table 10** provides an estimate of the maximum current at each site, based on the 95<sup>th</sup> percentile of the depth average (only 5% of the currents exceed the tabulated value).

The strongest observed tidal currents are at the shallower locations: South Inian Pass and the mouth of Glacier Bay. Even shallower depths in the 30-40 m range are found south of the latter, marking the terminal moraine of the Glacier Bay glacier that protruded into Icy Strait in the mid-1700s at the end of the Little Ice Age. Only for the local mega-tsunami event scenario (ACSZ 40-49) do the maximum tsunami current speed predictions exceed those associated with the tides. However, with their rapid changes in direction, tsunami-induced currents are potentially of concern. In **Figure 33**, the greatest currents are to be expected near the western end of South Inian Pass, with predicted currents in excess of 10 knots for the ACSZ 40-49 scenario.

| Table 8: Comparison of the response at Elfin Cove, Alaska, to that of Point Reyes, California        |
|------------------------------------------------------------------------------------------------------|
| (Spillane, 2014) for synthetic (Mw 9.3) mega-tsunami scenarios. The maximum amplitude at the         |
| reference point is used as the measure of response, which is generally far weaker at Elfin Cove than |
| at Point Reyes. The ratio, expressed as a percentage, is tabulated below; the Elfin Cove responses   |
| are illustrated graphically in Figure 31.                                                            |

|                               |                       | Respor     | Ratio              |       |
|-------------------------------|-----------------------|------------|--------------------|-------|
| Scenario                      | Source Region         | Elfin Cove | <b>Point Reyes</b> | [%]   |
| KISZ 1–10                     | Kamchatka             | 27.6       | 354                | 7.8   |
| $\operatorname{KISZ} 22 - 31$ | Japan Trench          | 42.9       | 251                | 17.1  |
| KISZ $32-41$                  | Bonin Trench          | 31.3       | 318                | 9.8   |
| m KISZ~56-65                  | Mariana Trench        | 33.9       | 166                | 20.4  |
| m ACSZ~6-15                   | West Aleutians        | 26.3       | 134                | 19.6  |
| ACSZ 16-25                    | Aleutian Trench       | 37.9       | 266                | 14.2  |
| ACSZ 22-31                    | Aleutian Trench       | 59.8       | 239                | 25.0  |
| ACSZ 40-49                    | Cross Sound           | 495.7      | n/a                | n/a   |
| ACSZ 50-59                    | Cascadia North        | 65.2       | 202                | 32.3  |
| m ACSZ~56-65                  | Cascadia South        | 59.6       | 159                | 37.5  |
| CSSZ 1–10                     | Mid-America Trench    | 11.5       | 99                 | 11.6  |
| $\mathrm{CSSZ}$ 37–46         | Columbia-Ecuador      | 43.2       | 42                 | 102.9 |
| $\mathrm{CSSZ}$ 89–98         | Chile Trench          | 11.9       | 140                | 8.5   |
| $CSSZ \ 102-111$              | South Chile           | 28.0       | 265                | 10.6  |
| NTSZ 30-39                    | North Tonga Trench    | 38.9       | 402                | 9.7   |
| NVSZ 28–37                    | New Hebrides Trench   | 56.4       | 258                | 21.9  |
| MOSZ 1-10                     | Manus, West Melanesia | 55.3       | 460                | 12.0  |
| NGSZ $3-12$                   | New Guinea            | 42.6       | 162                | 26.3  |
| EPSZ 6-15                     | East Philippines      | 34.9       | 246                | 14.2  |
| RNSZ 12–21                    | Ryukyu                | 15.8       | 209                | 7.6   |

Table 9: Mega-tsunami scenario impacts, as represented by maximum amplitude (in cm) at several sites within the Elfin Cove model domain.

|                        | Impact Sites (identified below) |     |                 |     |     |     |     |     |     |     |     |     |                 |     |
|------------------------|---------------------------------|-----|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----------------|-----|
| Scenario               | ELF                             | PEL | GUS             | BRT | H00 | TEN | JUN | SKG | HAI | PET | KAK | AUK | PTA             | SIT |
| KISZ 1–10              | 28                              | 29  | 27              | 33  | 26  | 27  | 46  | 36  | 29  | 16  | 36  | 39  | 21              | 135 |
| KISZ 22–31             | 43                              | 35  | 24              | 30  | 23  | 19  | 30  | 43  | 20  | 10  | 41  | 27  | 20              | 164 |
| KISZ 32-41             | 31                              | 37  | 19              | 27  | 19  | 18  | 32  | 24  | 18  | 10  | 39  | 20  | 20              | 144 |
| KISZ 56-65             | 34                              | 29  | 26              | 39  | 24  | 33  | 45  | 40  | 20  | 19  | 43  | 36  | 27              | 148 |
| ACSZ 6-15              | 26                              | 24  | 15              | 24  | 18  | 24  | 34  | 32  | 23  | 14  | 45  | 21  | 18              | 110 |
| ACSZ 16–25             | 38                              | 40  | 35              | 47  | 28  | 39  | 61  | 51  | 41  | 23  | 54  | 50  | 35              | 127 |
| ACSZ 22-31             | 60                              | 65  | 34              | 53  | 24  | 61  | 79  | 74  | 61  | 37  | 62  | 38  | 51              | 123 |
| ACSZ 40-49             | 496                             | 350 | 272             | 262 | 219 | 339 | 423 | 386 | 310 | 162 | 401 | 162 | 401             | 695 |
| ACSZ 50-59             | 65                              | 79  | 53              | 63  | 58  | 70  | 109 | 83  | 66  | 30  | 87  | 80  | 56              | 156 |
| ACSZ 56-65             | 60                              | 61  | 69              | 63  | 52  | 56  | 145 | 61  | 57  | 31  | 74  | 92  | 54              | 142 |
| $\mathrm{CSSZ}\ 110$   | 11                              | 12  | 9               | 11  | 10  | 10  | 18  | 18  | 17  | 13  | 13  | 17  | 9               | 33  |
| CSSZ 37–46             | 12                              | 14  | 13              | 15  | 15  | 15  | 23  | 22  | 20  | 14  | 18  | 18  | 11              | 35  |
| CSSZ 89-98             | 28                              | 23  | 17              | 29  | 21  | 17  | 23  | 26  | 19  | 13  | 23  | 23  | 13              | 91  |
| $\rm CSSZ \ 102{-}111$ | 43                              | 28  | 34              | 37  | 25  | 30  | 43  | 33  | 18  | 18  | 32  | 38  | 23              | 216 |
| NTSZ 30-39             | 39                              | 36  | 25              | 26  | 24  | 27  | 53  | 39  | 37  | 18  | 32  | 39  | 25              | 158 |
| NVSZ 28–37             | 56                              | 49  | 23              | 24  | 37  | 34  | 53  | 51  | 40  | 22  | 42  | 27  | 39              | 209 |
| MOSZ 1-10              | 55                              | 31  | 42              | 47  | 37  | 26  | 49  | 56  | 25  | 17  | 38  | 61  | 36              | 333 |
| NGSZ 3–12              | 43                              | 57  | 37              | 58  | 31  | 60  | 88  | 63  | 52  | 25  | 87  | 61  | 40              | 168 |
| EPSZ 6-15              | 35                              | 39  | $\overline{25}$ | 32  | 24  | 29  | 49  | 49  | 31  | 15  | 47  | 48  | $\overline{26}$ | 110 |
| RNSZ 12–21             | 16                              | 16  | 14              | 18  | 11  | 16  | 18  | 27  | 15  | 8   | 24  | 14  | 13              | 84  |

ELF-Elfin Cove; PEL-Pelican; GUS-Gustavus; BRT-Bartlett Cove; HOO-Hoonah;

TEN-Tenekee Springs; JUN-Juneau; SKG-Skagway; HAI-Haines; PET-Petersburg;

KAK—Kake; AUK—Auke Bay; PTA—Port Alexander; SIT—Sitka

**Table 10**: Maximum speeds at various locations from Cross Sound to Icy Strait in megatsunami simulations using the Elfin Cove forecast model. For rows with bold text, the forecast model value is followed by the reference model equivalent. Speeds are given in knots for ease of comparison with the NOAA chart warnings of tidal currents of 8–10 knots that are frequently encountered in North and South Inian passes. Observed maxima (and water depths) are based on NOAA EcoFOCI current meter data from 2010 and 2011.

|                               | Cross       | North Inian | South Inian |             |             |
|-------------------------------|-------------|-------------|-------------|-------------|-------------|
| Scenario                      | Sound       | Pass        | Pass        | Glacier Bay | Icy Strait  |
| KISZ 1–10                     | 0.10        | 0.26        | 0.58        | 0.17        | 0.22        |
| m KISZ~22-31                  | 0.13        | 0.28        | 0.61        | 0.15        | 0.17        |
| $\operatorname{KISZ} 32{-}41$ | 0.14        | 0.26        | 0.60        | 0.12        | 0.20        |
| m KISZ~56-65                  | 0.11        | 0.34        | 0.80        | 0.13        | 0.26        |
| ACSZ 6-15                     | 0.08        | 0.18        | 0.39        | 0.14        | 0.21        |
| ACSZ 16-25                    | 0.12        | 0.34        | 0.78        | 0.23        | 0.30        |
| ACSZ 22-31                    | 0.17        | 0.45        | 0.97        | 0.23        | 0.38        |
| ACSZ 40-49                    | 1.39 / 1.43 | 3.52 / 3.35 | 5.63 / 6.78 | 1.93 / 1.55 | 2.33 / 2.77 |
| ACSZ 50-59                    | 0.23        | 0.69        | 1.56        | 0.35        | 0.48        |
| ACSZ 56-65                    | 0.19 / 0.23 | 0.71 / 0.61 | 1.40 / 1.39 | 0.29 / 0.41 | 0.29 / 0.46 |
| CSSZ 1-10                     | 0.04        | 0.15        | 0.28        | 0.08        | 0.08        |
| CSSZ 37–46                    | 0.07        | 0.19        | 0.34        | 0.08        | 0.08        |
| CSSZ 89-98                    | 0.12        | 0.32        | 0.67        | 0.22        | 0.15        |
| CSSZ 102–111                  | 0.18 / 0.17 | 0.42 / 0.32 | 0.87 / 0.71 | 0.24 / 0.20 | 0.23 / 0.23 |
| NTSZ 30-39                    | 0.12        | 0.27        | 0.54        | 0.18        | 0.21        |
| NVSZ $28-37$                  | 0.15        | 0.39        | 0.83        | 0.17        | 0.27        |
| MOSZ 1-10                     | 0.16 / 0.23 | 0.35 / 0.35 | 0.74 / 0.95 | 0.25 / 0.18 | 0.25 / 0.18 |
| NGSZ $3-12$                   | 0.16        | 0.36        | 0.91        | 0.26        | 0.48        |
| EPSZ 6-15                     | 0.09        | 0.30        | 0.72        | 0.20        | 0.25        |
| RNSZ 12–21                    | 0.06        | 0.16        | 0.38        | 0.06        | 0.14        |
| Observed                      | 1.19        | 2.21        | 3.16        | 3.49        | 1.24        |
| maxima (kts)                  | (318 m)     | (289 m)     | (72 m)      | (71 m)      | (132 m)     |

#### 5. Conclusions

In conclusion, good agreement between observations and model predictions for a subset of the larger historical events, including the recent 2011 Tohoku tsunami, has been established, and the stability of the model for numerous synthetic events has been demonstrated for Elfin Cove, Alaska, and its vicinity. In particular, the reliability of the forecast model, designed to run rapidly in real-time emergency conditions, has been proven by the favorable comparison with reference model predictions, particularly during the early hours of an event. The model is included in the tsunami forecast system employed operationally at the Tsunami Warning Centers, thus adding the Cross Sound to Icy Strait region of southeast Alaska to the coastal areas for which forecast capability is available. Additionally, this model will provide a useful tool in risk assessment studies.

The tendency of the forecast model to underestimate the amplitude extremes of the reference model was noted earlier in the case of the mega-tsunami scenarios (Figures 15–18). During the review process it was noticed that this behavior was evident too for the historical cases employed for model intercomparison (Figures 20–23). The statistics of these eight cases are summarized in Table 11. Percent differences in both leading peak and overall maximum amplitude show consistently higher values for the reference model predictions. Leading wave arrival times, however, are in close agreement. For the leading peak amplitude, the reference model excess is a few percent at worst, with a simple average of 2.2% for the eight cases available. For the overall maximum amplitudes in 18-hour time series at Elfin Cove, the range of reference model excesses is much greater with the worst case (61.8%) associated with a mega-tsunami source scenario near New Guinea. The largest excesses occur when the overall maximum comes in the later-wave portion of the record, while those that occur in the early part of the wave train are more consistently reproduced in both models. A geometric average of the reference model excesses in overall maximum amplitude is 8.3%, so that in operational use of forecast model estimates, an underestimation of the order of 10% should be factored into forecast products.

The presence of Icy Strait, linking Cross Sound to the deep north-south channel of Chatham Strait, necessitated a more extensive outermost grid for the Elfin Cove model. While this increases model run time somewhat (to 12.92 min, some 30% above the 10 min target), it does provide the benefit of permitting fore-casts for communities not presently selected for specific forecast models: Juneau and Skagway, for example. Statistics for tsunami wave amplitude were extracted during model development, and testing for other communities of southeast Alaska and maximum tsunami-induced currents were extracted for the Cross Sound-Icy Strait region where tidal currents are known to be strong.

Testing of model stability using mega-tsunami (Mw 9.3) scenarios from a selection of sites around the Pacific Rim suggest that, with the exception of sources in the vicinity of Elfin Cove, the impact there is considerably less than on the U.S.

|              | Lea    | ding Pea | ak Amplit  | Гіте     | Maxin    | num Am | plitude |          |          |
|--------------|--------|----------|------------|----------|----------|--------|---------|----------|----------|
|              | RM     | FM       | RM         | RM       | FM       | RM     | RM      | FM       | RM       |
| Source       | (cm)   | (cm)     | Excess     | (hr)     | (hr)     | Excess | (cm)    | (cm)     | Excess   |
| 1960 Chile   | 122.5  | 120.4    | +1.7%      | 18.57    | 18.58    | -0.05% | 126.3   | 120.4    | +4.9%    |
| 1964 Alaska  | 99.6   | 97.0     | +2.7%      | 1.550    | 1.558    | -0.51% | 99.95   | 96.95    | +3.1%    |
| 2010 Chile   | 9.50   | 9.31     | +2.1%      | 18.16    | 18.16    | _      | 9.50    | 9.31     | +2.1%    |
| 2011 Tohoku  | 5.65   | 5.50     | +2.7%      | 8.25     | 8.25     | _      | 17.2    | 13.9     | +23.9%   |
| ACSZ 40-49   | 367.9  | 364.6    | +0.9%      | 0.267    | 0.267    | _      | 503     | 496      | +1.6%    |
| ACSZ 56-65   | 52.6   | 50.7     | +3.8%      | 2.88     | 2.83     | +1.48% | 68.5    | 59.6     | +14.9%   |
| CSSZ 102–111 | 27.4   | 26.8     | +2.2%      | 19.54    | 19.55    | -0.05% | 52.1    | 43.3     | +20.4%   |
| MOSZ 1–10    | 44.1   | 43.6     | +1.2%      | 12.08    | 12.08    | -      | 89.5    | 55.3     | +61.8%   |
| Summary      | Averag | ge RM E  | xcess +2.2 | %; Negli | gible Ti | me Lag | Geomet  | ric Aver | age 8.3% |

**Table 11**: Intercomparison of reference (RM) and forecast model (FM) estimates of peak wave amplitudes and arrival time at Elfin Cove, Alaska. Reference model amplitudes are consistently higher, particularly for late-arriving waves, suggesting that a safety factor of the order of 10% be applied in operational use of forecast model projections. The models are very consistent in their travel time predictions.

West Coast. This, in conjunction with recurring episodes of noise at the tide gauge, substantially reduced the number of historical events in recent years available for model validation. Tsunami waves emanating from the southwest Pacific result in proportionately greater response in the Alaska Panhandle. This report does not suggest that the mega-tsunami event scenarios represent probable tsunami sources and should not be considered a thorough risk assessment study.

In addition to the scenarios run by the author and reported here, further tests have been made by other members of the group at NCTR, and will continue to be made by staff at the Tsunami Warning Centers and others, perhaps in training situations. Among the many related tools developed at NCTR is ComMIT (the Community Model Interface for Tsunamis; Titov *et al.*, 2011), which provides a highly intuitive graphical environment in which to exercise and explore forecast models for any combination of propagation database unit sources. Were any of these avenues to reveal a problem with the model, its origin (most likely in some quirk of the bathymetric files) would be located and corrected, and the revised version would then be re-installed for operational use. The development of the forecast system is a dynamic process, with new models added (and old ones revisited) from the current list of U.S. interests and globally. As algorithms and methodologies to represent meteo- or landslide-generated tsunamis become available in the coming years, the utility of current forecast models beyond purely seismic events could well expand.

### 6. Acknowledgments

Many members of the NCTR group provided valuable assistance in the production of this report. In particular, Diego Arcas edited the first draft for content and style, Elena Tolkova provided scripts for filtering time series and bathymetry, and Lindsey Wright performed the SIFT testing reported in Appendix C. An anonymous reviewer focused attention on a systematic underestimation by the forecast model when compared with the reference model. The modeling could not proceed without the detailed DEM produced at NGDC by the painstaking combination of numerous bathymetric and topographic surveys. Digitized marigrams for a number of historic events were acquired from the WCATWC archives. Figure 2 was reproduced with the permission of the Alaska Department of Transportation and Public Facilities. Current meter observations from the Cross Sound-Icy Strait region were provided by the EcoFOCI group at NOAA PMEL. This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreements NA17RJ1232 and NA10OAR4320148. This is JISAO Contribution No. 2089, PMEL Contribution No. 3405, and NOAA ISI ID317.

## 7. References

- Bernard, E., L. Tang, Y. Wei, and V. Titov (2014): Impact of near-field, deepocean tsunami observations on forecasting the 7 December 2012 Japanese tsunami. *Pure and Appl. Geophys.*, 171(12), 3483–3491, doi:10.1007/s00024-013-0720-8.
- Caldwell, R.J., L.A. Taylor, B.W. Eakins, K.S. Carignan, and S.V. Collins (2012): Digital Elevation Models of Juneau and Southeast Alaska: Procedures, Data Sources and Analysis. National Geophysical Data Center, Boulder, Colorado.
- Doser, D.I., and R. Lomas (2000): The transition from strike-slip to oblique subduction in southeastern Alaska from seismological studies. *Tectonophysics*, *316*, 45–65.
- Dunbar, P. (2007): Increasing public awareness of natural hazards via the internet. *Nat. Hazards*, 42(3), 529–536, doi:10.1007/s11069-006-9072-3.
- Elfin Cove Community Plan (2007): Community of Elfin Cove NonProfit Corporation (CECNPC), 111 pp.
- Gica, E., M. Spillane, V.V. Titov, C.D. Chamberlin, and J.C. Newman (2008): Development of the forecast propagation database for NOAA's Short-term Inundation Forecast for Tsunamis (SIFT). NOAA Tech. Memo. OAR PMEL-139, NTIS: PB2008-109391, 89 pp.
- Kanamori, H., and J.J. Cipar (1974): Focal process of the great Chilean earthquake, May 22, 1960. *Phys. Earth Planet. Inter.*, 9, 128–136.
- Lander, J.F. (1996): Tsunamis Affecting Alaska 1737–1996. KGRD No. 31. US Department of Commerce, NOAA, National Geophysical Data Center, Boulder, Colorado, 155 pp.
- López, A.M., and E.A. Okal (2006): A seismological reassessment of the source of the 1946 Aleutian "tsunami" earthquake. *Geophys. J. Int.*, 165(3), 835– 849, doi:10.1111/j.1365-246x.2006.02899.x.
- Love, M.R., B.W. Eakins, L.A. Taylor, K.S. Carignan, D. Friday, P.R. Grothe (2011): Digital Elevation Model of Elfin Cove, Alaska: Procedures, Data Sources and Analysis. National Geophysical Data Center, Boulder, Colorado.
- Ma, K-F, H. Kanamori and K. Satake (1999): Mechanism of the 1975 Kalapana, Hawaii, earthquake inferred from tsunami data. J. Geophys. Res., 104, 13,153-13,167.

- Percival, D.B., D.W. Denbo, M.C. Eble, E. Gica, H.O. Mofjeld, M.C. Spillane, L. Tang, and V.V. Titov (2011): Extraction of tsunami source coefficients via inversion of DART<sup>®</sup> buoy data. *Nat. Hazards*, 58(1), 567–590, doi:10.1007/s11069-010-9688-1.
- Polagye, B., and R Bedard (2006): Tidal In-stream Energy Assessment for Southeast Alaska. Report EPRI-TP-003 AK to the Alaska Energy Authority. oceanenergy.epri.com/attachments/streamenergy/reports/003\_TP\_ AK\_011007.pdf.
- Shennan, I., R. Bruhn, and G. Plafker, G. (2009): Multi-segment earthquakes and tsunami potential of the Aleutian megathrust. *Quaternary Science Reviews*, 28(1), 7–13.
- Spillane, M.C. (2014): A Tsunami Forecast Model for Point Reyes, California. NOAA OAR Special Report, PMEL Tsunami Forecast Series Vol. 6, 176 pp., doi:10.7289/V5W9573D.
- Spillane, M.C., E. Gica, V.V. Titov, and H.O. Mofjeld (2008): Tsunameter network design for the U.S. DART<sup>®</sup> arrays in the Pacific and Atlantic oceans. NOAA Tech. Memo. OAR PMEL-143, 165 pp.
- Tang, L., C. Chamberlin, E. Tolkova, M. Spillane, V.V. Titov, E.N. Bernard, and H.O. Mofjeld (2006): Assessment of potential tsunami impact for Pearl Harbor, Hawaii. NOAA Tech.Memo. OAR PMEL-131, NTIS: PB2007-100617, 36 pp.
- Tang, L., V.V. Titov, and C.D. Chamberlin (2009): Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. J. Geophys. Res., 114, C12025, doi:10.1029/2009JC005476.
- Tang, L., V.V. Titov, E. Bernard, Y. Wei, C. Chamberlin, J.C. Newman, H. Mofjeld, D. Arcas, M. Eble, C. Moore, B. Uslu, C. Pells, M.C. Spillane, L.M. Wright, and E. Gica (2012): Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. J. Geophys. Res., 117, C08008, doi:10.1029/2011JC007635.
- Titov, V.V. (2009): Tsunami Forecasting. Chapter 12 in *The Sea, Volume 15: Tsunamis*, Harvard University Press, Cambridge, Massachusetts and London, England.
- Titov, V., and F.I. González (1997): Implementation and testing of the Method of Splitting Tsunami (MOST) model. NOAA Tech. Memo. ERL PMEL-112, NTIS: PB98-122773, NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 11 pp.
- Titov, V.V., and C.E. Synolakis (1998): Numerical modeling of tidal wave runup. J. Waterw. Port Coast. Ocean Eng., 124(4), 157–171.

- Titov, V.V., C. Moore, D.J.M. Greenslade, C. Pattiaratchi, R. Badal, C.E. Synolakis, and U. Kânoğlu (2011): A new tool for inundation modeling: Community Modeling Interface for Tsunamis (ComMIT). *Pure Appl. Geophys.*, 168(11), 2121–2131, doi:10.1007/s00024-011-0292-4.
- U.S. Census Bureau (2010): 2010 Census Interactive Population Search. URL: http://www.census.gov/2010census/popmap/ipmtext.php.
- Wei, Y., E. Bernard, L. Tang, R. Weiss, V. Titov, C. Moore, M. Spillane, M. Hopkins, and U. Kânoğlu (2008): Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines. *Geophys. Res. Lett.*, 35, L04609, doi:10.1029/2007GL032250.
- Wesson, R.L., O.S. Boyd, C.S. Mueller, C.G. Bufe, A.D. Frankel, and M.D. Petersen (2007): Revision of time-independent probabilistic seismic hazard maps for Alaska. U.S. Geological Survey Open-File Report 2007-1043.
- Worthington, L.L., H.J. Van Avendonk, S.P. Gulick, G.L. Christeson, and T.L. Pavlis (2012): Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska. J. Geophys. Res., 117, B01102, doi:10.1029/2011JB008493.

# FIGURES



**Figure 1**: The northern Gulf of Alaska, showing regional digital elevation model resources, tide gauge, and DART tsunami detection assets.



**Figure 2**: Southeast Alaska geographic features, communities, and the Alaska Marine Highway (reproduced with permission of the Alaska Department of Transportation and Public Facilities).









**Figure 4**: Regional seismic hazards and the unit sources employed to model their tsunamigenic potential. The inset panel is adapted from the USGS Seismic Hazard Maps for Alaska.





**Figure 5, continued**: Extracts from NOAA Chart 17302. (b) The Elfin Cove sub-chart, annotated with the NOS tide gauge location.



**Figure 6**: View southeast into Elfin Cove's inner cove, showing the boardwalks, finger docks, and other community facilities. (Photograph by Rick Sood, roundezvous.comImagesAlaska2006ElfinCove.jpg).



**Figure 7**: Elfin Cove tide gauge data from March 2011 illustrating episodes of high-frequency, non-tsunami related signals (blue) that can mask tsunami signals such as that associated with the 2011 Tohoku event (red). The upper panel shows, for the whole month, the standard deviation of the subsamples employed in computing the published 6 min data record. The central panels show the 1 min record, processed with a Kalman filter to eliminate the tidal signal. In the lower panel, the spectrum (in energy-preserving form) of two highlighted one-day segments are contrasted. Strong spectral peaks associated with the tsunami (red) are absent in the sample from a noise burst (blue).



**Figure 8**: One year of the standard deviation measure of subsample noise that accompanies the 6 min tide gauge data from Elfin Cove (in 2-month strips with a common vertical scale). Only one tsunami event (highlighted) of significance occurred during the year, but noise "bursts" associated with winds and waves are common, particularly during winter months.



**Figure 9**: As in Figure 7, but for the Chile tsunami event of February 2010, whose impact in the Gulf of Alaska was comparable to that of 2011 Tohoku. The tsunami signal stands out well above the noise, making this a suitable case for model validation.



**Figure 10**: As in Figures 7 and 9, but illustrating the poor signal-to-noise ratio during the Kuril tsunami event of November 2006. Although a standard for validation of other Pacific basin forecast models, this event is of limited use for Elfin Cove, Alaska.



**Figure 11**: Nested grid representation employed in the reference (RM) version of the Elfin Cove tsunami model, progressing counterclockwise from the coarsest-resolution A grid (upper left), through the extensive, medium-resolution B grid, which includes all of Glacier Bay, to the finely resolved C grid, which includes the Inian passes (see Figure 5). Red rectangles are used to indicate the inner reference model grids. Green rectangles indicate the more limited extents of the forecast model (FM) grids shown in Figure 12. See main text for a discussion of the upper section of Dundas Bay, excluded in the final version of the reference model C grid.



**Figure 12**: Nested grids employed in the forecast model (FM) version of the Elfin Cove tsunami model, progressing clockwise with the innermost C grid, which is much reduced in extent, appearing in the lower left. The Inian passes are best represented in the B grid, while Glacier Bay appears only coarsely in the outermost A grid. For the more extensive reference model grids, see Figure 11.



**Figure 13**: Synthetic and historic event scenarios employed in intercomparison of the reference and forecast versions of Elfin Cove tsunami model. Evenly distributed slip values are applied in 20 adjacent unit sources (yellow rectangles) of the propagation database to represent mega-tsunami events; single unit sources are used for the other synthetic events. For the historic cases, a linear combination of unit sources is employed, as detailed in Table 6.



**Figure 14**: Comparison of reference (RM) and forecast (FM) model predictions for the Elfin Cove tide gauge site for three "micro-tsunami" (very low magnitude) sources. Such runs highlight low-level model instabilities that might be missed in modeling larger events. The lower panel shows the reference model at an early stage of development; instabilities emanating from upper Dundas Bay (see Figure 11) proved difficult to eliminate while employing reasonable time and space steps. These instabilities are essentially eliminated in the final C grid..



Time since Event (hours)

**Figure 15**: Comparison of reference (RM) and forecast (FM) model results for the synthetic ACSZ 40–49 mega-tsunami scenario, which is local to Elfin Cove. The left panels are for the C-grid domain of the forecast model; the right panel shows the entirety of the reference model C grid. The lower panel contrasts the reference (black) and forecast (red) model versions of the time series at the Elfin Cove tide gauge location, marked in the upper panels and in Figure 6b. (a) Distribution of maximum amplitude during the 18 hr simulation. *The comparison is continued on the following pages.*


**Figure 15 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the synthetic ACSZ 40–49 mega-tsunami scenario. (b) Distribution of maximum speed.



**Figure 15 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the synthetic ACSZ 40–49 mega-tsunami scenario. (c) A snapshot of the current field at the time indicated by the green line in the lower panel.



Time since Event (hours)

**Figure 16**: Comparison of reference (RM) and forecast (FM) model results, as in Figure 15 but for the ACSZ 56–65 mega-tsunami scenario, which is representative of the Cascadia Subduction Zone. (a) Distribution of maximum amplitude during the 18 hr simulation. *The comparison is continued on the following pages*.



**Figure 16 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the synthetic ACSZ 56–65 mega-tsunami scenario. (b) Distribution of maximum speed.



**Figure 16 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the synthetic ACSZ 56–65 mega-tsunami scenario. (c) A snapshot of the current field at the time indicated by the green line in the lower panel.



**Figure 17**: Comparison of reference (RM) and forecast (FM) model results, as in Figure 15 but for the CSSZ 102–111 mega-tsunami scenario, which is representative of the South American Subduction Zone. (a) Distribution of maximum amplitude during the 18 hr simulation. *The comparison is continued on the following pages.* 



**Figure 17 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the synthetic CSSZ 102–111 mega-tsunami scenario. (b) Distribution of maximum speed.



**Figure 17 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the synthetic CSSZ 102–111 mega-tsunami scenario. (c) A snapshot of the current field at the time indicated by the green line in the lower panel.



Tima einea Evant (haure)

**Figure 18**: Comparison of reference (RM) and forecast (FM) model results, as in Figure 15 but for the MOSZ 1–10 mega-tsunami scenario, which is representative of the Manus Oceanic Convergent plate boundary in the southwest Pacific. (a) Distribution of maximum amplitude during the 18 hr simulation. *The comparison is continued on the following pages.* 



Time since Event (hours)

**Figure 18 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the synthetic MOSZ 1–10 mega-tsunami scenario. (b) Distribution of maximum speed.





Time since Event (hours)

**Figure 18 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the synthetic MOSZ 1–10 mega-tsunami scenario. (c) A snapshot of the current field at the time indicated by the green line in the lower panel.



**Figure 19**: Comparison of reference (RM) and forecast (FM) model solutions for a mild synthetic tsunami near Samoa (the single unit source NTSZ B36.) Though tracking well for 22 hr of the simulation, the time series at the tide gauge diverge later and degrade the comparison of the maximum amplitude field.



**Figure 20**: Comparison of reference (RM) and forecast (FM) model results, as in Figure 15 but for a hindcast of the 2011 Tohoku historic event. The model is forced by a combination of unit sources and slip values selected in real time during the event (see Table 6) using DART observations near the tsunami source. The reference (RM) and forecast (FM) model predictions are in good agreement; validation results, using data from the Elfin Cove tide gauge, are presented later. (a) Distribution of maximum amplitude during the 18 hr simulation. *The comparison is continued on the following pages.* 



**Figure 20 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the 2011 Tohoku historic event. (b) Distribution of maximum speed.



Time since Event (hours)

**Figure 20 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the 2011 Tohoku historic event. (c) A snapshot of the current field at the time indicated by the green line in the lower panel.



**Figure 21**: Comparison of reference (RM) and forecast (FM) model results, as in Figure 20 but for a hindcast of the 2010 Chile historic event. The model forcing is based on DART data collected during the event, and validation results are presented later. (a) Distribution of maximum amplitude during the 18 hr simulation. *The comparison is continued on the following pages.* 



**Figure 21 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the 2010 Chile historic event. (b) Distribution of maximum speed.



**Figure 21 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the 2010 Chile historic event. (c) A snapshot of the current field at the time indicated by the green line in the lower panel.



Time since Event (hours)

**Figure 22**: Comparison of reference (RM) and forecast (FM) model results, as in Figure 20 but for a hindcast of the 1964 Alaska historic event. The event predated deep ocean tsunami detection capability, so the representation of the source is based on post-event studies reported in the literature. (a) Distribution of maximum amplitude during the 18 hr simulation. *The comparison is continued on the following pages.* 



**Figure 22 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the 1964 Alaska historic event. (b) Distribution of maximum speed.



**Figure 22 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the 1964 Alaska historic event. (c) A snapshot of the current field at the time indicated by the green line in the lower panel.



**Figure 23**: Comparison of reference (RM) and forecast (FM) model results, as in Figure 20 but for a hindcast of the 1960 Chile historic event. The event predated deep ocean tsunami detection capability, so the representation of the source is based on post-event studies reported in the literature. (a) Distribution of maximum amplitude during the 18 hr simulation. *The comparison is continued on the following pages.* 



**Figure 23 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the 1960 Chile historic event. (b) Distribution of maximum speed.



**Figure 23 (continued)**: Comparison of reference (RM) and forecast (FM) model results for the 1960 Chile historic event. (c) A snapshot of the current field at the time indicated by the green line in the lower panel.







**Figure 25**: Model validation based on detided and low-passed observations (green) of the 2011 Tohoku tsunami at Elfin Cove model grid locations. The reference and forecast model hindcasts are shown in black and red, respectively. Model time series lead the observations, as is common for tele-tsunami events. Agreement is best for Elfin Cove (in the model C grid), Sitka (in the B grid), and Ketchikan (in the reference model A grid). Port Alexander validation is unclear due to noise in the observations. Only an approximate match is found at Juneau and Skagway, whose grid representation has low resolution.



**Figure 26**: As in Figure 25 but for the 2010 Chile historic tsunami. The model results at the various sites are consistent for the upper three panels in overestimating the observed signal. For Juneau and Skagway, better resolution of the reference model A grid results in improved agreement with the data.



**Figure 27**: Model validation based on the 1964 Alaska historic tsunami. An observed time series is only available for Sitka, based on a digitized marigram in the WCATWC archives. At Elfin Cove, Port Alexander, and Skagway the agreement between the reference and forecast model hindcasts is good throughout the event. Juneau is less satisfactory, but, consistent with the 2011 Tohoku and 2010 Chile results, the forecast model values exceeds those from the reference model.



**Figure 28**: Attempted model validation based on digitized marigrams for Sitka associated with the 1946 Unimak, 1952 Kamchatka, and 1960 Chile tsunamis. The forecast model time series exceeded observation (probably due to an inadequate source representation) and were scaled down by a factor of one fifth to highlight the approximate match in arrival time.



**Figure 29**: Comparison of forecast model hindcasts at the Elfin Cove tide gauge with observations for selection of historic events since 1 min data became available. Owing to the weak response of the Gulf of Alaska region and poor signal-to-noise ratios, none of these events were of use in model validation. (a) 2006 Tonga, 2006 Kuril, 2007 Kuril, and 2007 Solomon. *The comparisons are continued on the following page.* 



**Figure 29, continued**: Comparison of forecast model hindcasts at the Elfin Cove tide gauge with observations for selection of historic events since 1 min data became available. (b) hindcasts for 2007 Peru, 2007 Chile, and 2009 Samoa historical events.



**Figure 30**: Forecast model hindcasts for Elfin Cove during various earlier tsunamis for which tide gauge records are unavailable. Some Sitka runup reports are given. (a) 1946 Unimak, 1957 Andreanof, 1994 East Kuril, and 1996 Andreanof. *The comparisons are continued on the following page*.



**Figure 30, continued**: Forecast model hindcasts for Elfin Cove during various earlier tsunamis for which tide gauge records are unavailable. (b) further hindcasts for 2001 Peru, 2003 Hokkaido, and 2003 Rat Island historical events.



Figure 31: Predicted maximum amplitude at the Elfin Cove tide gauge associated with the full suite of mega-tsunami scenarios listed in Table 5. Numerical values are shown, together with great circle distances to Elfin Cove and an indication of the likely main beam direction near the source.



**Figure 32**: Complete time series of forecast model predictions at the Elfin Cove tide gauge site for each of the mega-tsunami scenarios. Time is in hours from the event, and, although each simulation is limited to 18 hr after the wave enters the model domain, some events extend into a second day after the event. (a) KISZ 1–10, KISZ 22–31, KISZ 32–41, and KISZ 56–65. *The comparisons are continued on the following pages.* 



**Figure 32, continued**: Complete time series of forecast model predictions at the Elfin Cove tide gauge site for each of the mega-tsunami scenarios. (b) further mega-tsunami scenarios, representing ACSZ 6–15, ACSZ 16–25, ACSZ 22–31, and ACSZ 40–49.


**Figure 32, continued**: Complete time series of forecast model predictions at the Elfin Cove tide gauge site for each of the mega-tsunami scenarios. (c) further mega-tsunami scenarios, representing ACSZ 50–59, ACSZ 56–65, CSSZ 1–10, and CSSZ 37–46.



**Figure 32, continued**: Complete time series of forecast model predictions at the Elfin Cove tide gauge site for each of the mega-tsunami scenarios. (d) further mega-tsunami scenarios, representing CSSZ 89–98, CSSZ 102–111, NTSZ 30–39, and NVSZ 28–37.



**Figure 32, continued**: Complete time series of forecast model predictions at the Elfin Cove tide gauge site for each of the mega-tsunami scenarios. (e) further mega-tsunami scenarios, representing MOSZ 1–10, NGSZ 3–12, EPSZ 6–15, and RNSZ 12–21.



**Figure 33**: Current meter sites instrumented by NOAA's EcoFOCI Program (P. Stabeno, NOAA PMEL, 2012 personal communication) for which mega-tsunami event speed maxima from the Elfin Cove model were extracted (listed in Table 10). The inset panel shows the 10-knot contour for the local (ACSZ 40–49) scenario that produces the strongest currents.

## Appendix A. Model input files for Elfin Cove, Alaska

As discussed in Section 3.6, input files providing model parameters, the file names of the nested grids, and the output specifications are necessary in order to run the model in either its reference or forecast mode. These files are provided below; each record contains the value(s) and an annotation of purpose.

#### A1. Reference model \*.in file for Elfin Cove, Alaska

The following table contains the parameter and file choices used in the input file for the SIFT implementation (most3\_facts\_nc.in) of the reference model (RM) for Elfin Cove, Alaska. When run on an Intel<sup>®</sup> Xeon<sup>®</sup> E5670 2.93 GHz processor during development the model simulated 4 hr in 6.94 CPU hr.

| 0.001                                     | Minimum amplitude of input offshore wave (m) |  |  |  |  |  |
|-------------------------------------------|----------------------------------------------|--|--|--|--|--|
| 2.5                                       | Minimum depth of offshore (m)                |  |  |  |  |  |
| 0.1                                       | Dry land depth of inundation (m)             |  |  |  |  |  |
| 0.0009                                    | Friction coefficient (n**2)                  |  |  |  |  |  |
| 1                                         | Let A Grid and B Grid run up                 |  |  |  |  |  |
| 900.0                                     | Max eta before blow-up (m)                   |  |  |  |  |  |
| 0.25                                      | Time step (sec)                              |  |  |  |  |  |
| 115200                                    | Total number of time steps in run            |  |  |  |  |  |
| 12 Time steps between A-grid computations |                                              |  |  |  |  |  |
| 4                                         | Time steps between B-grid computations       |  |  |  |  |  |
| 120                                       | Time steps between output steps              |  |  |  |  |  |
| 0                                         | Time steps before saving first output step   |  |  |  |  |  |
| 1                                         | Save output every n-th grid point, n=        |  |  |  |  |  |
| <pre>ElfinCoveAK_RM_A.most</pre>          | A-grid bathymetry file                       |  |  |  |  |  |
| <pre>ElfinCoveAK_RM_B.most</pre>          | B-grid bathymetry file                       |  |  |  |  |  |
| <pre>ElfinCoveAK_RM_C.most</pre>          | C-grid bathymetry file                       |  |  |  |  |  |
| ./                                        | Directory of source files                    |  |  |  |  |  |
| ./                                        | Directory for output files                   |  |  |  |  |  |
| 1 1 1 1                                   | netCDF output for A, B, C, SIFT              |  |  |  |  |  |
| 1                                         | Number of time series locations              |  |  |  |  |  |
| 3 225 728                                 | Grid & cell indices for reference point      |  |  |  |  |  |

## A2. Forecast model \*.in file for Elfin Cove, Alaska

The following table contains the parameter and file choices used in the input file for the SIFT implementation (most3\_facts\_nc.in) of the optimized forecast model (FM) for Elfin Cove, Alaska. When run on an Intel<sup>®</sup> Xeon<sup>®</sup> E5670 2.93 GHz processor the model simulated 4 hr in 12.92 min, about 30% above the 10 min target for this metric.

| 0.001                 | Minimum amplitude of input offshore wave (m)     |
|-----------------------|--------------------------------------------------|
| 2.5                   | Minimum depth of offshore (m)                    |
| 0.1                   | Dry land depth of inundation (m)                 |
| 0.0009                | Friction coefficient (n**2)                      |
| 1                     | Let A Grid and B Grid run up                     |
| 900.0                 | Max eta before blow-up (m)                       |
| 0.4166667             | Time step (sec)                                  |
| 69120                 | Total number of time steps in run                |
| 12                    | Time steps between A-grid computations           |
| 4                     | Time steps between B-grid computations           |
| 72                    | Time steps between output steps                  |
| 0                     | Time steps before saving first output step       |
| 1                     | Save output every n-th grid point, n=            |
| ElfinCoveAK_FM_A.most | A-grid bathymetry file                           |
| ElfinCoveAK_FM_B.most | B-grid bathymetry file                           |
| ElfinCoveAK_FM_C.most | C-grid bathymetry file                           |
| ./                    | Directory of source files                        |
| ./                    | Directory for output files                       |
| 1 1 1 1               | netCDF output for A, B, C, SIFT                  |
| 1                     | Number of time series locations                  |
| 3 171 81              | Grid & cell indices<br>for 223.652963 58.1951852 |

# Appendix B. Propagation Database

# **Pacific Ocean Unit Sources**

The NOAA propagation database presented in this section is the representation of the database as of March 2013, and may not be the most current version of the database available upon publication.







| Segment  | Description              | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|--------------------------|-------------------|------------------|---------------|------------|---------------|
| acsz-1a  | Aleutian–Alaska–Cascadia | 164.7994          | 55.9606          | 299           | 17         | 19.61         |
| acsz-1b  | Aleutian–Alaska–Cascadia | 164.4310          | 55.5849          | 299           | 17         | 5             |
| acsz-2a  | Aleutian–Alaska–Cascadia | 166.3418          | 55.4016          | 310.2         | 17         | 19.61         |
| acsz-2b  | Aleutian–Alaska–Cascadia | 165.8578          | 55.0734          | 310.2         | 17         | 5             |
| acsz-3a  | Aleutian–Alaska–Cascadia | 167.2939          | 54.8919          | 300.2         | 23.36      | 24.82         |
| acsz-3b  | Aleutian–Alaska–Cascadia | 166.9362          | 54.5356          | 300.2         | 23.36      | 5             |
| acsz-4a  | Aleutian–Alaska–Cascadia | 168.7131          | 54.2852          | 310.2         | 38.51      | 25.33         |
| acsz-4b  | Aleutian–Alaska–Cascadia | 168.3269          | 54.0168          | 310.2         | 24         | 5             |
| acsz-5a  | Aleutian–Alaska–Cascadia | 169.7447          | 53.7808          | 302.8         | 37.02      | 23.54         |
| acsz-5b  | Aleutian–Alaska–Cascadia | 169.4185          | 53.4793          | 302.8         | 21.77      | 5             |
| acsz-6a  | Aleutian–Alaska–Cascadia | 171.0144          | 53.3054          | 303.2         | 35.31      | 22.92         |
| acsz-6b  | Aleutian–Alaska–Cascadia | 170.6813          | 52.9986          | 303.2         | 21         | 5             |
| acsz-7a  | Aleutian–Alaska–Cascadia | 172.1500          | 52.8528          | 298.2         | 35.56      | 20.16         |
| acsz-7b  | Aleutian–Alaska–Cascadia | 171.8665          | 52.5307          | 298.2         | 17.65      | 5             |
| acsz-8a  | Aleutian–Alaska–Cascadia | 173.2726          | 52.4579          | 290.8         | 37.92      | 20.35         |
| acsz-8b  | Aleutian–Alaska–Cascadia | 173.0681          | 52.1266          | 290.8         | 17.88      | 5             |
| acsz-9a  | Aleutian–Alaska–Cascadia | 174.5866          | 52.1434          | 289           | 39.09      | 21.05         |
| acsz-9b  | Aleutian–Alaska–Cascadia | 174.4027          | 51.8138          | 289           | 18.73      | 5             |
| acsz-10a | Aleutian–Alaska–Cascadia | 175.8784          | 51.8526          | 286.1         | 40.51      | 20.87         |
| acsz-10b | Aleutian–Alaska–Cascadia | 175.7265          | 51.5245          | 286.1         | 18.51      | 5             |
| acsz-11a | Aleutian–Alaska–Cascadia | 177.1140          | 51.6488          | 280           | 15         | 17.94         |
| acsz-11b | Aleutian–Alaska–Cascadia | 176.9937          | 51.2215          | 280           | 15         | 5             |
| acsz-12a | Aleutian–Alaska–Cascadia | 178.4500          | 51.5690          | 273           | 15         | 17.94         |
| acsz-12b | Aleutian–Alaska–Cascadia | 178.4130          | 51.1200          | 273           | 15         | 5             |
| acsz-13a | Aleutian–Alaska–Cascadia | 179.8550          | 51.5340          | 271           | 15         | 17.94         |
| acsz-13b | Aleutian–Alaska–Cascadia | 179.8420          | 51.0850          | 271           | 15         | 5             |
| acsz-14a | Aleutian–Alaska–Cascadia | 181.2340          | 51.5780          | 267           | 15         | 17.94         |
| acsz-14b | Aleutian–Alaska–Cascadia | 181.2720          | 51.1290          | 267           | 15         | 5             |
| acsz-15a | Aleutian–Alaska–Cascadia | 182.6380          | 51.6470          | 265           | 15         | 17.94         |
| acsz-15b | Aleutian–Alaska–Cascadia | 182.7000          | 51.2000          | 265           | 15         | 5             |
| acsz-16a | Aleutian–Alaska–Cascadia | 184.0550          | 51.7250          | 264           | 15         | 17.94         |
| acsz-16b | Aleutian–Alaska–Cascadia | 184.1280          | 51.2780          | 264           | 15         | 5             |
| acsz-17a | Aleutian–Alaska–Cascadia | 185.4560          | 51.8170          | 262           | 15         | 17.94         |
| acsz-17b | Aleutian–Alaska–Cascadia | 185.5560          | 51.3720          | 262           | 15         | 5             |
| acsz-18a | Aleutian–Alaska–Cascadia | 186.8680          | 51.9410          | 261           | 15         | 17.94         |
| acsz-18b | Aleutian–Alaska–Cascadia | 186.9810          | 51.4970          | 261           | 15         | 5             |
| acsz-19a | Aleutian–Alaska–Cascadia | 188.2430          | 52.1280          | 257           | 15         | 17.94         |
| acsz-19b | Aleutian–Alaska–Cascadia | 188.4060          | 51.6900          | 257           | 15         | 5             |

 Table B1: Earthquake parameters for Aleutian–Alaska–Cascadia Subduction Zone unit sources.

| Segment  | Description              | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|--------------------------|-------------------|------------------|---------------|------------|---------------|
| acsz-20a | Aleutian–Alaska–Cascadia | 189.5810          | 52.3550          | 251           | 15         | 17.94         |
| acsz-20b | Aleutian–Alaska–Cascadia | 189.8180          | 51.9300          | 251           | 15         | <b>5</b>      |
| acsz-21a | Aleutian–Alaska–Cascadia | 190.9570          | 52.6470          | 251           | 15         | 17.94         |
| acsz-21b | Aleutian–Alaska–Cascadia | 191.1960          | 52.2220          | 251           | 15         | <b>5</b>      |
| acsz-21z | Aleutian–Alaska–Cascadia | 190.7399          | 53.0443          | 250.8         | 15         | 30.88         |
| acsz-22a | Aleutian–Alaska–Cascadia | 192.2940          | 52.9430          | 247           | 15         | 17.94         |
| acsz-22b | Aleutian–Alaska–Cascadia | 192.5820          | 52.5300          | 247           | 15         | <b>5</b>      |
| acsz-22z | Aleutian–Alaska–Cascadia | 192.0074          | 53.3347          | 247.8         | 15         | 30.88         |
| acsz-23a | Aleutian–Alaska–Cascadia | 193.6270          | 53.3070          | 245           | 15         | 17.94         |
| acsz-23b | Aleutian–Alaska–Cascadia | 193.9410          | 52.9000          | 245           | 15         | <b>5</b>      |
| acsz-23z | Aleutian–Alaska–Cascadia | 193.2991          | 53.6768          | 244.6         | 15         | 30.88         |
| acsz-24a | Aleutian–Alaska–Cascadia | 194.9740          | 53.6870          | 245           | 15         | 17.94         |
| acsz-24b | Aleutian–Alaska–Cascadia | 195.2910          | 53.2800          | 245           | 15         | 5             |
| acsz-24y | Aleutian–Alaska–Cascadia | 194.3645          | 54.4604          | 244.4         | 15         | 43.82         |
| acsz-24z | Aleutian–Alaska–Cascadia | 194.6793          | 54.0674          | 244.6         | 15         | 30.88         |
| acsz-25a | Aleutian–Alaska–Cascadia | 196.4340          | 54.0760          | 250           | 15         | 17.94         |
| acsz-25b | Aleutian–Alaska–Cascadia | 196.6930          | 53.6543          | 250           | 15         | 5             |
| acsz-25y | Aleutian–Alaska–Cascadia | 195.9009          | 54.8572          | 247.9         | 15         | 43.82         |
| acsz-25z | Aleutian–Alaska–Cascadia | 196.1761          | 54.4536          | 248.1         | 15         | 30.88         |
| acsz-26a | Aleutian–Alaska–Cascadia | 197.8970          | 54.3600          | 253           | 15         | 17.94         |
| acsz-26b | Aleutian–Alaska–Cascadia | 198.1200          | 53.9300          | 253           | 15         | 5             |
| acsz-26y | Aleutian–Alaska–Cascadia | 197.5498          | 55.1934          | 253.1         | 15         | 43.82         |
| acsz-26z | Aleutian–Alaska–Cascadia | 197.7620          | 54.7770          | 253.3         | 15         | 30.88         |
| acsz-27a | Aleutian–Alaska–Cascadia | 199.4340          | 54.5960          | 256           | 15         | 17.94         |
| acsz-27b | Aleutian–Alaska–Cascadia | 199.6200          | 54.1600          | 256           | 15         | 5             |
| acsz-27x | Aleutian–Alaska–Cascadia | 198.9736          | 55.8631          | 256.5         | 15         | 56.24         |
| acsz-27y | Aleutian–Alaska–Cascadia | 199.1454          | 55.4401          | 256.6         | 15         | 43.82         |
| acsz-27z | Aleutian–Alaska–Cascadia | 199.3135          | 55.0170          | 256.8         | 15         | 30.88         |
| acsz-28a | Aleutian–Alaska–Cascadia | 200.8820          | 54.8300          | 253           | 15         | 17.94         |
| acsz-28b | Aleutian–Alaska–Cascadia | 201.1080          | 54.4000          | 253           | 15         | 5             |
| acsz-28x | Aleutian–Alaska–Cascadia | 200.1929          | 56.0559          | 252.5         | 15         | 56.24         |
| acsz-28y | Aleutian–Alaska–Cascadia | 200.4167          | 55.6406          | 252.7         | 15         | 43.82         |
| acsz-28z | Aleutian–Alaska–Cascadia | 200.6360          | 55.2249          | 252.9         | 15         | 30.88         |
| acsz-29a | Aleutian–Alaska–Cascadia | 202.2610          | 55.1330          | 247           | 15         | 17.94         |
| acsz-29b | Aleutian–Alaska–Cascadia | 202.5650          | 54.7200          | 247           | 15         | <b>5</b>      |
| acsz-29x | Aleutian–Alaska–Cascadia | 201.2606          | 56.2861          | 245.7         | 15         | 56.24         |
| acsz-29y | Aleutian–Alaska–Cascadia | 201.5733          | 55.8888          | 246           | 15         | 43.82         |
| acsz-29z | Aleutian–Alaska–Cascadia | 201.8797          | 55.4908          | 246.2         | 15         | 30.88         |

| Segment  | Description              | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|--------------------------|-------------------|------------------|---------------|------------|---------------|
| acsz-30a | Aleutian–Alaska–Cascadia | 203.6040          | 55.5090          | 240           | 15         | 17.94         |
| acsz-30b | Aleutian–Alaska–Cascadia | 203.9970          | 55.1200          | 240           | 15         | 5             |
| acsz-30w | Aleutian–Alaska–Cascadia | 201.9901          | 56.9855          | 239.5         | 15         | 69.12         |
| acsz-30x | Aleutian–Alaska–Cascadia | 202.3851          | 56.6094          | 239.8         | 15         | 56.24         |
| acsz-30y | Aleutian–Alaska–Cascadia | 202.7724          | 56.2320          | 240.2         | 15         | 43.82         |
| acsz-30z | Aleutian–Alaska–Cascadia | 203.1521          | 55.8534          | 240.5         | 15         | 30.88         |
| acsz-31a | Aleutian–Alaska–Cascadia | 204.8950          | 55.9700          | 236           | 15         | 17.94         |
| acsz-31b | Aleutian–Alaska–Cascadia | 205.3400          | 55.5980          | 236           | 15         | 5             |
| acsz-31w | Aleutian–Alaska–Cascadia | 203.0825          | 57.3740          | 234.5         | 15         | 69.12         |
| acsz-31x | Aleutian–Alaska–Cascadia | 203.5408          | 57.0182          | 234.9         | 15         | 56.24         |
| acsz-31y | Aleutian–Alaska–Cascadia | 203.9904          | 56.6607          | 235.3         | 15         | 43.82         |
| acsz-31z | Aleutian–Alaska–Cascadia | 204.4315          | 56.3016          | 235.7         | 15         | 30.88         |
| acsz-32a | Aleutian–Alaska–Cascadia | 206.2080          | 56.4730          | 236           | 15         | 17.94         |
| acsz-32b | Aleutian–Alaska–Cascadia | 206.6580          | 56.1000          | 236           | 15         | 5             |
| acsz-32w | Aleutian–Alaska–Cascadia | 204.4129          | 57.8908          | 234.3         | 15         | 69.12         |
| acsz-32x | Aleutian–Alaska–Cascadia | 204.8802          | 57.5358          | 234.7         | 15         | 56.24         |
| acsz-32y | Aleutian–Alaska–Cascadia | 205.3385          | 57.1792          | 235.1         | 15         | 43.82         |
| acsz-32z | Aleutian–Alaska–Cascadia | 205.7880          | 56.8210          | 235.5         | 15         | 30.88         |
| acsz-33a | Aleutian–Alaska–Cascadia | 207.5370          | 56.9750          | 236           | 15         | 17.94         |
| acsz-33b | Aleutian–Alaska–Cascadia | 207.9930          | 56.6030          | 236           | 15         | 5             |
| acsz-33w | Aleutian–Alaska–Cascadia | 205.7126          | 58.3917          | 234.2         | 15         | 69.12         |
| acsz-33x | Aleutian–Alaska–Cascadia | 206.1873          | 58.0371          | 234.6         | 15         | 56.24         |
| acsz-33y | Aleutian–Alaska–Cascadia | 206.6527          | 57.6808          | 235           | 15         | 43.82         |
| acsz-33z | Aleutian–Alaska–Cascadia | 207.1091          | 57.3227          | 235.4         | 15         | 30.88         |
| acsz-34a | Aleutian–Alaska–Cascadia | 208.9371          | 57.5124          | 236           | 15         | 17.94         |
| acsz-34b | Aleutian–Alaska–Cascadia | 209.4000          | 57.1400          | 236           | 15         | 5             |
| acsz-34w | Aleutian–Alaska–Cascadia | 206.9772          | 58.8804          | 233.5         | 15         | 69.12         |
| acsz-34x | Aleutian–Alaska–Cascadia | 207.4677          | 58.5291          | 233.9         | 15         | 56.24         |
| acsz-34y | Aleutian–Alaska–Cascadia | 207.9485          | 58.1760          | 234.3         | 15         | 43.82         |
| acsz-34z | Aleutian–Alaska–Cascadia | 208.4198          | 57.8213          | 234.7         | 15         | 30.88         |
| acsz-35a | Aleutian–Alaska–Cascadia | 210.2597          | 58.0441          | 230           | 15         | 17.94         |
| acsz-35b | Aleutian–Alaska–Cascadia | 210.8000          | 57.7000          | 230           | 15         | 5             |
| acsz-35w | Aleutian–Alaska–Cascadia | 208.0204          | 59.3199          | 228.8         | 15         | 69.12         |
| acsz-35x | Aleutian–Alaska–Cascadia | 208.5715          | 58.9906          | 229.3         | 15         | 56.24         |
| acsz-35y | Aleutian–Alaska–Cascadia | 209.1122          | 58.6590          | 229.7         | 15         | 43.82         |
| acsz-35z | Aleutian–Alaska–Cascadia | 209.6425          | 58.3252          | 230.2         | 15         | 30.88         |
| acsz-36a | Aleutian–Alaska–Cascadia | 211.3249          | 58.6565          | 218           | 15         | 17.94         |
| acsz-36b | Aleutian–Alaska–Cascadia | 212.0000          | 58.3800          | 218           | 15         | 5             |

| Table B1: | (continued) |
|-----------|-------------|
|-----------|-------------|

| Segment  | Description              | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|--------------------------|-------------------|------------------|---------------|------------|---------------|
| acsz-36w | Aleutian–Alaska–Cascadia | 208.5003          | 59.5894          | 215.6         | 15         | 69.12         |
| acsz-36x | Aleutian–Alaska–Cascadia | 209.1909          | 59.3342          | 216.2         | 15         | 56.24         |
| acsz-36y | Aleutian–Alaska–Cascadia | 209.8711          | 59.0753          | 216.8         | 15         | 43.82         |
| acsz-36z | Aleutian–Alaska–Cascadia | 210.5412          | 58.8129          | 217.3         | 15         | 30.88         |
| acsz-37a | Aleutian–Alaska–Cascadia | 212.2505          | 59.2720          | 213.7         | 15         | 17.94         |
| acsz-37b | Aleutian–Alaska–Cascadia | 212.9519          | 59.0312          | 213.7         | 15         | 5             |
| acsz-37x | Aleutian–Alaska–Cascadia | 210.1726          | 60.0644          | 213           | 15         | 56.24         |
| acsz-37y | Aleutian–Alaska–Cascadia | 210.8955          | 59.8251          | 213.7         | 15         | 43.82         |
| acsz-37z | Aleutian–Alaska–Cascadia | 211.6079          | 59.5820          | 214.3         | 15         | 30.88         |
| acsz-38a | Aleutian–Alaska–Cascadia | 214.6555          | 60.1351          | 260.1         | 0          | 15            |
| acsz-38b | Aleutian–Alaska–Cascadia | 214.8088          | 59.6927          | 260.1         | 0          | 15            |
| acsz-38y | Aleutian–Alaska–Cascadia | 214.3737          | 60.9838          | 259           | 0          | 15            |
| acsz-38z | Aleutian–Alaska–Cascadia | 214.5362          | 60.5429          | 259           | 0          | 15            |
| acsz-39a | Aleutian–Alaska–Cascadia | 216.5607          | 60.2480          | 267           | 0          | 15            |
| acsz-39b | Aleutian–Alaska–Cascadia | 216.6068          | 59.7994          | 267           | 0          | 15            |
| acsz-40a | Aleutian–Alaska–Cascadia | 219.3069          | 59.7574          | 310.9         | 0          | 15            |
| acsz-40b | Aleutian–Alaska–Cascadia | 218.7288          | 59.4180          | 310.9         | 0          | 15            |
| acsz-41a | Aleutian–Alaska–Cascadia | 220.4832          | 59.3390          | 300.7         | 0          | 15            |
| acsz-41b | Aleutian–Alaska–Cascadia | 220.0382          | 58.9529          | 300.7         | 0          | 15            |
| acsz-42a | Aleutian–Alaska–Cascadia | 221.8835          | 58.9310          | 298.9         | 0          | 15            |
| acsz-42b | Aleutian–Alaska–Cascadia | 221.4671          | 58.5379          | 298.9         | 0          | 15            |
| acsz-43a | Aleutian–Alaska–Cascadia | 222.9711          | 58.6934          | 282.3         | 0          | 15            |
| acsz-43b | Aleutian–Alaska–Cascadia | 222.7887          | 58.2546          | 282.3         | 0          | 15            |
| acsz-44a | Aleutian–Alaska–Cascadia | 224.9379          | 57.9054          | 340.9         | 12         | 11.09         |
| acsz-44b | Aleutian–Alaska–Cascadia | 224.1596          | 57.7617          | 340.9         | 7          | 5             |
| acsz-45a | Aleutian–Alaska–Cascadia | 225.4994          | 57.1634          | 334.1         | 12         | 11.09         |
| acsz-45b | Aleutian–Alaska–Cascadia | 224.7740          | 56.9718          | 334.1         | 7          | 5             |
| acsz-46a | Aleutian–Alaska–Cascadia | 226.1459          | 56.3552          | 334.1         | 12         | 11.09         |
| acsz-46b | Aleutian–Alaska–Cascadia | 225.4358          | 56.1636          | 334.1         | 7          | <b>5</b>      |
| acsz-47a | Aleutian–Alaska–Cascadia | 226.7731          | 55.5830          | 332.3         | 12         | 11.09         |
| acsz-47b | Aleutian–Alaska–Cascadia | 226.0887          | 55.3785          | 332.3         | 7          | 5             |
| acsz-48a | Aleutian–Alaska–Cascadia | 227.4799          | 54.6763          | 339.4         | 12         | 11.09         |
| acsz-48b | Aleutian–Alaska–Cascadia | 226.7713          | 54.5217          | 339.4         | 7          | 5             |
| acsz-49a | Aleutian–Alaska–Cascadia | 227.9482          | 53.8155          | 341.2         | 12         | 11.09         |
| acsz-49b | Aleutian–Alaska–Cascadia | 227.2462          | 53.6737          | 341.2         | 7          | <b>5</b>      |
| acsz-50a | Aleutian–Alaska–Cascadia | 228.3970          | 53.2509          | 324.5         | 12         | 11.09         |
| acsz-50b | Aleutian–Alaska–Cascadia | 227.8027          | 52.9958          | 324.5         | 7          | 5             |
| acsz-51a | Aleutian–Alaska–Cascadia | 229.1844          | 52.6297          | 318.4         | 12         | 11.09         |

| Segment   | Description              | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|-----------|--------------------------|-------------------|------------------|---------------|------------|---------------|
| acsz-51b  | Aleutian–Alaska–Cascadia | 228.6470          | 52.3378          | 318.4         | 7          | 5             |
| acsz-52a  | Aleutian–Alaska–Cascadia | 230.0306          | 52.0768          | 310.9         | 12         | 11.09         |
| acsz-52b  | Aleutian–Alaska–Cascadia | 229.5665          | 51.7445          | 310.9         | 7          | 5             |
| acsz-53a  | Aleutian–Alaska–Cascadia | 231.1735          | 51.5258          | 310.9         | 12         | 11.09         |
| acsz-53b  | Aleutian–Alaska–Cascadia | 230.7150          | 51.1935          | 310.9         | 7          | 5             |
| acsz-54a  | Aleutian–Alaska–Cascadia | 232.2453          | 50.8809          | 314.1         | 12         | 11.09         |
| acsz-54b  | Aleutian–Alaska–Cascadia | 231.7639          | 50.5655          | 314.1         | 7          | 5             |
| acsz-55a  | Aleutian–Alaska–Cascadia | 233.3066          | 49.9032          | 333.7         | 12         | 11.09         |
| acsz-55b  | Aleutian–Alaska–Cascadia | 232.6975          | 49.7086          | 333.7         | 7          | 5             |
| acsz-56a  | Aleutian–Alaska–Cascadia | 234.0588          | 49.1702          | 315           | 11         | 12.82         |
| acsz-56b  | Aleutian–Alaska–Cascadia | 233.5849          | 48.8584          | 315           | 9          | 5             |
| acsz-57a  | Aleutian–Alaska–Cascadia | 234.9041          | 48.2596          | 341           | 11         | 12.82         |
| acsz-57b  | Aleutian–Alaska–Cascadia | 234.2797          | 48.1161          | 341           | 9          | 5             |
| acsz-58a  | Aleutian–Alaska–Cascadia | 235.3021          | 47.3812          | 344           | 11         | 12.82         |
| acsz-58b  | Aleutian–Alaska–Cascadia | 234.6776          | 47.2597          | 344           | 9          | 5             |
| acsz-59a  | Aleutian–Alaska–Cascadia | 235.6432          | 46.5082          | 345           | 11         | 12.82         |
| acsz-59b  | Aleutian–Alaska–Cascadia | 235.0257          | 46.3941          | 345           | 9          | 5             |
| acsz-60a  | Aleutian–Alaska–Cascadia | 235.8640          | 45.5429          | 356           | 11         | 12.82         |
| acsz-60b  | Aleutian–Alaska–Cascadia | 235.2363          | 45.5121          | 356           | 9          | 5             |
| acsz-61a  | Aleutian–Alaska–Cascadia | 235.9106          | 44.6227          | 359           | 11         | 12.82         |
| acsz-61b  | Aleutian–Alaska–Cascadia | 235.2913          | 44.6150          | 359           | 9          | 5             |
| acsz-62a  | Aleutian–Alaska–Cascadia | 235.9229          | 43.7245          | 359           | 11         | 12.82         |
| acsz-62b  | Aleutian–Alaska–Cascadia | 235.3130          | 43.7168          | 359           | 9          | 5             |
| acsz-63a  | Aleutian–Alaska–Cascadia | 236.0220          | 42.9020          | 350           | 11         | 12.82         |
| acsz-63b  | Aleutian–Alaska–Cascadia | 235.4300          | 42.8254          | 350           | 9          | 5             |
| acsz-64a  | Aleutian–Alaska–Cascadia | 235.9638          | 41.9818          | 345           | 11         | 12.82         |
| acsz-64b  | Aleutian–Alaska–Cascadia | 235.3919          | 41.8677          | 345           | 9          | 5             |
| acsz-65a  | Aleutian–Alaska–Cascadia | 236.2643          | 41.1141          | 345           | 11         | 12.82         |
| acsz-65b  | Aleutian–Alaska–Cascadia | 235.7000          | 41.0000          | 345           | 9          | 5             |
| acsz-238a | Aleutian–Alaska–Cascadia | 213.2878          | 59.8406          | 236.8         | 15         | 17.94         |
| acsz-238y | Aleutian–Alaska–Cascadia | 212.3424          | 60.5664          | 236.8         | 15         | 43.82         |
| acsz-238z | Aleutian–Alaska–Cascadia | 212.8119          | 60.2035          | 236.8         | 15         | 30.88         |



Figure B2: Central and South America Subduction Zone unit sources.

| Segment  | Description               | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------|-------------------|------------------|---------------|------------|---------------|
| cssz-1a  | Central and South America | 254.4573          | 20.8170          | 359           | 19         | 15.4          |
| cssz-1b  | Central and South America | 254.0035          | 20.8094          | 359           | 12         | 5             |
| cssz-1z  | Central and South America | 254.7664          | 20.8222          | 359           | 50         | 31.67         |
| cssz-2a  | Central and South America | 254.5765          | 20.2806          | 336.8         | 19         | 15.4          |
| cssz-2b  | Central and South America | 254.1607          | 20.1130          | 336.8         | 12         | <b>5</b>      |
| cssz-3a  | Central and South America | 254.8789          | 19.8923          | 310.6         | 18.31      | 15.27         |
| cssz-3b  | Central and South America | 254.5841          | 19.5685          | 310.6         | 11.85      | 5             |
| cssz-4a  | Central and South America | 255.6167          | 19.2649          | 313.4         | 17.62      | 15.12         |
| cssz-4b  | Central and South America | 255.3056          | 18.9537          | 313.4         | 11.68      | 5             |
| cssz-5a  | Central and South America | 256.2240          | 18.8148          | 302.7         | 16.92      | 15            |
| cssz-5b  | Central and South America | 255.9790          | 18.4532          | 302.7         | 11.54      | 5             |
| cssz-6a  | Central and South America | 256.9425          | 18.4383          | 295.1         | 16.23      | 14.87         |
| cssz-6b  | Central and South America | 256.7495          | 18.0479          | 295.1         | 11.38      | 5             |
| cssz-7a  | Central and South America | 257.8137          | 18.0339          | 296.9         | 15.54      | 14.74         |
| cssz-7b  | Central and South America | 257.6079          | 17.6480          | 296.9         | 11.23      | 5             |
| cssz-8a  | Central and South America | 258.5779          | 17.7151          | 290.4         | 14.85      | 14.61         |
| cssz-8b  | Central and South America | 258.4191          | 17.3082          | 290.4         | 11.08      | 5             |
| cssz-9a  | Central and South America | 259.4578          | 17.4024          | 290.5         | 14.15      | 14.47         |
| cssz-9b  | Central and South America | 259.2983          | 16.9944          | 290.5         | 10.92      | 5             |
| cssz-10a | Central and South America | 260.3385          | 17.0861          | 290.8         | 13.46      | 14.34         |
| cssz-10b | Central and South America | 260.1768          | 16.6776          | 290.8         | 10.77      | 5             |
| cssz-11a | Central and South America | 261.2255          | 16.7554          | 291.8         | 12.77      | 14.21         |
| cssz-11b | Central and South America | 261.0556          | 16.3487          | 291.8         | 10.62      | 5             |
| cssz-12a | Central and South America | 262.0561          | 16.4603          | 288.9         | 12.08      | 14.08         |
| cssz-12b | Central and South America | 261.9082          | 16.0447          | 288.9         | 10.46      | 5             |
| cssz-13a | Central and South America | 262.8638          | 16.2381          | 283.2         | 11.38      | 13.95         |
| cssz-13b | Central and South America | 262.7593          | 15.8094          | 283.2         | 10.31      | 5             |
| cssz-14a | Central and South America | 263.6066          | 16.1435          | 272.1         | 10.69      | 13.81         |
| cssz-14b | Central and South America | 263.5901          | 15.7024          | 272.1         | 10.15      | 5             |
| cssz-15a | Central and South America | 264.8259          | 15.8829          | 293           | 10         | 13.68         |
| cssz-15b | Central and South America | 264.6462          | 15.4758          | 293           | 10         | 5             |
| cssz-15y | Central and South America | 265.1865          | 16.6971          | 293           | 10         | 31.05         |
| cssz-15z | Central and South America | 265.0060          | 16.2900          | 293           | 10         | 22.36         |
| cssz-16a | Central and South America | 265.7928          | 15.3507          | 304.9         | 15         | 15.82         |
| cssz-16b | Central and South America | 265.5353          | 14.9951          | 304.9         | 12.5       | 5             |
| cssz-16y | Central and South America | 266.3092          | 16.0619          | 304.9         | 15         | 41.7          |
| cssz-16z | Central and South America | 266.0508          | 15.7063          | 304.9         | 15         | 28.76         |
| cssz-17a | Central and South America | 266.4947          | 14.9019          | 299.5         | 20         | 17.94         |
| cssz-17b | Central and South America | 266.2797          | 14.5346          | 299.5         | 15         | 5             |
| cssz-17y | Central and South America | 266.9259          | 15.6365          | 299.5         | 20         | 52.14         |

 Table B2: Earthquake parameters for Central and South America Subduction Zone unit sources.

| Table B2: | (continued) |
|-----------|-------------|
|-----------|-------------|

| Segment  | Description               | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------|-------------------|------------------|---------------|------------|---------------|
| cssz-17z | Central and South America | 266.7101          | 15.2692          | 299.5         | 20         | 35.04         |
| cssz-18a | Central and South America | 267.2827          | 14.4768          | 298           | 21.5       | 17.94         |
| cssz-18b | Central and South America | 267.0802          | 14.1078          | 298           | 15         | <b>5</b>      |
| cssz-18y | Central and South America | 267.6888          | 15.2148          | 298           | 21.5       | 54.59         |
| cssz-18z | Central and South America | 267.4856          | 14.8458          | 298           | 21.5       | 36.27         |
| cssz-19a | Central and South America | 268.0919          | 14.0560          | 297.6         | 23         | 17.94         |
| cssz-19b | Central and South America | 267.8943          | 13.6897          | 297.6         | 15         | <b>5</b>      |
| cssz-19y | Central and South America | 268.4880          | 14.7886          | 297.6         | 23         | 57.01         |
| cssz-19z | Central and South America | 268.2898          | 14.4223          | 297.6         | 23         | 37.48         |
| cssz-20a | Central and South America | 268.8929          | 13.6558          | 296.2         | 24         | 17.94         |
| cssz-20b | Central and South America | 268.7064          | 13.2877          | 296.2         | 15         | <b>5</b>      |
| cssz-20y | Central and South America | 269.1796          | 14.2206          | 296.2         | 45.5       | 73.94         |
| cssz-20z | Central and South America | 269.0362          | 13.9382          | 296.2         | 45.5       | 38.28         |
| cssz-21a | Central and South America | 269.6797          | 13.3031          | 292.6         | 25         | 17.94         |
| cssz-21b | Central and South America | 269.5187          | 12.9274          | 292.6         | 15         | <b>5</b>      |
| cssz-21x | Central and South America | 269.8797          | 13.7690          | 292.6         | 68         | 131.8         |
| cssz-21y | Central and South America | 269.8130          | 13.6137          | 292.6         | 68         | 85.43         |
| cssz-21z | Central and South America | 269.7463          | 13.4584          | 292.6         | 68         | 39.07         |
| cssz-22a | Central and South America | 270.4823          | 13.0079          | 288.6         | 25         | 17.94         |
| cssz-22b | Central and South America | 270.3492          | 12.6221          | 288.6         | 15         | <b>5</b>      |
| cssz-22x | Central and South America | 270.6476          | 13.4864          | 288.6         | 68         | 131.8         |
| cssz-22y | Central and South America | 270.5925          | 13.3269          | 288.6         | 68         | 85.43         |
| cssz-22z | Central and South America | 270.5374          | 13.1674          | 288.6         | 68         | 39.07         |
| cssz-23a | Central and South America | 271.3961          | 12.6734          | 292.4         | 25         | 17.94         |
| cssz-23b | Central and South America | 271.2369          | 12.2972          | 292.4         | 15         | <b>5</b>      |
| cssz-23x | Central and South America | 271.5938          | 13.1399          | 292.4         | 68         | 131.8         |
| cssz-23y | Central and South America | 271.5279          | 12.9844          | 292.4         | 68         | 85.43         |
| cssz-23z | Central and South America | 271.4620          | 12.8289          | 292.4         | 68         | 39.07         |
| cssz-24a | Central and South America | 272.3203          | 12.2251          | 300.2         | 25         | 17.94         |
| cssz-24b | Central and South America | 272.1107          | 11.8734          | 300.2         | 15         | 5             |
| cssz-24x | Central and South America | 272.5917          | 12.6799          | 300.2         | 67         | 131.1         |
| cssz-24y | Central and South America | 272.5012          | 12.5283          | 300.2         | 67         | 85.1          |
| cssz-24z | Central and South America | 272.4107          | 12.3767          | 300.2         | 67         | 39.07         |
| cssz-25a | Central and South America | 273.2075          | 11.5684          | 313.8         | 25         | 17.94         |
| cssz-25b | Central and South America | 272.9200          | 11.2746          | 313.8         | 15         | 5             |
| cssz-25x | Central and South America | 273.5950          | 11.9641          | 313.8         | 66         | 130.4         |
| cssz-25y | Central and South America | 273.4658          | 11.8322          | 313.8         | 66         | 84.75         |
| cssz-25z | Central and South America | 273.3366          | 11.7003          | 313.8         | 66         | 39.07         |
| cssz-26a | Central and South America | 273.8943          | 10.8402          | 320.4         | 25         | 17.94         |

| Segment  | Description               | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------|-------------------|------------------|---------------|------------|---------------|
| cssz-26b | Central and South America | 273.5750          | 10.5808          | 320.4         | 15         | 5             |
| cssz-26x | Central and South America | 274.3246          | 11.1894          | 320.4         | 66         | 130.4         |
| cssz-26y | Central and South America | 274.1811          | 11.0730          | 320.4         | 66         | 84.75         |
| cssz-26z | Central and South America | 274.0377          | 10.9566          | 320.4         | 66         | 39.07         |
| cssz-27a | Central and South America | 274.4569          | 10.2177          | 316.1         | 25         | 17.94         |
| cssz-27b | Central and South America | 274.1590          | 9.9354           | 316.1         | 15         | <b>5</b>      |
| cssz-27z | Central and South America | 274.5907          | 10.3444          | 316.1         | 66         | 39.07         |
| cssz-28a | Central and South America | 274.9586          | 9.8695           | 297.1         | 22         | 14.54         |
| cssz-28b | Central and South America | 274.7661          | 9.4988           | 297.1         | 11         | <b>5</b>      |
| cssz-28z | Central and South America | 275.1118          | 10.1643          | 297.1         | 42.5       | 33.27         |
| cssz-29a | Central and South America | 275.7686          | 9.4789           | 296.6         | 19         | 11.09         |
| cssz-29b | Central and South America | 275.5759          | 9.0992           | 296.6         | 7          | <b>5</b>      |
| cssz-30a | Central and South America | 276.6346          | 8.9973           | 302.2         | 19         | 9.36          |
| cssz-30b | Central and South America | 276.4053          | 8.6381           | 302.2         | 5          | <b>5</b>      |
| cssz-31a | Central and South America | 277.4554          | 8.4152           | 309.1         | 19         | 7.62          |
| cssz-31b | Central and South America | 277.1851          | 8.0854           | 309.1         | 3          | 5             |
| cssz-31z | Central and South America | 277.7260          | 8.7450           | 309.1         | 19         | 23.9          |
| cssz-32a | Central and South America | 278.1112          | 7.9425           | 303           | 18.67      | 8.49          |
| cssz-32b | Central and South America | 277.8775          | 7.5855           | 303           | 4          | <b>5</b>      |
| cssz-32z | Central and South America | 278.3407          | 8.2927           | 303           | 21.67      | 24.49         |
| cssz-33a | Central and South America | 278.7082          | 7.6620           | 287.6         | 18.33      | 10.23         |
| cssz-33b | Central and South America | 278.5785          | 7.2555           | 287.6         | 6          | 5             |
| cssz-33z | Central and South America | 278.8328          | 8.0522           | 287.6         | 24.33      | 25.95         |
| cssz-34a | Central and South America | 279.3184          | 7.5592           | 269.5         | 18         | 17.94         |
| cssz-34b | Central and South America | 279.3223          | 7.1320           | 269.5         | 15         | 5             |
| cssz-35a | Central and South America | 280.0039          | 7.6543           | 255.9         | 17.67      | 14.54         |
| cssz-35b | Central and South America | 280.1090          | 7.2392           | 255.9         | 11         | 5             |
| cssz-35x | Central and South America | 279.7156          | 8.7898           | 255.9         | 29.67      | 79.22         |
| cssz-35y | Central and South America | 279.8118          | 8.4113           | 255.9         | 29.67      | 54.47         |
| cssz-35z | Central and South America | 279.9079          | 8.0328           | 255.9         | 29.67      | 29.72         |
| cssz-36a | Central and South America | 281.2882          | 7.6778           | 282.5         | 17.33      | 11.09         |
| cssz-36b | Central and South America | 281.1948          | 7.2592           | 282.5         | 7          | 5             |
| cssz-36x | Central and South America | 281.5368          | 8.7896           | 282.5         | 32.33      | 79.47         |
| cssz-36y | Central and South America | 281.4539          | 8.4190           | 282.5         | 32.33      | 52.73         |
| cssz-36z | Central and South America | 281.3710          | 8.0484           | 282.5         | 32.33      | 25.99         |
| cssz-37a | Central and South America | 282.5252          | 6.8289           | 326.9         | 17         | 10.23         |
| cssz-37b | Central and South America | 282.1629          | 6.5944           | 326.9         | 6          | 5             |
| cssz-38a | Central and South America | 282.9469          | 5.5973           | 355.4         | 17         | 10.23         |
| cssz-38b | Central and South America | 282.5167          | 5.5626           | 355.4         | 6          | 5             |

| Table B2 | : (continued) |
|----------|---------------|
|----------|---------------|

| Segment  | Description               | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------|-------------------|------------------|---------------|------------|---------------|
| cssz-39a | Central and South America | 282.7236          | 4.3108           | 24.13         | 17         | 10.23         |
| cssz-39b | Central and South America | 282.3305          | 4.4864           | 24.13         | 6          | 5             |
| cssz-39z | Central and South America | 283.0603          | 4.1604           | 24.13         | 35         | 24.85         |
| cssz-40a | Central and South America | 282.1940          | 3.3863           | 35.28         | 17         | 10.23         |
| cssz-40b | Central and South America | 281.8427          | 3.6344           | 35.28         | 6          | <b>5</b>      |
| cssz-40y | Central and South America | 282.7956          | 2.9613           | 35.28         | 35         | 53.52         |
| cssz-40z | Central and South America | 282.4948          | 3.1738           | 35.28         | 35         | 24.85         |
| cssz-41a | Central and South America | 281.6890          | 2.6611           | 34.27         | 17         | 10.23         |
| cssz-41b | Central and South America | 281.3336          | 2.9030           | 34.27         | 6          | <b>5</b>      |
| cssz-41z | Central and South America | 281.9933          | 2.4539           | 34.27         | 35         | 24.85         |
| cssz-42a | Central and South America | 281.2266          | 1.9444           | 31.29         | 17         | 10.23         |
| cssz-42b | Central and South America | 280.8593          | 2.1675           | 31.29         | 6          | <b>5</b>      |
| cssz-42z | Central and South America | 281.5411          | 1.7533           | 31.29         | 35         | 24.85         |
| cssz-43a | Central and South America | 280.7297          | 1.1593           | 33.3          | 17         | 10.23         |
| cssz-43b | Central and South America | 280.3706          | 1.3951           | 33.3          | 6          | <b>5</b>      |
| cssz-43z | Central and South America | 281.0373          | 0.9573           | 33.3          | 35         | 24.85         |
| cssz-44a | Central and South America | 280.3018          | 0.4491           | 28.8          | 17         | 10.23         |
| cssz-44b | Central and South America | 279.9254          | 0.6560           | 28.8          | 6          | <b>5</b>      |
| cssz-45a | Central and South America | 279.9083          | -0.3259          | 26.91         | 10         | 8.49          |
| cssz-45b | Central and South America | 279.5139          | -0.1257          | 26.91         | 4          | <b>5</b>      |
| cssz-46a | Central and South America | 279.6461          | -0.9975          | 15.76         | 10         | 8.49          |
| cssz-46b | Central and South America | 279.2203          | -0.8774          | 15.76         | 4          | <b>5</b>      |
| cssz-47a | Central and South America | 279.4972          | -1.7407          | 6.9           | 10         | 8.49          |
| cssz-47b | Central and South America | 279.0579          | -1.6876          | 6.9           | 4          | <b>5</b>      |
| cssz-48a | Central and South America | 279.3695          | -2.6622          | 8.96          | 10         | 8.49          |
| cssz-48b | Central and South America | 278.9321          | -2.5933          | 8.96          | 4          | <b>5</b>      |
| cssz-48y | Central and South America | 280.2444          | -2.8000          | 8.96          | 10         | 25.85         |
| cssz-48z | Central and South America | 279.8070          | -2.7311          | 8.96          | 10         | 17.17         |
| cssz-49a | Central and South America | 279.1852          | -3.6070          | 13.15         | 10         | 8.49          |
| cssz-49b | Central and South America | 278.7536          | -3.5064          | 13.15         | 4          | 5             |
| cssz-49y | Central and South America | 280.0486          | -3.8082          | 13.15         | 10         | 25.85         |
| cssz-49z | Central and South America | 279.6169          | -3.7076          | 13.15         | 10         | 17.17         |
| cssz-50a | Central and South America | 279.0652          | -4.3635          | 4.78          | 10.33      | 9.64          |
| cssz-50b | Central and South America | 278.6235          | -4.3267          | 4.78          | 5.33       | 5             |
| cssz-51a | Central and South America | 279.0349          | -5.1773          | 359.4         | 10.67      | 10.81         |
| cssz-51b | Central and South America | 278.5915          | -5.1817          | 359.4         | 6.67       | 5             |
| cssz-52a | Central and South America | 279.1047          | -5.9196          | 349.8         | 11         | 11.96         |
| cssz-52b | Central and South America | 278.6685          | -5.9981          | 349.8         | 8          | <b>5</b>      |
| cssz-53a | Central and South America | 279.3044          | -6.6242          | 339.2         | 10.25      | 11.74         |

| Segment  | Description               | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------|-------------------|------------------|---------------|------------|---------------|
| cssz-53b | Central and South America | 278.8884          | -6.7811          | 339.2         | 7.75       | 5             |
| cssz-53y | Central and South America | 280.1024          | -6.3232          | 339.2         | 19.25      | 37.12         |
| cssz-53z | Central and South America | 279.7035          | -6.4737          | 339.2         | 19.25      | 20.64         |
| cssz-54a | Central and South America | 279.6256          | -7.4907          | 340.8         | 9.5        | 11.53         |
| cssz-54b | Central and South America | 279.2036          | -7.6365          | 340.8         | 7.5        | 5             |
| cssz-54y | Central and South America | 280.4267          | -7.2137          | 340.8         | 20.5       | 37.29         |
| cssz-54z | Central and South America | 280.0262          | -7.3522          | 340.8         | 20.5       | 19.78         |
| cssz-55a | Central and South America | 279.9348          | -8.2452          | 335.4         | 8.75       | 11.74         |
| cssz-55b | Central and South America | 279.5269          | -8.4301          | 335.4         | 7.75       | 5             |
| cssz-55x | Central and South America | 281.0837          | -7.7238          | 335.4         | 21.75      | 56.4          |
| cssz-55y | Central and South America | 280.7009          | -7.8976          | 335.4         | 21.75      | 37.88         |
| cssz-55z | Central and South America | 280.3180          | -8.0714          | 335.4         | 21.75      | 19.35         |
| cssz-56a | Central and South America | 280.3172          | -8.9958          | 331.6         | 8          | 11.09         |
| cssz-56b | Central and South America | 279.9209          | -9.2072          | 331.6         | 7          | 5             |
| cssz-56x | Central and South America | 281.4212          | -8.4063          | 331.6         | 23         | 57.13         |
| cssz-56y | Central and South America | 281.0534          | -8.6028          | 331.6         | 23         | 37.59         |
| cssz-56z | Central and South America | 280.6854          | -8.7993          | 331.6         | 23         | 18.05         |
| cssz-57a | Central and South America | 280.7492          | -9.7356          | 328.7         | 8.6        | 10.75         |
| cssz-57b | Central and South America | 280.3640          | -9.9663          | 328.7         | 6.6        | 5             |
| cssz-57x | Central and South America | 281.8205          | -9.0933          | 328.7         | 23.4       | 57.94         |
| cssz-57y | Central and South America | 281.4636          | -9.3074          | 328.7         | 23.4       | 38.08         |
| cssz-57z | Central and South America | 281.1065          | -9.5215          | 328.7         | 23.4       | 18.22         |
| cssz-58a | Central and South America | 281.2275          | -10.5350         | 330.5         | 9.2        | 10.4          |
| cssz-58b | Central and South America | 280.8348          | -10.7532         | 330.5         | 6.2        | 5             |
| cssz-58y | Central and South America | 281.9548          | -10.1306         | 330.5         | 23.8       | 38.57         |
| cssz-58z | Central and South America | 281.5913          | -10.3328         | 330.5         | 23.8       | 18.39         |
| cssz-59a | Central and South America | 281.6735          | -11.2430         | 326.2         | 9.8        | 10.05         |
| cssz-59b | Central and South America | 281.2982          | -11.4890         | 326.2         | 5.8        | 5             |
| cssz-59y | Central and South America | 282.3675          | -10.7876         | 326.2         | 24.2       | 39.06         |
| cssz-59z | Central and South America | 282.0206          | -11.0153         | 326.2         | 24.2       | 18.56         |
| cssz-60a | Central and South America | 282.1864          | -11.9946         | 326.5         | 10.4       | 9.71          |
| cssz-60b | Central and South America | 281.8096          | -12.2384         | 326.5         | 5.4        | 5             |
| cssz-60y | Central and South America | 282.8821          | -11.5438         | 326.5         | 24.6       | 39.55         |
| cssz-60z | Central and South America | 282.5344          | -11.7692         | 326.5         | 24.6       | 18.73         |
| cssz-61a | Central and South America | 282.6944          | -12.7263         | 325.5         | 11         | 9.36          |
| cssz-61b | Central and South America | 282.3218          | -12.9762         | 325.5         | 5          | 5             |
| cssz-61y | Central and South America | 283.3814          | -12.2649         | 325.5         | 25         | 40.03         |
| cssz-61z | Central and South America | 283.0381          | -12.4956         | 325.5         | 25         | 18.9          |
| cssz-62a | Central and South America | 283.1980          | -13.3556         | 319           | 11         | 9.79          |

| Table B2: | (continued) |
|-----------|-------------|
|-----------|-------------|

| Segment  | Description               | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------|-------------------|------------------|---------------|------------|---------------|
| cssz-62b | Central and South America | 282.8560          | -13.6451         | 319           | 5.5        | 5             |
| cssz-62y | Central and South America | 283.8178          | -12.8300         | 319           | 27         | 42.03         |
| cssz-62z | Central and South America | 283.5081          | -13.0928         | 319           | 27         | 19.33         |
| cssz-63a | Central and South America | 283.8032          | -14.0147         | 317.9         | 11         | 10.23         |
| cssz-63b | Central and South America | 283.4661          | -14.3106         | 317.9         | 6          | <b>5</b>      |
| cssz-63z | Central and South America | 284.1032          | -13.7511         | 317.9         | 29         | 19.77         |
| cssz-64a | Central and South America | 284.4144          | -14.6482         | 315.7         | 13         | 11.96         |
| cssz-64b | Central and South America | 284.0905          | -14.9540         | 315.7         | 8          | 5             |
| cssz-65a | Central and South America | 285.0493          | -15.2554         | 313.2         | 15         | 13.68         |
| cssz-65b | Central and South America | 284.7411          | -15.5715         | 313.2         | 10         | 5             |
| cssz-66a | Central and South America | 285.6954          | -15.7816         | 307.7         | 14.5       | 13.68         |
| cssz-66b | Central and South America | 285.4190          | -16.1258         | 307.7         | 10         | 5             |
| cssz-67a | Central and South America | 286.4127          | -16.2781         | 304.3         | 14         | 13.68         |
| cssz-67b | Central and South America | 286.1566          | -16.6381         | 304.3         | 10         | 5             |
| cssz-67z | Central and South America | 286.6552          | -15.9365         | 304.3         | 23         | 25.78         |
| cssz-68a | Central and South America | 287.2481          | -16.9016         | 311.8         | 14         | 13.68         |
| cssz-68b | Central and South America | 286.9442          | -17.2264         | 311.8         | 10         | 5             |
| cssz-68z | Central and South America | 287.5291          | -16.6007         | 311.8         | 26         | 25.78         |
| cssz-69a | Central and South America | 287.9724          | -17.5502         | 314.9         | 14         | 13.68         |
| cssz-69b | Central and South America | 287.6496          | -17.8590         | 314.9         | 10         | 5             |
| cssz-69y | Central and South America | 288.5530          | -16.9934         | 314.9         | 29         | 50.02         |
| cssz-69z | Central and South America | 288.2629          | -17.2718         | 314.9         | 29         | 25.78         |
| cssz-70a | Central and South America | 288.6731          | -18.2747         | 320.4         | 14         | 13.25         |
| cssz-70b | Central and South America | 288.3193          | -18.5527         | 320.4         | 9.5        | 5             |
| cssz-70y | Central and South America | 289.3032          | -17.7785         | 320.4         | 30         | 50.35         |
| cssz-70z | Central and South America | 288.9884          | -18.0266         | 320.4         | 30         | 25.35         |
| cssz-71a | Central and South America | 289.3089          | -19.1854         | 333.2         | 14         | 12.82         |
| cssz-71b | Central and South America | 288.8968          | -19.3820         | 333.2         | 9          | 5             |
| cssz-71y | Central and South America | 290.0357          | -18.8382         | 333.2         | 31         | 50.67         |
| cssz-71z | Central and South America | 289.6725          | -19.0118         | 333.2         | 31         | 24.92         |
| cssz-72a | Central and South America | 289.6857          | -20.3117         | 352.4         | 14         | 12.54         |
| cssz-72b | Central and South America | 289.2250          | -20.3694         | 352.4         | 8.67       | 5             |
| cssz-72z | Central and South America | 290.0882          | -20.2613         | 352.4         | 32         | 24.63         |
| cssz-73a | Central and South America | 289.7731          | -21.3061         | 358.9         | 14         | 12.24         |
| cssz-73b | Central and South America | 289.3053          | -21.3142         | 358.9         | 8.33       | 5             |
| cssz-73z | Central and South America | 290.1768          | -21.2991         | 358.9         | 33         | 24.34         |
| cssz-74a | Central and South America | 289.7610          | -22.2671         | 3.06          | 14         | 11.96         |
| cssz-74b | Central and South America | 289.2909          | -22.2438         | 3.06          | 8          | 5             |

| Segment  | Description               | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------|-------------------|------------------|---------------|------------|---------------|
| cssz-75a | Central and South America | 289.6982          | -23.1903         | 4.83          | 14.09      | 11.96         |
| cssz-75b | Central and South America | 289.2261          | -23.1536         | 4.83          | 8          | 5             |
| cssz-76a | Central and South America | 289.6237          | -24.0831         | 4.67          | 14.18      | 11.96         |
| cssz-76b | Central and South America | 289.1484          | -24.0476         | 4.67          | 8          | 5             |
| cssz-77a | Central and South America | 289.5538          | -24.9729         | 4.3           | 14.27      | 11.96         |
| cssz-77b | Central and South America | 289.0750          | -24.9403         | 4.3           | 8          | 5             |
| cssz-78a | Central and South America | 289.4904          | -25.8621         | 3.86          | 14.36      | 11.96         |
| cssz-78b | Central and South America | 289.0081          | -25.8328         | 3.86          | 8          | <b>5</b>      |
| cssz-79a | Central and South America | 289.3491          | -26.8644         | 11.34         | 14.45      | 11.96         |
| cssz-79b | Central and South America | 288.8712          | -26.7789         | 11.34         | 8          | 5             |
| cssz-80a | Central and South America | 289.1231          | -27.7826         | 14.16         | 14.54      | 11.96         |
| cssz-80b | Central and South America | 288.6469          | -27.6762         | 14.16         | 8          | 5             |
| cssz-81a | Central and South America | 288.8943          | -28.6409         | 13.19         | 14.63      | 11.96         |
| cssz-81b | Central and South America | 288.4124          | -28.5417         | 13.19         | 8          | 5             |
| cssz-82a | Central and South America | 288.7113          | -29.4680         | 9.68          | 14.72      | 11.96         |
| cssz-82b | Central and South America | 288.2196          | -29.3950         | 9.68          | 8          | 5             |
| cssz-83a | Central and South America | 288.5944          | -30.2923         | 5.36          | 14.81      | 11.96         |
| cssz-83b | Central and South America | 288.0938          | -30.2517         | 5.36          | 8          | 5             |
| cssz-84a | Central and South America | 288.5223          | -31.1639         | 3.8           | 14.9       | 11.96         |
| cssz-84b | Central and South America | 288.0163          | -31.1351         | 3.8           | 8          | 5             |
| cssz-85a | Central and South America | 288.4748          | -32.0416         | 2.55          | 15         | 11.96         |
| cssz-85b | Central and South America | 287.9635          | -32.0223         | 2.55          | 8          | 5             |
| cssz-86a | Central and South America | 288.3901          | -33.0041         | 7.01          | 15         | 11.96         |
| cssz-86b | Central and South America | 287.8768          | -32.9512         | 7.01          | 8          | 5             |
| cssz-87a | Central and South America | 288.1050          | -34.0583         | 19.4          | 15         | 11.96         |
| cssz-87b | Central and South America | 287.6115          | -33.9142         | 19.4          | 8          | 5             |
| cssz-88a | Central and South America | 287.5309          | -35.0437         | 32.81         | 15         | 11.96         |
| cssz-88b | Central and South America | 287.0862          | -34.8086         | 32.81         | 8          | 5             |
| cssz-88z | Central and South America | 287.9308          | -35.2545         | 32.81         | 30         | 24.9          |
| cssz-89a | Central and South America | 287.2380          | -35.5993         | 14.52         | 16.67      | 11.96         |
| cssz-89b | Central and South America | 286.7261          | -35.4914         | 14.52         | 8          | 5             |
| cssz-89z | Central and South America | 287.7014          | -35.6968         | 14.52         | 30         | 26.3          |
| cssz-90a | Central and South America | 286.8442          | -36.5645         | 22.64         | 18.33      | 11.96         |
| cssz-90b | Central and South America | 286.3548          | -36.4004         | 22.64         | 8          | 5             |
| cssz-90z | Central and South America | 287.2916          | -36.7142         | 22.64         | 30         | 27.68         |
| cssz-91a | Central and South America | 286.5925          | -37.2488         | 10.9          | 20         | 11.96         |
| cssz-91b | Central and South America | 286.0721          | -37.1690         | 10.9          | 8          | 5             |
| cssz-91z | Central and South America | 287.0726          | -37.3224         | 10.9          | 30         | 29.06         |

| Table B2: | (continued) |
|-----------|-------------|
|-----------|-------------|

| Segment   | Description               | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|-----------|---------------------------|-------------------|------------------|---------------|------------|---------------|
| cssz-92a  | Central and South America | 286.4254          | -38.0945         | 8.23          | 20         | 11.96         |
| cssz-92b  | Central and South America | 285.8948          | -38.0341         | 8.23          | 8          | 5             |
| cssz-92z  | Central and South America | 286.9303          | -38.1520         | 8.23          | 26.67      | 29.06         |
| cssz-93a  | Central and South America | 286.2047          | -39.0535         | 13.46         | 20         | 11.96         |
| cssz-93b  | Central and South America | 285.6765          | -38.9553         | 13.46         | 8          | 5             |
| cssz-93z  | Central and South America | 286.7216          | -39.1495         | 13.46         | 23.33      | 29.06         |
| cssz-94a  | Central and South America | 286.0772          | -39.7883         | 3.4           | 20         | 11.96         |
| cssz-94b  | Central and South America | 285.5290          | -39.7633         | 3.4           | 8          | 5             |
| cssz-94z  | Central and South America | 286.6255          | -39.8133         | 3.4           | 20         | 29.06         |
| cssz-95a  | Central and South America | 285.9426          | -40.7760         | 9.84          | 20         | 11.96         |
| cssz-95b  | Central and South America | 285.3937          | -40.7039         | 9.84          | 8          | 5             |
| cssz-95z  | Central and South America | 286.4921          | -40.8481         | 9.84          | 20         | 29.06         |
| cssz-96a  | Central and South America | 285.7839          | -41.6303         | 7.6           | 20         | 11.96         |
| cssz-96b  | Central and South America | 285.2245          | -41.5745         | 7.6           | 8          | 5             |
| cssz-96x  | Central and South America | 287.4652          | -41.7977         | 7.6           | 20         | 63.26         |
| cssz-96y  | Central and South America | 286.9043          | -41.7419         | 7.6           | 20         | 46.16         |
| cssz-96z  | Central and South America | 286.3439          | -41.6861         | 7.6           | 20         | 29.06         |
| cssz-97a  | Central and South America | 285.6695          | -42.4882         | 5.3           | 20         | 11.96         |
| cssz-97b  | Central and South America | 285.0998          | -42.4492         | 5.3           | 8          | 5             |
| cssz-97x  | Central and South America | 287.3809          | -42.6052         | 5.3           | 20         | 63.26         |
| cssz-97y  | Central and South America | 286.8101          | -42.5662         | 5.3           | 20         | 46.16         |
| cssz-97z  | Central and South America | 286.2396          | -42.5272         | 5.3           | 20         | 29.06         |
| cssz-98a  | Central and South America | 285.5035          | -43.4553         | 10.53         | 20         | 11.96         |
| cssz-98b  | Central and South America | 284.9322          | -43.3782         | 10.53         | 8          | <b>5</b>      |
| cssz-98x  | Central and South America | 287.2218          | -43.6866         | 10.53         | 20         | 63.26         |
| cssz-98y  | Central and South America | 286.6483          | -43.6095         | 10.53         | 20         | 46.16         |
| cssz-98z  | Central and South America | 286.0755          | -43.5324         | 10.53         | 20         | 29.06         |
| cssz-99a  | Central and South America | 285.3700          | -44.2595         | 4.86          | 20         | 11.96         |
| cssz-99b  | Central and South America | 284.7830          | -44.2237         | 4.86          | 8          | 5             |
| cssz-99x  | Central and South America | 287.1332          | -44.3669         | 4.86          | 20         | 63.26         |
| cssz-99y  | Central and South America | 286.5451          | -44.3311         | 4.86          | 20         | 46.16         |
| cssz-99z  | Central and South America | 285.9574          | -44.2953         | 4.86          | 20         | 29.06         |
| cssz-100a | Central and South America | 285.2713          | -45.1664         | 5.68          | 20         | 11.96         |
| cssz-100b | Central and South America | 284.6758          | -45.1246         | 5.68          | 8          | 5             |
| cssz-100x | Central and South America | 287.0603          | -45.2918         | 5.68          | 20         | 63.26         |
| cssz-100y | Central and South America | 286.4635          | -45.2500         | 5.68          | 20         | 46.16         |
| cssz-100z | Central and South America | 285.8672          | -45.2082         | 5.68          | 20         | 29.06         |
| cssz-101a | Central and South America | 285.3080          | -45.8607         | 352.6         | 20         | 9.36          |

| Segment         | Description               | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|-----------------|---------------------------|-------------------|------------------|---------------|------------|---------------|
| cssz-101b       | Central and South America | 284.7067          | -45.9152         | 352.6         | 5          | 5             |
| cssz-101y       | Central and South America | 286.5089          | -45.7517         | 352.6         | 20         | 43.56         |
| cssz-101z       | Central and South America | 285.9088          | -45.8062         | 352.6         | 20         | 26.46         |
| cssz-102a       | Central and South America | 285.2028          | -47.1185         | 17.72         | 5          | 9.36          |
| cssz-102b       | Central and South America | 284.5772          | -46.9823         | 17.72         | 5          | 5             |
| cssz-102y       | Central and South America | 286.4588          | -47.3909         | 17.72         | 5          | 18.07         |
| cssz-102z       | Central and South America | 285.8300          | -47.2547         | 17.72         | 5          | 13.72         |
| cssz-103a       | Central and South America | 284.7075          | -48.0396         | 23.37         | 7.5        | 11.53         |
| cssz-103b       | Central and South America | 284.0972          | -47.8630         | 23.37         | 7.5        | 5             |
| cssz-103x       | Central and South America | 286.5511          | -48.5694         | 23.37         | 7.5        | 31.11         |
| cssz-103y       | Central and South America | 285.9344          | -48.3928         | 23.37         | 7.5        | 24.58         |
| cssz-103z       | Central and South America | 285.3199          | -48.2162         | 23.37         | 7.5        | 18.05         |
| cssz-104a       | Central and South America | 284.3440          | -48.7597         | 14.87         | 10         | 13.68         |
| cssz-104b       | Central and South America | 283.6962          | -48.6462         | 14.87         | 10         | 5             |
| cssz-104x       | Central and South America | 286.2962          | -49.1002         | 14.87         | 10         | 39.73         |
| cssz-104y       | Central and South America | 285.6440          | -48.9867         | 14.87         | 10         | 31.05         |
| cssz-104z       | Central and South America | 284.9933          | -48.8732         | 14.87         | 10         | 22.36         |
| cssz-105a       | Central and South America | 284.2312          | -49.4198         | 0.25          | 9.67       | 13.4          |
| cssz-105b       | Central and South America | 283.5518          | -49.4179         | 0.25          | 9.67       | 5             |
| cssz-105x       | Central and South America | 286.2718          | -49.4255         | 0.25          | 9.67       | 38.59         |
| cssz-105y       | Central and South America | 285.5908          | -49.4236         | 0.25          | 9.67       | 30.2          |
| cssz-105z       | Central and South America | 284.9114          | -49.4217         | 0.25          | 9.67       | 21.8          |
| cssz-106a       | Central and South America | 284.3730          | -50.1117         | 347.5         | 9.25       | 13.04         |
| cssz-106b       | Central and South America | 283.6974          | -50.2077         | 347.5         | 9.25       | 5             |
| cssz-106x       | Central and South America | 286.3916          | -49.8238         | 347.5         | 9.25       | 37.15         |
| cssz-106y       | Central and South America | 285.7201          | -49.9198         | 347.5         | 9.25       | 29.11         |
| cssz-106z       | Central and South America | 285.0472          | -50.0157         | 347.5         | 9.25       | 21.07         |
| cssz-107a       | Central and South America | 284.7130          | -50.9714         | 346.5         | 9          | 12.82         |
| cssz-107b       | Central and South America | 284.0273          | -51.0751         | 346.5         | 9          | 5             |
| cssz-107x       | Central and South America | 286.7611          | -50.6603         | 346.5         | 9          | 36.29         |
| $\rm cssz-107y$ | Central and South America | 286.0799          | -50.7640         | 346.5         | 9          | 28.47         |
| cssz-107z       | Central and South America | 285.3972          | -50.8677         | 346.5         | 9          | 20.64         |
| cssz-108a       | Central and South America | 285.0378          | -51.9370         | 352           | 8.67       | 12.54         |
| cssz-108b       | Central and South America | 284.3241          | -51.9987         | 352           | 8.67       | 5             |
| cssz-108x       | Central and South America | 287.1729          | -51.7519         | 352           | 8.67       | 35.15         |
| cssz-108y       | Central and South America | 286.4622          | -51.8136         | 352           | 8.67       | 27.61         |
| cssz-108z       | Central and South America | 285.7505          | -51.8753         | 352           | 8.67       | 20.07         |
| cssz-109a       | Central and South America | 285.2635          | -52.8439         | 353.1         | 8.33       | 12.24         |
| cssz-109b       | Central and South America | 284.5326          | -52.8974         | 353.1         | 8.33       | 5             |

| Segment   | Description               | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|-----------|---------------------------|-------------------|------------------|---------------|------------|---------------|
| cssz-109x | Central and South America | 287.4508          | -52.6834         | 353.1         | 8.33       | 33.97         |
| cssz-109y | Central and South America | 286.7226          | -52.7369         | 353.1         | 8.33       | 26.73         |
| cssz-109z | Central and South America | 285.9935          | -52.7904         | 353.1         | 8.33       | 19.49         |
| cssz-110a | Central and South America | 285.5705          | -53.4139         | 334.2         | 8          | 11.96         |
| cssz-110b | Central and South America | 284.8972          | -53.6076         | 334.2         | 8          | 5             |
| cssz-110x | Central and South America | 287.5724          | -52.8328         | 334.2         | 8          | 32.83         |
| cssz-110y | Central and South America | 286.9081          | -53.0265         | 334.2         | 8          | 25.88         |
| cssz-110z | Central and South America | 286.2408          | -53.2202         | 334.2         | 8          | 18.92         |
| cssz-111a | Central and South America | 286.1627          | -53.8749         | 313.8         | 8          | 11.96         |
| cssz-111b | Central and South America | 285.6382          | -54.1958         | 313.8         | 8          | 5             |
| cssz-111x | Central and South America | 287.7124          | -52.9122         | 313.8         | 8          | 32.83         |
| cssz-111y | Central and South America | 287.1997          | -53.2331         | 313.8         | 8          | 25.88         |
| cssz-111z | Central and South America | 286.6832          | -53.5540         | 313.8         | 8          | 18.92         |
| cssz-112a | Central and South America | 287.3287          | -54.5394         | 316.4         | 8          | 11.96         |
| cssz-112b | Central and South America | 286.7715          | -54.8462         | 316.4         | 8          | 5             |
| cssz-112x | Central and South America | 288.9756          | -53.6190         | 316.4         | 8          | 32.83         |
| cssz-112y | Central and South America | 288.4307          | -53.9258         | 316.4         | 8          | 25.88         |
| cssz-112z | Central and South America | 287.8817          | -54.2326         | 316.4         | 8          | 18.92         |
| cssz-113a | Central and South America | 288.3409          | -55.0480         | 307.6         | 8          | 11.96         |
| cssz-113b | Central and South America | 287.8647          | -55.4002         | 307.6         | 8          | 5             |
| cssz-113x | Central and South America | 289.7450          | -53.9914         | 307.6         | 8          | 32.83         |
| cssz-113y | Central and South America | 289.2810          | -54.3436         | 307.6         | 8          | 25.88         |
| cssz-113z | Central and South America | 288.8130          | -54.6958         | 307.6         | 8          | 18.92         |
| cssz-114a | Central and South America | 289.5342          | -55.5026         | 301.5         | 8          | 11.96         |
| cssz-114b | Central and South America | 289.1221          | -55.8819         | 301.5         | 8          | 5             |
| cssz-114x | Central and South America | 290.7472          | -54.3647         | 301.5         | 8          | 32.83         |
| cssz-114y | Central and South America | 290.3467          | -54.7440         | 301.5         | 8          | 25.88         |
| cssz-114z | Central and South America | 289.9424          | -55.1233         | 301.5         | 8          | 18.92         |
| cssz-115a | Central and South America | 290.7682          | -55.8485         | 292.7         | 8          | 11.96         |
| cssz-115b | Central and South America | 290.4608          | -56.2588         | 292.7         | 8          | 5             |
| cssz-115x | Central and South America | 291.6714          | -54.6176         | 292.7         | 8          | 32.83         |
| cssz-115y | Central and South America | 291.3734          | -55.0279         | 292.7         | 8          | 25.88         |
| cssz-115z | Central and South America | 291.0724          | -55.4382         | 292.7         | 8          | 18.92         |



Figure B3: Eastern Philippines Subduction Zone unit sources.

| eps:-0a         Eastern Philippines         128.5264         1.5930         180         44         26.92           eps:-0b         Eastern Philippines         128.5264         1.5930         180         26         5           eps:-1a         Eastern Philippines         128.521         2.3289         153.6         24.9         5           eps:-2a         Eastern Philippines         128.1943         3.1508         151.9         45.9         3         2.3         5.35           eps:-3b         Eastern Philippines         128.1108         4.1445         155.2         57.3         40.22           eps:-4b         Eastern Philippines         127.7324         4.9155         146.8         54.8         7.39           eps:-5b         Eastern Philippines         127.73930         5.7272         162.9         79.9         8.25           eps:-6b         Eastern Philippines         126.6478         7.6005         178.9         48.6         15.09           eps:-7a         Eastern Philippines         126.6478         7.4711         175.8         50.7         6.83           eps:-7a         Eastern Philippines         126.6478         8.3164         163.3         6.6.7         48.6         45.50                                                                                                                                               | Segment  | Description         | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|-------------------|------------------|---------------|------------|---------------|
| eps-0b         Eastern Philippines         128.8521         2.3289         153.6         44.2         27.62           cps2-1b         Eastern Philippines         128.521         2.3289         153.6         44.2         27.62           cps2-1b         Eastern Philippines         128.408         2.4720         153.6         26.9         5           cps2-3a         Eastern Philippines         128.4706         3.2079         151.9         32.8         5.35           cps2-3b         Eastern Philippines         127.6120         4.8371         146.8         7.14         48.25           cps2-4a         Eastern Philippines         127.3724         4.9155         146.8         54.8         7.39         57.74           cps2-6a         Eastern Philippines         127.3930         5.7272         162.9         7.9.4         8.25           cps2-6b         Eastern Philippines         126.6478         6.6027         178.9         48.6         45.09           cps2-6b         Eastern Philippines         126.6478         7.4711         175.8         50.7         6.83           cps2-7b         Eastern Philippines         126.678         7.4711         175.8         50.7         6.83           cps2-7b         <                                                                                                                                 | epsz-0a  | Eastern Philippines | 128.5264          | 1.5930           | 180           | 44         | 26.92         |
| eps-1aEastern Philippines $128,521$ $2.3289$ $153.6$ $44.2$ $27.62$ cps-2bEastern Philippines $128,8408$ $2.4720$ $153.6$ $64.9$ $5$ cps-2aEastern Philippines $128,4706$ $3.2979$ $151.9$ $32.8$ $5.35$ cps-3bEastern Philippines $127.8989$ $4.0428$ $155.2$ $47.3$ $40.22$ cps-4aEastern Philippines $127.8989$ $4.0428$ $155.2$ $47.3$ $40.22$ cps-4bEastern Philippines $127.7324$ $4.9155$ $116.8$ $54.8$ $7.39$ cps-5aEastern Philippines $127.373$ $5.7040$ $162.9$ $79.4$ $8.25$ cps-6bEastern Philippines $127.3730$ $5.7272$ $162.9$ $79.4$ $8.25$ cps-7bEastern Philippines $126.6488$ $6.6027$ $178.9$ $48.6$ $45.09$ cps-7bEastern Philippines $126.6488$ $6.6027$ $178.9$ $48.6$ $45.52$ cps-7bEastern Philippines $126.6278$ $7.4711$ $175.8$ $50.7$ $6.83$ cps-8aEastern Philippines $126.6273$ $9.0961$ $164.1$ $47$ $43.59$ cps-9bEastern Philippines $126.5735$ $9.1801$ $164.5$ $43.1$ $8.09$ cps-10bEastern Philippines $126.5735$ $9.1801$ $164.5$ $43.1$ $42.25$ cps-10bEastern Philippines $125.6079$ $9.0595$ $164.5$ $43.1$ $42.25$ cps-11a                                                                                                                                                                                                                                                                                                                    | epsz-0b  | Eastern Philippines | 128.8496          | 1.5930           | 180           | 26         | 5             |
| eps-lb         Eastern Philippines         128.8408         2.4720         153.6         26.9         5           cps-2b         Eastern Philippines         128.1943         3.1508         151.9         32.8         32.44           cps-2b         Eastern Philippines         127.8899         4.0428         155.2         57.3         40.22           eps-4b         Eastern Philippines         127.8199         4.0428         155.2         57.3         40.22           eps-4b         Eastern Philippines         127.6120         4.8371         146.8         54.8         7.39           eps-4b         Eastern Philippines         127.3173         5.7040         162.9         7.9.9         57.4           eps-5b         Eastern Philippines         126.648         6.6085         178.9         48.6         45.09           eps-7a         Eastern Philippines         126.6478         7.4711         175.8         50.7         6.633           eps-8a         Eastern Philippines         126.6277         8.2456         163.3         66.7         48.6           eps-8b         Eastern Philippines         126.6735         9.1801         164.1         44.9         8.3           eps-10a         Eastern Philippines                                                                                                                                    | epsz-1a  | Eastern Philippines | 128.5521          | 2.3289           | 153.6         | 44.2       | 27.62         |
| eps-2a         Eastern Philippines         128.1943         3.1508         151.9         45.9         32.44           eps-2b         Eastern Philippines         128.4706         3.2979         151.9         32.8         5.35           eps-3a         Eastern Philippines         127.8899         4.0428         155.2         47.7         40.22           eps-4a         Eastern Philippines         127.6120         4.8371         146.8         71.4         48.25           eps-4a         Eastern Philippines         127.324         4.9155         146.8         73.9           eps-5b         Eastern Philippines         127.3300         5.7272         162.9         79.4         8.25           eps-6a         Eastern Philippines         126.6478         6.6027         178.9         48.6         45.09           eps-7b         Eastern Philippines         126.6478         7.4921         175.8         50.7         6.83           eps-7b         Eastern Philippines         126.6478         6.0027         163.3         56.7         7.45           eps-8a         Eastern Philippines         126.6735         9.164.1         47.9         8.3           eps-2b         Eastern Philippines         126.2751         9.0961 </td <td>epsz-1b</td> <td>Eastern Philippines</td> <td>128.8408</td> <td>2.4720</td> <td>153.6</td> <td>26.9</td> <td>5</td> | epsz-1b  | Eastern Philippines | 128.8408          | 2.4720           | 153.6         | 26.9       | 5             |
| eps-2bEastern Philippines128.4706 $3.2979$ 151.9 $32.8$ $5.35$ eps-3aEastern Philippines127.8899 $4.0428$ $155.2$ $42.7$ $6.31$ eps-4aEastern Philippines127.6120 $4.8371$ $146.8$ $71.4$ $48.25$ eps-4bEastern Philippines $127.7324$ $4.9155$ $146.8$ $71.4$ $48.25$ eps-5bEastern Philippines $127.3173$ $5.7040$ $162.9$ $79.9$ $57.47$ eps-5bEastern Philippines $127.3930$ $5.7272$ $162.9$ $79.4$ $8.25$ eps-7aEastern Philippines $126.9478$ $6.6085$ $178.9$ $48.6$ $45.09$ eps-7bEastern Philippines $126.6488$ $6.6027$ $178.9$ $48.6$ $7.58$ eps-7aEastern Philippines $126.6478$ $7.4111$ $175.8$ $50.7$ $6.83$ eps-7aEastern Philippines $126.6227$ $8.2466$ $163.3$ $46.7$ $45.62$ eps-7aEastern Philippines $126.6227$ $8.2466$ $163.3$ $46.7$ $45.62$ eps-8aEastern Philippines $126.62751$ $9.0961$ $164.1$ $47$ $43.59$ eps-2bEastern Philippines $126.6735$ $9.1801$ $164.1$ $44.9$ $8.3$ eps-2bEastern Philippines $125.6079$ $10.6357$ $155$ $37.8$ $7.64$ eps-21aEastern Philippines $125.6079$ $10.6557$ $155$ $37.8$ $7.64$ eps-1bEastern                                                                                                                                                                                                                                                                                                                        | epsz-2a  | Eastern Philippines | 128.1943          | 3.1508           | 151.9         | 45.9       | 32.44         |
| eps-3a         Eastern Philippines         127.8899         4.0428         155.2         57.3         40.22           eps-4b         Eastern Philippines         128.1108         4.1445         155.2         42.7         6.31           eps-4b         Eastern Philippines         127.7324         4.9155         146.8         54.8         7.39           eps-4b         Eastern Philippines         127.7324         4.9155         146.8         54.8         7.59           eps-4b         Eastern Philippines         126.6478         6.6027         178.9         48.6         7.58           eps-7a         Eastern Philippines         126.9478         6.6085         178.9         48.6         7.58           eps-7b         Eastern Philippines         126.678         7.4711         175.8         50.7         45.52           eps-8a         Eastern Philippines         126.8713         9.0961         164.1         47         43.59           eps-9a         Eastern Philippines         126.5751         9.0961         164.5         43.1         42.25           eps-10a         Eastern Philippines         126.3007         10.0438         164.5         43.1         42.25           eps-11b         Eastern Philippines                                                                                                                                 | epsz-2b  | Eastern Philippines | 128.4706          | 3.2979           | 151.9         | 32.8       | 5.35          |
| eps-3bEastern Philippines128.11084.1445155.242.76.31eps-4aEastern Philippines127.61204.8371146.871.44.825eps-4bEastern Philippines127.3735.7040162.979.973.4eps-5bEastern Philippines127.3735.7272162.979.48.25eps-6aEastern Philippines126.64886.6027178.948.645.09eps-7bEastern Philippines126.64787.4711175.850.745.52eps-7bEastern Philippines126.65787.4711175.850.76.83eps-8bEastern Philippines126.62278.2456163.348.97.92eps-8bEastern Philippines126.67519.0961164.14743.59eps-9bEastern Philippines126.50789.9559164.543.142.25eps-10aEastern Philippines126.607910.643715537.838.29eps-11bEastern Philippines126.607910.655715537.838.29eps-12bEastern Philippines125.035310.805915537.838.29eps-12bEastern Philippines125.537411.7492172.1367.62eps-12bEastern Philippines125.527812.4029141.532.433.87eps-13aEastern Philippines125.527812.4029141.532.43.81eps-14bEastern Philippines<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | epsz-3a  | Eastern Philippines | 127.8899          | 4.0428           | 155.2         | 57.3       | 40.22         |
| epsz-4aEastern Philippines $127,6120$ $4.8371$ $146.8$ $71.4$ $48.25$ epsz-5aEastern Philippines $127,7324$ $4.9155$ $146.8$ $54.8$ $7.39$ epsz-5bEastern Philippines $127,3173$ $5.7040$ $162.9$ $79.9$ $57.4$ epsz-6aEastern Philippines $126.6488$ $6.6027$ $178.9$ $48.6$ $45.09$ epsz-7aEastern Philippines $126.6478$ $6.6085$ $178.9$ $48.6$ $7.58$ epsz-7bEastern Philippines $126.6478$ $7.4711$ $175.8$ $50.7$ $6.83$ epsz-7bEastern Philippines $126.6227$ $8.2456$ $163.3$ $56.7$ $45.6$ epsz-8bEastern Philippines $126.6735$ $9.1801$ $164.1$ $47$ $43.59$ epsz-9aEastern Philippines $126.5735$ $9.1801$ $164.1$ $47$ $43.59$ epsz-10aEastern Philippines $126.5735$ $9.1801$ $164.1$ $44.9$ $8.3$ epsz-10bEastern Philippines $125.0798$ $9.9559$ $164.5$ $43.1$ $42.25$ epsz-11aEastern Philippines $125.6079$ $10.6557$ $155$ $37.8$ $8.29$ epsz-12aEastern Philippines $125.5278$ $12.4029$ $141.5$ $32.4$ $7.08$ epsz-12aEastern Philippines $125.5278$ $12.4029$ $141.5$ $32.4$ $7.62$ epsz-12aEastern Philippines $125.5278$ $12.4029$ $141.5$ $32.4$ $7.62$                                                                                                                                                                                                                                                                                                        | epsz-3b  | Eastern Philippines | 128.1108          | 4.1445           | 155.2         | 42.7       | 6.31          |
| epsz-4bEastern Philippines $127,324$ $4.9155$ $146.8$ $54.8$ $7.39$ epsz-5aEastern Philippines $127,3173$ $5.7040$ $162.9$ $79.9$ $57.4$ epsz-5aEastern Philippines $126,6488$ $6.6027$ $178.9$ $48.6$ $45.09$ epsz-6aEastern Philippines $126,6488$ $6.6025$ $178.9$ $48.6$ $7.58$ epsz-7aEastern Philippines $126,6478$ $6.6085$ $178.9$ $48.6$ $7.58$ epsz-7bEastern Philippines $126,6473$ $7.4711$ $175.8$ $50.7$ $45.52$ epsz-7bEastern Philippines $126,6227$ $8.2456$ $163.3$ $56.7$ $45.6$ epsz-8bEastern Philippines $126,6227$ $8.2456$ $163.3$ $48.9$ $7.92$ epsz-9bEastern Philippines $126,5735$ $9.1801$ $164.1$ $47$ $43.50$ epsz-10aEastern Philippines $126,5735$ $9.8559$ $164.5$ $43.1$ $8.09$ epsz-11aEastern Philippines $125,6798$ $9.9559$ $164.5$ $43.1$ $8.09$ epsz-12aEastern Philippines $125,6079$ $10.6557$ $155$ $37.8$ $7.64$ epsz-13aEastern Philippines $125,4697$ $11.7452$ $172.1$ $36$ $7.62$ epsz-13aEastern Philippines $125,5278$ $12.4029$ $141.5$ $32.4$ $33.87$ epsz-14aEastern Philippines $125.6427$ $13.1365$ $158.2$ $23$ $6.38$ <td< td=""><td>epsz-4a</td><td>Eastern Philippines</td><td>127.6120</td><td>4.8371</td><td>146.8</td><td>71.4</td><td>48.25</td></td<>                                                                                                                                                                    | epsz-4a  | Eastern Philippines | 127.6120          | 4.8371           | 146.8         | 71.4       | 48.25         |
| epsz-5aEastern Philippines $127, 3173$ $5.7040$ $162.9$ $79.9$ $57.4$ epsz-5bEastern Philippines $127, 3373$ $5.7242$ $162.9$ $79.4$ $8.25$ epsz-6aEastern Philippines $126, 6488$ $6.6027$ $178.9$ $48.6$ $7.58$ epsz-7aEastern Philippines $126, 6478$ $6.6085$ $178.9$ $48.6$ $7.58$ epsz-7bEastern Philippines $126, 6578$ $7.4711$ $175.8$ $50.7$ $6.83$ epsz-8bEastern Philippines $126, 6227$ $8.2456$ $163.3$ $48.9$ $7.92$ epsz-9aEastern Philippines $126, 2751$ $9.0961$ $164.1$ $47$ $43.59$ epsz-9bEastern Philippines $126, 5735$ $9.1801$ $164.1$ $44.9$ $8.3$ epsz-10aEastern Philippines $125, 6798$ $9.9559$ $164.5$ $43.1$ $8.09$ epsz-11aEastern Philippines $125, 6079$ $10.6557$ $155$ $37.8$ $38.29$ epsz-12aEastern Philippines $125, 4697$ $11.7452$ $172.1$ $36$ $7.62$ epsz-12bEastern Philippines $125, 5278$ $12.4029$ $141.5$ $32.4$ $3.87$ epsz-13bEastern Philippines $125, 0421$ $13.2898$ $158.2$ $23$ $6.38$ epsz-14aEastern Philippines $125, 5278$ $12.4029$ $141.5$ $32.4$ $7.08$ epsz-15bEastern Philippines $124, 6476$ $13.365$ $158.2$ $23$ $6.38$ <td>epsz-4b</td> <td>Eastern Philippines</td> <td>127.7324</td> <td>4.9155</td> <td>146.8</td> <td>54.8</td> <td>7.39</td>                                                                                                                                                                   | epsz-4b  | Eastern Philippines | 127.7324          | 4.9155           | 146.8         | 54.8       | 7.39          |
| epsz-5bEastern Philippines127.3930 $5.7272$ 162.9 $79.4$ $8.25$ epsz-6aEastern Philippines126.64886.6027178.948.645.09epsz-7aEastern Philippines126.64786.6085177.848.67.58epsz-7bEastern Philippines126.64786.6085177.850.745.52epsz-7bEastern Philippines126.6227 $8.2456$ 163.356.745.6epsz-8bEastern Philippines126.2751 $9.0961$ 164.14743.59epsz-9aEastern Philippines126.5735 $9.1801$ 164.144.98.3epsz-9bEastern Philippines125.0798 $9.9559$ 164.543.142.25epsz-10aEastern Philippines125.007910.0438164.543.18.09epsz-11aEastern Philippines125.030710.0438164.537.837.01epsz-12bEastern Philippines125.469711.7452172.13637.01epsz-13aEastern Philippines125.527812.4029141.532.43.857epsz-14bEastern Philippines125.042113.2898158.2236.39epsz-15bEastern Philippines124.647613.1365.154.124.617epsz-16aEastern Philippines124.637314.113156.124.126.51epsz-15bEastern Philippines123.89814.4025140.319.55epsz-16a                                                                                                                                                                                                                                                                                                                                                                                                                                                            | epsz-5a  | Eastern Philippines | 127.3173          | 5.7040           | 162.9         | 79.9       | 57.4          |
| epsz-6aEastern Philippines126.64886.6027178.948.645.09opsz-6bEastern Philippines126.94786.6085178.948.67.58epsz-7aEastern Philippines126.04397.4921175.850.745.52epsz-8aEastern Philippines126.62278.2456163.356.745.62epsz-8bEastern Philippines126.62278.2456163.336.745.62epsz-8aEastern Philippines126.7519.0961164.14743.59epsz-9bEastern Philippines125.97989.9559164.543.142.25epsz-10aEastern Philippines125.607910.0438164.543.18.09epsz-11aEastern Philippines125.607910.655715537.838.29opsz-12bEastern Philippines125.837411.7452172.13637.01epsz-12aEastern Philippines125.527812.4029141.532.433.87epsz-13bEastern Philippines125.527812.4029141.532.47.08epsz-14aEastern Philippines124.647613.1365158.22.325.92epsz-15aEastern Philippines124.647613.1365158.22.36.38epsz-16aEastern Philippines124.647613.1365158.22.36.38epsz-15aEastern Philippines124.30713.9453156.124.16.09epsz-16a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | epsz-5b  | Eastern Philippines | 127.3930          | 5.7272           | 162.9         | 79.4       | 8.25          |
| epsz-6bEastern Philippines126.9478 $6.6085$ 178.9 $48.6$ $7.58$ epsz-7aEastern Philippines126.6578 $7.4711$ 175.8 $50.7$ $45.52$ epsz-7bEastern Philippines126.6227 $8.2456$ $163.3$ $56.7$ $45.62$ epsz-8aEastern Philippines126.6227 $8.2456$ $163.3$ $48.9$ $7.92$ epsz-9aEastern Philippines126.5735 $9.0961$ $164.1$ $47$ $43.59$ epsz-9bEastern Philippines126.5735 $9.1801$ $164.1$ $44.9$ $8.3$ epsz-10aEastern Philippines $126.079$ $9.0559$ $164.5$ $43.1$ $42.25$ epsz-11bEastern Philippines $125.0798$ $9.9559$ $164.5$ $43.1$ $8.09$ epsz-12bEastern Philippines $125.0797$ $10.6557$ $155$ $37.8$ $8.29$ epsz-12aEastern Philippines $125.079$ $10.6557$ $155$ $37.8$ $7.64$ epsz-12bEastern Philippines $125.079$ $10.6557$ $155$ $37.8$ $7.64$ epsz-12bEastern Philippines $125.238$ $12.1670$ $141.5$ $32.4$ $3.87$ epsz-13aEastern Philippines $125.238$ $12.4029$ $141.5$ $32.4$ $7.08$ epsz-14aEastern Philippines $124.6476$ $13.1365$ $158.2$ $23$ $6.38$ epsz-15aEastern Philippines $124.6476$ $13.13651$ $24.1$ $26.51$ epsz-16bEastern Phili                                                                                                                                                                                                                                                                                                                  | epsz-6a  | Eastern Philippines | 126.6488          | 6.6027           | 178.9         | 48.6       | 45.09         |
| epsz-7aEastern Philippines126.65787.4711175.850.745.52epsz-7bEastern Philippines126.94397.4921175.850.76.83epsz-8aEastern Philippines126.62278.2456163.356.745.6epsz-9bEastern Philippines126.66148.3164163.348.97.92epsz-9bEastern Philippines126.7359.0861164.14743.59epsz-9bEastern Philippines125.97989.9559164.543.142.25epsz-10aEastern Philippines125.007910.0438164.543.18.09epsz-11aEastern Philippines125.935310.805915537.837.64epsz-12aEastern Philippines125.937411.7452172.1367.62epsz-13aEastern Philippines125.527812.4029141.532.433.87epsz-14aEastern Philippines125.042113.365158.22325.92epsz-15bEastern Philippines124.607314.113156.124.126.51epsz-16aEastern Philippines123.89814.4025140.319.55epsz-17aEastern Philippines123.60414.7222117.615.318.19epsz-18bEastern Philippines123.68214.025140.319.55epsz-17aEastern Philippines123.68214.022117.615.318.19epsz-18bEaster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | epsz-6b  | Eastern Philippines | 126.9478          | 6.6085           | 178.9         | 48.6       | 7.58          |
| epsz-7bEastern Philippines $126,9439$ $7.4921$ $175.8$ $50.7$ $6.83$ epsz-8aEastern Philippines $126,6227$ $8.2456$ $163.3$ $56.7$ $45.6$ epsz-8bEastern Philippines $126,6227$ $8.2456$ $163.3$ $48.9$ $7.92$ epsz-9aEastern Philippines $126,2751$ $9.0961$ $164.1$ $47$ $43.59$ epsz-9bEastern Philippines $122,5798$ $9.9559$ $164.5$ $43.1$ $42.25$ epsz-10aEastern Philippines $125,9798$ $9.9559$ $164.5$ $43.1$ $42.25$ epsz-10bEastern Philippines $125,0307$ $10.0438$ $164.5$ $43.1$ $8.09$ epsz-11aEastern Philippines $125,0353$ $10.8059$ $155$ $37.8$ $7.64$ epsz-12aEastern Philippines $125,0353$ $10.8059$ $155$ $37.8$ $7.64$ epsz-12aEastern Philippines $125,238$ $12.1670$ $141.5$ $32.4$ $33.87$ epsz-13aEastern Philippines $125,5278$ $12.4029$ $141.5$ $32.4$ $7.08$ epsz-14aEastern Philippines $124.6476$ $13.1365$ $158.2$ $23$ $6.38$ epsz-15bEastern Philippines $124.6476$ $13.1365$ $158.2$ $23$ $6.38$ epsz-16aEastern Philippines $124.6476$ $13.1365$ $158.2$ $23$ $6.38$ epsz-16aEastern Philippines $124.6973$ $14.113$ $156.1$ $24.1$ $6.09$ <tr< td=""><td>epsz-7a</td><td>Eastern Philippines</td><td>126.6578</td><td>7.4711</td><td>175.8</td><td>50.7</td><td>45.52</td></tr<>                                                                                                                                                                | epsz-7a  | Eastern Philippines | 126.6578          | 7.4711           | 175.8         | 50.7       | 45.52         |
| epsz-8aEastern Philippines126.62278.2456163.356.745.6epsz-8bEastern Philippines126.86148.3164163.348.97.92epsz-9aEastern Philippines126.57359.0961164.14743.59epsz-9bEastern Philippines126.57359.1801164.144.98.3epsz-10aEastern Philippines125.97989.9559164.543.142.25epsz-10aEastern Philippines125.607910.0438164.543.18.09epsz-11aEastern Philippines125.607910.655715537.838.29epsz-12aEastern Philippines125.935310.805915537.87.64epsz-13aEastern Philippines125.223812.1670141.532.47.08epsz-14aEastern Philippines125.527812.4029141.532.47.08epsz-15aEastern Philippines125.042113.2898158.22325.92epsz-16aEastern Philippines124.607314.113156.124.126.51epsz-16bEastern Philippines123.869814.4025140.319.55epsz-16bEastern Philippines123.460414.7222117.615.35epsz-17aEastern Philippines123.346414.7222117.615.35epsz-18aEastern Philippines123.394614.746267.4155epsz-17bEastern Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | epsz-7b  | Eastern Philippines | 126.9439          | 7.4921           | 175.8         | 50.7       | 6.83          |
| epsz-8bEastern Philippines126.86148.3164163.348.97.92epsz-9aEastern Philippines126.27519.0961164.14743.59epsz-9bEastern Philippines126.57359.1801164.144.98.3epsz-10aEastern Philippines126.300710.0438164.543.142.25epsz-11aEastern Philippines126.300710.0438164.543.142.25epsz-11bEastern Philippines125.07910.655715537.838.29epsz-12aEastern Philippines125.935310.805915537.87.64epsz-12aEastern Philippines125.238112.1670141.532.433.87epsz-13aEastern Philippines125.527812.4029141.532.47.08epsz-14aEastern Philippines125.042113.2898158.2236.38epsz-15aEastern Philippines124.647613.1365158.2236.38epsz-16bEastern Philippines124.30713.9453156.124.126.51epsz-16bEastern Philippines123.460414.7222117.615.315epsz-16bEastern Philippines123.668215.1062117.615.35epsz-17aEastern Philippines123.668215.1062117.615.35epsz-18aEastern Philippines123.668215.1062117.615.35epsz-18bEaste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | epsz-8a  | Eastern Philippines | 126.6227          | 8.2456           | 163.3         | 56.7       | 45.6          |
| epsz-9aEastern Philippines $126,2751$ $9.0961$ $164.1$ $47$ $43.59$ epsz-9bEastern Philippines $126,5735$ $9.1801$ $164.1$ $44.9$ $8.3$ epsz-10aEastern Philippines $125,9798$ $9.9559$ $164.5$ $43.1$ $42.25$ epsz-10bEastern Philippines $126,3007$ $10.0438$ $164.5$ $43.1$ $42.25$ epsz-11aEastern Philippines $125,0079$ $10.6557$ $155$ $37.8$ $38.29$ epsz-12aEastern Philippines $125,0353$ $10.8059$ $155$ $37.8$ $7.64$ epsz-12bEastern Philippines $125,2378$ $11.752$ $172.1$ $36$ $7.62$ epsz-13aEastern Philippines $125,2238$ $12.1670$ $141.5$ $32.4$ $33.87$ epsz-14aEastern Philippines $125,5278$ $12.4029$ $141.5$ $32.4$ $7.08$ epsz-15aEastern Philippines $122.6476$ $13.1365$ $158.2$ $23$ $25.92$ epsz-16aEastern Philippines $124.6476$ $13.1365$ $158.2$ $23$ $6.38$ epsz-15bEastern Philippines $124.6476$ $13.1365$ $158.2$ $23$ $6.38$ epsz-16bEastern Philippines $124.6973$ $14.113$ $156.1$ $24.1$ $6.09$ epsz-16bEastern Philippines $124.6973$ $14.125$ $140.3$ $19.5$ $5$ epsz-16bEastern Philippines $123.6682$ $15.062$ $117.6$ $15.3$ $15.9$ <tr< td=""><td>epsz-8b</td><td>Eastern Philippines</td><td>126.8614</td><td>8.3164</td><td>163.3</td><td>48.9</td><td>7.92</td></tr<>                                                                                                                                                                 | epsz-8b  | Eastern Philippines | 126.8614          | 8.3164           | 163.3         | 48.9       | 7.92          |
| epsz-9bEastern Philippines126.57359.1801164.144.98.3epsz-10aEastern Philippines125.97989.9559164.543.142.25epsz-10bEastern Philippines126.300710.0438164.543.18.09epsz-11aEastern Philippines125.607910.655715537.838.29epsz-11bEastern Philippines125.935310.805915537.87.64epsz-12aEastern Philippines125.469711.7452172.1367.62epsz-13aEastern Philippines125.223812.1670141.532.433.87epsz-14aEastern Philippines125.042113.1365158.22325.92epsz-14bEastern Philippines124.647613.1365158.22325.92epsz-14aEastern Philippines124.047613.1365158.2236.38epsz-15bEastern Philippines124.647314.113156.124.126.51epsz-16aEastern Philippines124.30713.9453156.124.126.51epsz-16bEastern Philippines124.697314.113156.124.16.09epsz-17aEastern Philippines123.280814.4025140.319.55epsz-18bEastern Philippines123.668215.1062117.615.318.19epsz-18bEastern Philippines123.668215.1062117.615.35epsz-18b <t< td=""><td>epsz-9a</td><td>Eastern Philippines</td><td>126.2751</td><td>9.0961</td><td>164.1</td><td>47</td><td>43.59</td></t<>                                                                                                                                                                                                                                                                                                                                                | epsz-9a  | Eastern Philippines | 126.2751          | 9.0961           | 164.1         | 47         | 43.59         |
| epsz-10aEastern Philippines125.97989.9559164.543.142.25epsz-10bEastern Philippines126.300710.0438164.543.18.09epsz-11aEastern Philippines125.607910.655715537.838.29epsz-11bEastern Philippines125.935310.805915537.87.64epsz-12aEastern Philippines125.469711.7452172.13637.01epsz-13aEastern Philippines125.223812.1670141.532.433.87epsz-14aEastern Philippines125.527812.4029141.532.437.08epsz-14bEastern Philippines125.042113.1365158.22325.92epsz-14bEastern Philippines124.647613.1365158.22325.92epsz-15aEastern Philippines124.310713.9453156.124.126.51epsz-16aEastern Philippines124.697314.113156.124.126.51epsz-16bEastern Philippines124.30614.4025140.319.55epsz-17aEastern Philippines123.668215.1062117.615.318.19epsz-18bEastern Philippines123.668215.1062117.615.35epsz-18bEastern Philippines123.394614.742267.4155epsz-18bEastern Philippines123.63815.7400189.6155epsz-19bEa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | epsz-9b  | Eastern Philippines | 126.5735          | 9.1801           | 164.1         | 44.9       | 8.3           |
| epsz-10bEastern Philippines126.300710.0438164.543.18.09epsz-11aEastern Philippines125.607910.655715537.838.29epsz-11bEastern Philippines125.935310.805915537.87.64epsz-12aEastern Philippines125.469711.7452172.13637.01epsz-12bEastern Philippines125.837411.7949172.1367.62epsz-13aEastern Philippines125.527812.4029141.532.433.87epsz-14aEastern Philippines125.042113.2898158.22325.92epsz-14aEastern Philippines125.042113.2898158.2236.38epsz-15aEastern Philippines124.647613.1365158.2236.38epsz-16aEastern Philippines124.697314.1113156.124.126.51epsz-16aEastern Philippines124.697314.1113156.124.16.09epsz-17aEastern Philippines123.899814.4025140.319.55epsz-17bEastern Philippines123.466414.7222117.615.318.19epsz-18aEastern Philippines123.21915.146767.4155epsz-18bEastern Philippines123.221915.146767.4155epsz-18bEastern Philippines123.394614.746267.4155epsz-19bEastern Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | epsz-10a | Eastern Philippines | 125.9798          | 9.9559           | 164.5         | 43.1       | 42.25         |
| epsz-11aEastern Philippines125.607910.655715537.838.29epsz-11bEastern Philippines125.935310.805915537.87.64epsz-12aEastern Philippines125.469711.7452172.13637.01epsz-12bEastern Philippines125.23811.7949172.1367.62epsz-13aEastern Philippines125.223812.1670141.532.433.87epsz-13bEastern Philippines125.527812.4029141.532.47.08epsz-14aEastern Philippines125.042113.2898158.22325.92epsz-15aEastern Philippines124.647613.1365158.2236.38epsz-15aEastern Philippines124.310713.9453156.124.126.51epsz-16aEastern Philippines124.236614.6728140.319.55epsz-17aEastern Philippines123.460414.7222117.615.35epsz-17bEastern Philippines123.394614.742267.4155epsz-18aEastern Philippines123.394614.742267.4155epsz-18bEastern Philippines123.394614.76267.4155epsz-18bEastern Philippines121.363815.7400189.6157.94epsz-19bEastern Philippines121.363815.7400189.6155epsz-19aEastern Philippines<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | epsz-10b | Eastern Philippines | 126.3007          | 10.0438          | 164.5         | 43.1       | 8.09          |
| epsz-11bEastern Philippines $125.9353$ $10.8059$ $155$ $37.8$ $7.64$ epsz-12aEastern Philippines $125.4697$ $11.7452$ $172.1$ $36$ $37.01$ epsz-12bEastern Philippines $125.8374$ $11.7949$ $172.1$ $36$ $7.62$ epsz-13aEastern Philippines $125.2238$ $12.1670$ $141.5$ $32.4$ $33.87$ epsz-13bEastern Philippines $125.5278$ $12.4029$ $141.5$ $32.4$ $7.08$ epsz-14aEastern Philippines $122.5278$ $12.4029$ $141.5$ $32.4$ $7.08$ epsz-14bEastern Philippines $122.5278$ $12.4029$ $141.5$ $32.4$ $7.08$ epsz-14bEastern Philippines $122.50421$ $13.2698$ $158.2$ $23$ $6.38$ epsz-15aEastern Philippines $124.3107$ $13.9453$ $156.1$ $24.1$ $26.51$ epsz-16aEastern Philippines $124.6973$ $14.113$ $156.1$ $24.1$ $6.09$ epsz-17aEastern Philippines $123.8998$ $14.4025$ $140.3$ $19.5$ $5$ epsz-17bEastern Philippines $123.4604$ $14.7222$ $117.6$ $15.3$ $18.19$ epsz-18aEastern Philippines $123.3946$ $14.7462$ $67.4$ $15$ $5$ epsz-19aEastern Philippines $123.3946$ $14.7462$ $67.4$ $15$ $5$ epsz-19aEastern Philippines $121.3638$ $15.7400$ $189.6$ $15$ $5$ <t< td=""><td>epsz-11a</td><td>Eastern Philippines</td><td>125.6079</td><td>10.6557</td><td>155</td><td>37.8</td><td>38.29</td></t<>                                                                                                                                                                     | epsz-11a | Eastern Philippines | 125.6079          | 10.6557          | 155           | 37.8       | 38.29         |
| epsz-12aEastern Philippines125.469711.7452172.13637.01epsz-12bEastern Philippines125.837411.7949172.1367.62epsz-13aEastern Philippines125.223812.1670141.532.433.87epsz-13bEastern Philippines125.527812.4029141.532.47.08epsz-14aEastern Philippines125.042113.2698158.22325.92epsz-14bEastern Philippines125.042113.2898158.2236.38epsz-15aEastern Philippines124.647613.1365158.2236.38epsz-15aEastern Philippines124.310713.9453156.124.126.51epsz-16aEastern Philippines124.697314.1113156.124.16.09epsz-16bEastern Philippines123.899814.4025140.319.55epsz-17aEastern Philippines123.460414.7222117.615.318.19epsz-17bEastern Philippines123.394614.746267.41517.94epsz-18bEastern Philippines123.394614.746267.4155epsz-19aEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.827917.3742184.2155epsz-21aEastern Phil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | epsz-11b | Eastern Philippines | 125.9353          | 10.8059          | 155           | 37.8       | 7.64          |
| epsz-12bEastern Philippines125.837411.7949172.1367.62epsz-13aEastern Philippines125.223812.1670141.532.433.87epsz-13bEastern Philippines125.527812.4029141.532.47.08epsz-14aEastern Philippines124.647613.1365158.22325.92epsz-14bEastern Philippines124.647613.1365158.2236.38epsz-15aEastern Philippines124.310713.9453156.124.126.51epsz-16aEastern Philippines124.697314.1113156.124.126.51epsz-16aEastern Philippines123.899814.4025140.319.521.69epsz-17aEastern Philippines123.460414.7222117.615.318.19epsz-17bEastern Philippines123.934614.746267.4155epsz-18aEastern Philippines123.221915.146767.4155epsz-19aEastern Philippines123.63815.7400189.61517.94epsz-19aEastern Philippines121.83316.7300203.31517.94epsz-20aEastern Philippines121.827917.3742184.2155epsz-20aEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines122.827917.3742184.2155epsz-21aEastern Phil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | epsz-12a | Eastern Philippines | 125.4697          | 11.7452          | 172.1         | 36         | 37.01         |
| epsz-13aEastern Philippines125.223812.1670141.532.433.87epsz-13bEastern Philippines125.527812.4029141.532.47.08epsz-14aEastern Philippines124.647613.1365158.22325.92epsz-14bEastern Philippines125.042113.2898158.2236.38epsz-15aEastern Philippines124.697314.1113156.124.126.51epsz-16aEastern Philippines124.697314.1113156.124.16.09epsz-16bEastern Philippines123.899814.4025140.319.521.69epsz-17aEastern Philippines123.460414.7222117.615.318.19epsz-17aEastern Philippines123.394614.742267.41517.94epsz-18aEastern Philippines123.394614.746267.4155epsz-19aEastern Philippines121.808215.6674189.6155epsz-19bEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.808215.6674189.6155epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines122.821917.3742184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | epsz-12b | Eastern Philippines | 125.8374          | 11.7949          | 172.1         | 36         | 7.62          |
| epsz-13bEastern Philippines125.527812.4029141.532.47.08epsz-14aEastern Philippines124.647613.1365158.22325.92epsz-14bEastern Philippines125.042113.2898158.2236.38epsz-15aEastern Philippines124.310713.9453156.124.126.51epsz-16aEastern Philippines124.697314.1113156.124.16.09epsz-16bEastern Philippines123.899814.4025140.319.521.69epsz-17aEastern Philippines123.460414.7222117.615.318.19epsz-17bEastern Philippines123.394614.746267.41537.4epsz-18aEastern Philippines123.394614.746267.4155epsz-18aEastern Philippines123.221915.146767.4155epsz-19aEastern Philippines121.363815.7400189.6155epsz-19bEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.808316.7930203.3155epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.2155epsz-21bEastern Philippines121.827917.3742184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | epsz-13a | Eastern Philippines | 125.2238          | 12.1670          | 141.5         | 32.4       | 33.87         |
| epsz-14aEastern Philippines124.647613.1365158.22325.92epsz-14bEastern Philippines125.042113.2898158.2236.38epsz-15aEastern Philippines124.310713.9453156.124.126.51epsz-15bEastern Philippines124.697314.1113156.124.16.09epsz-16aEastern Philippines123.899814.4025140.319.521.69epsz-16bEastern Philippines124.236614.6728140.319.55epsz-17aEastern Philippines123.668215.1062117.615.318.19epsz-18aEastern Philippines123.394614.742267.4155epsz-18aEastern Philippines123.394614.746267.4155epsz-19aEastern Philippines121.363815.7400189.6155epsz-19bEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.808215.6674189.6155epsz-20bEastern Philippines121.827917.3742184.2155epsz-21aEastern Philippines122.099416.6216203.3155epsz-21bEastern Philippines122.821417.3425184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | epsz-13b | Eastern Philippines | 125.5278          | 12.4029          | 141.5         | 32.4       | 7.08          |
| epsz-14bEastern Philippines125.042113.2898158.2236.38epsz-15aEastern Philippines124.310713.9453156.124.126.51epsz-15bEastern Philippines124.697314.1113156.124.16.09epsz-16aEastern Philippines123.899814.4025140.319.521.69epsz-16bEastern Philippines124.236614.6728140.319.55epsz-17aEastern Philippines123.460414.7222117.615.318.19epsz-17bEastern Philippines123.668215.1062117.615.35epsz-18aEastern Philippines123.394614.746267.41517.94epsz-19aEastern Philippines121.363815.7400189.6155epsz-20aEastern Philippines121.808215.6674189.6155epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | epsz-14a | Eastern Philippines | 124.6476          | 13.1365          | 158.2         | 23         | 25.92         |
| epsz-15aEastern Philippines124.310713.9453156.124.126.51epsz-15bEastern Philippines124.697314.1113156.124.16.09epsz-16aEastern Philippines123.899814.4025140.319.521.69epsz-16bEastern Philippines124.236614.6728140.319.55epsz-17aEastern Philippines123.460414.7222117.615.318.19epsz-17bEastern Philippines123.668215.1062117.615.35epsz-18aEastern Philippines123.221915.146767.4155epsz-19aEastern Philippines121.363815.7400189.61517.94epsz-20aEastern Philippines121.683316.7930203.3155epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | epsz-14b | Eastern Philippines | 125.0421          | 13.2898          | 158.2         | 23         | 6.38          |
| epsz-15bEastern Philippines124.697314.1113156.124.16.09epsz-16aEastern Philippines123.899814.4025140.319.521.69epsz-16bEastern Philippines124.236614.6728140.319.55epsz-17aEastern Philippines123.460414.7222117.615.318.19epsz-17bEastern Philippines123.668215.1062117.615.35epsz-18aEastern Philippines123.221915.146767.41517.94epsz-19aEastern Philippines121.363815.7400189.6155epsz-20aEastern Philippines121.683316.7930203.3155epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | epsz-15a | Eastern Philippines | 124.3107          | 13.9453          | 156.1         | 24.1       | 26.51         |
| epsz-16aEastern Philippines123.899814.4025140.319.521.69epsz-16bEastern Philippines124.236614.6728140.319.55epsz-17aEastern Philippines123.460414.7222117.615.318.19epsz-17bEastern Philippines123.668215.1062117.615.35epsz-18aEastern Philippines123.394614.746267.41517.94epsz-18bEastern Philippines123.221915.146767.4155epsz-19aEastern Philippines121.363815.7400189.6155epsz-20aEastern Philippines121.683316.7930203.3155epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.21517.94epsz-21bEastern Philippines122.281417.3425184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | epsz-15b | Eastern Philippines | 124.6973          | 14.1113          | 156.1         | 24.1       | 6.09          |
| epsz-16bEastern Philippines124.236614.6728140.319.55epsz-17aEastern Philippines123.460414.7222117.615.318.19epsz-17bEastern Philippines123.668215.1062117.615.35epsz-18aEastern Philippines123.394614.746267.41517.94epsz-18bEastern Philippines123.221915.146767.4155epsz-19aEastern Philippines121.363815.7400189.6155epsz-20aEastern Philippines121.808215.6674189.6155epsz-20bEastern Philippines121.683316.7930203.3155epsz-21aEastern Philippines121.827917.3742184.21517.94epsz-21aEastern Philippines121.827917.3742184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | epsz-16a | Eastern Philippines | 123.8998          | 14.4025          | 140.3         | 19.5       | 21.69         |
| epsz-17aEastern Philippines123.460414.7222117.615.318.19epsz-17bEastern Philippines123.668215.1062117.615.35epsz-18aEastern Philippines123.394614.746267.41517.94epsz-18bEastern Philippines123.221915.146767.4155epsz-19aEastern Philippines121.363815.7400189.61517.94epsz-19bEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.683316.7930203.3155epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.21517.94epsz-21bEastern Philippines122.281417.3425184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | epsz-16b | Eastern Philippines | 124.2366          | 14.6728          | 140.3         | 19.5       | 5             |
| epsz-17bEastern Philippines123.668215.1062117.615.35epsz-18aEastern Philippines123.394614.746267.41517.94epsz-18bEastern Philippines123.221915.146767.4155epsz-19aEastern Philippines121.363815.7400189.61517.94epsz-19bEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.683316.7930203.3155epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.21517.94epsz-21bEastern Philippines122.281417.3425184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | epsz-17a | Eastern Philippines | 123.4604          | 14.7222          | 117.6         | 15.3       | 18.19         |
| epsz-18aEastern Philippines123.394614.746267.41517.94epsz-18bEastern Philippines123.221915.146767.4155epsz-19aEastern Philippines121.363815.7400189.61517.94epsz-19bEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.683316.7930203.31517.94epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.21517.94epsz-21bEastern Philippines122.281417.3425184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | epsz-17b | Eastern Philippines | 123.6682          | 15.1062          | 117.6         | 15.3       | 5             |
| epsz-18bEastern Philippines123.221915.146767.4155epsz-19aEastern Philippines121.363815.7400189.61517.94epsz-19bEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.683316.7930203.31517.94epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.21517.94epsz-21bEastern Philippines122.281417.3425184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | epsz-18a | Eastern Philippines | 123.3946          | 14.7462          | 67.4          | 15         | 17.94         |
| epsz-19aEastern Philippines121.363815.7400189.61517.94epsz-19bEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.683316.7930203.31517.94epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.21517.94epsz-21bEastern Philippines122.281417.3425184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | epsz-18b | Eastern Philippines | 123.2219          | 15.1467          | 67.4          | 15         | 5             |
| epsz-19bEastern Philippines121.808215.6674189.6155epsz-20aEastern Philippines121.683316.7930203.31517.94epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.21517.94epsz-21bEastern Philippines122.281417.3425184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | epsz-19a | Eastern Philippines | 121.3638          | 15.7400          | 189.6         | 15         | 17.94         |
| epsz-20aEastern Philippines121.683316.7930203.31517.94epsz-20bEastern Philippines122.099416.6216203.3155epsz-21aEastern Philippines121.827917.3742184.21517.94epsz-21bEastern Philippines122.281417.3425184.2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | epsz-19b | Eastern Philippines | 121.8082          | 15.6674          | 189.6         | 15         | 5             |
| epsz-20b       Eastern Philippines       122.0994       16.6216       203.3       15       5         epsz-21a       Eastern Philippines       121.8279       17.3742       184.2       15       17.94         ensz-21b       Eastern Philippines       122.2814       17.3425       184.2       15       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | epsz-20a | Eastern Philippines | 121.6833          | 16.7930          | 203.3         | 15         | 17.94         |
| epsz-21a         Eastern Philippines         121.8279         17.3742         184.2         15         17.94           epsz-21b         Eastern Philippines         122.2814         17.3425         184.2         15         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | epsz-20b | Eastern Philippines | $122\ 0994$       | 16.6216          | 203.3         | 15         | 5             |
| ensz-21h Eastern Philippines 122 2814 17 3425 184 2 15 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | epsz-21a | Eastern Philippines | 121 8279          | 17 3742          | 184.2         | 15         | 17.94         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | epsz-21b | Eastern Philippines | 122.2814          | 17.3425          | 184.2         | 15         | 5             |

 Table B3: Earthquake parameters for Eastern Philippines Subduction Zone unit sources.



Figure B4: Kamchatka–Bering Subduction Zone unit sources.

| Segment | Description      | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|---------|------------------|-------------------|------------------|---------------|------------|---------------|
| kbsz-1a | Kamchatka-Bering | 161.8374          | 57.5485          | 201.5         | 29         | 26.13         |
| kbsz-1b | Kamchatka-Bering | 162.5162          | 57.4030          | 202.1         | 25         | 5             |
| kbsz-2a | Kamchatka-Bering | 162.4410          | 58.3816          | 201.7         | 29         | 26.13         |
| kbsz-2b | Kamchatka-Bering | 163.1344          | 58.2343          | 202.3         | 25         | 5             |
| kbsz-2z | Kamchatka-Bering | 161.7418          | 58.5249          | 201.1         | 29         | 50.37         |
| kbsz-3a | Kamchatka-Bering | 163.5174          | 59.3493          | 218.9         | 29         | 26.13         |
| kbsz-3b | Kamchatka-Bering | 164.1109          | 59.1001          | 219.4         | 25         | 5             |
| kbsz-3z | Kamchatka-Bering | 162.9150          | 59.5958          | 218.4         | 29         | 50.37         |
| kbsz-4a | Kamchatka-Bering | 164.7070          | 60.0632          | 222.2         | 29         | 26.13         |
| kbsz-4b | Kamchatka-Bering | 165.2833          | 59.7968          | 222.7         | 25         | 5             |
| kbsz-4z | Kamchatka-Bering | 164.1212          | 60.3270          | 221.7         | 29         | 50.37         |
| kbsz-5a | Kamchatka-Bering | 165.8652          | 60.7261          | 220.5         | 29         | 26.13         |
| kbsz-5b | Kamchatka-Bering | 166.4692          | 60.4683          | 221           | 25         | <b>5</b>      |

Table B4: Earthquake parameters for Kamchatka–Bering Subduction Zone unit sources.



Figure B5: Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zone unit sources.

| Table B5: Earthquake parameters for Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zon |
|------------------------------------------------------------------------------------------|
| unit sources.                                                                            |

| Segment | Description                           | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|---------|---------------------------------------|-------------------|------------------|---------------|------------|---------------|
| kisz-0a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 162.8200          | 56.3667          | 194.4         | 29         | 26.13         |
| kisz-0b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 163.5057          | 56.2677          | 195           | 25         | 5             |
| kisz-0z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 162.1309          | 56.4618          | 193.8         | 29         | 50.37         |
| kisz-1a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 162.4318          | 55.5017          | 195           | 29         | 26.13         |
| kisz-1b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 163.1000          | 55.4000          | 195           | 25         | 5             |
| kisz-1y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 161.0884          | 55.7050          | 195           | 29         | 74.61         |
| kisz-1z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 161.7610          | 55.6033          | 195           | 29         | 50.37         |
| kisz-2a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 161.9883          | 54.6784          | 200           | 29         | 26.13         |
| kisz-2b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 162.6247          | 54.5440          | 200           | 25         | 5             |
| kisz-2y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 160.7072          | 54.9471          | 200           | 29         | 74.61         |
| kisz-2z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 161.3488          | 54.8127          | 200           | 29         | 50.37         |
| kisz-3a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 161.4385          | 53.8714          | 204           | 29         | 26.13         |
| kisz-3b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 162.0449          | 53.7116          | 204           | 25         | <b>5</b>      |
| kisz-3y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 160.2164          | 54.1910          | 204           | 29         | 74.61         |
| kisz-3z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 160.8286          | 54.0312          | 204           | 29         | 50.37         |
| kisz-4a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 160.7926          | 53.1087          | 210           | 29         | 26.13         |
| kisz-4b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 161.3568          | 52.9123          | 210           | 25         | <b>5</b>      |
| kisz-4y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 159.6539          | 53.5015          | 210           | 29         | 74.61         |
| kisz-4z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 160.2246          | 53.3051          | 210           | 29         | 50.37         |
| kisz-5a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 160.0211          | 52.4113          | 218           | 29         | 26.13         |
| kisz-5b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 160.5258          | 52.1694          | 218           | 25         | 5             |
| kisz-5y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 159.0005          | 52.8950          | 218           | 29         | 74.61         |
| kisz-5z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 159.5122          | 52.6531          | 218           | 29         | 50.37         |
| kisz-6a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 159.1272          | 51.7034          | 218           | 29         | 26.13         |
| kisz-6b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 159.6241          | 51.4615          | 218           | 25         | 5             |
| kisz-6y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 158.1228          | 52.1871          | 218           | 29         | 74.61         |
| kisz-6z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 158.6263          | 51.9452          | 218           | 29         | 50.37         |
| kisz-7a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 158.2625          | 50.9549          | 214           | 29         | 26.13         |
| kisz-7b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 158.7771          | 50.7352          | 214           | 25         | 5             |
| kisz-7y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 157.2236          | 51.3942          | 214           | 29         | 74.61         |
| kisz-7z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 157.7443          | 51.1745          | 214           | 29         | 50.37         |
| kisz-8a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 157.4712          | 50.2459          | 218           | 31         | 27.7          |
| kisz-8b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 157.9433          | 50.0089          | 218           | 27         | 5             |
| kisz-8y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 156.5176          | 50.7199          | 218           | 31         | 79.2          |
| kisz-8z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 156.9956          | 50.4829          | 218           | 31         | 53.45         |
| kisz-9a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 156.6114          | 49.5583          | 220           | 31         | 27.7          |
| kisz-9b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 157.0638          | 49.3109          | 220           | 27         | 5             |
| kisz-9y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 155.6974          | 50.0533          | 220           | 31         | 79.2          |
| kisz-9z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 156.1556          | 49.8058          | 220           | 31         | 53.45         |

| Segment  | Description                                | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|--------------------------------------------|-------------------|------------------|---------------|------------|---------------|
| kisz-10a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 155.7294          | 48.8804          | 221           | 31         | 27.7          |
| kisz-10b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 156.1690          | 48.6278          | 221           | 27         | 5             |
| kisz-10y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 154.8413          | 49.3856          | 221           | 31         | 79.2          |
| kisz-10z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 155.2865          | 49.1330          | 221           | 31         | 53.45         |
| kisz-11a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 154.8489          | 48.1821          | 219           | 31         | 27.7          |
| kisz-11b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 155.2955          | 47.9398          | 219           | 27         | 5             |
| kisz-11y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 153.9472          | 48.6667          | 219           | 31         | 79.2          |
| kisz-11z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 154.3991          | 48.4244          | 219           | 31         | 53.45         |
| kisz-11c | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 156.0358          | 47.5374          | 39            | 57.89      | 4.602         |
| kisz-12a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 153.9994          | 47.4729          | 217           | 31         | 27.7          |
| kisz-12b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 154.4701          | 47.2320          | 217           | 27         | 5             |
| kisz-12y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 153.0856          | 47.9363          | 217           | 31         | 79.2          |
| kisz-12z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 153.5435          | 47.7046          | 217           | 31         | 53.45         |
| kisz-12c | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 155.2208          | 46.8473          | 37            | 57.89      | 4.602         |
| kisz-13a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 153.2239          | 46.7564          | 218           | 31         | 27.7          |
| kisz-13b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 153.6648          | 46.5194          | 218           | 27         | 5             |
| kisz-13y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 152.3343          | 47.2304          | 218           | 31         | 79.2          |
| kisz-13z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 152.7801          | 46.9934          | 218           | 31         | 53.45         |
| kisz-13c | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 154.3957          | 46.1257          | 38            | 57.89      | 4.602         |
| kisz-14a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 152.3657          | 46.1514          | 225           | 23         | 24.54         |
| kisz-14b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 152.7855          | 45.8591          | 225           | 23         | 5             |
| kisz-14y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 151.5172          | 46.7362          | 225           | 23         | 63.62         |
| kisz-14z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 151.9426          | 46.4438          | 225           | 23         | 44.08         |
| kisz-14c | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 153.4468          | 45.3976          | 45            | 57.89      | 4.602         |
| kisz-15a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 151.4663          | 45.5963          | 233           | 25         | 23.73         |
| kisz-15b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 151.8144          | 45.2712          | 233           | 22         | 5             |
| kisz-15y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 150.7619          | 46.2465          | 233           | 25         | 65.99         |
| kisz-15z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 151.1151          | 45.9214          | 233           | 25         | 44.86         |
| kisz-16a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 150.4572          | 45.0977          | 237           | 25         | 23.73         |
| kisz-16b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 150.7694          | 44.7563          | 237           | 22         | 5             |
| kisz-16y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 149.8253          | 45.7804          | 237           | 25         | 65.99         |
| kisz-16z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 150.1422          | 45.4390          | 237           | 25         | 44.86         |
| kisz-17a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 149.3989          | 44.6084          | 237           | 25         | 23.73         |
| kisz-17b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 149.7085          | 44.2670          | 237           | 22         | 5             |
| kisz-17y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 148.7723          | 45.2912          | 237           | 25         | 65.99         |
| kisz-17z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 149.0865          | 44.9498          | 237           | 25         | 44.86         |
| kisz-18a | -<br>Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 148.3454          | 44.0982          | 235           | 25         | 23.73         |
| kisz-18b | -<br>Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 148.6687          | 43.7647          | 235           | 22         | 5             |
| kisz-18y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap      | 147.6915          | 44.7651          | 235           | 25         | 65.99         |

| Segment  | Description                           | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------------------|-------------------|------------------|---------------|------------|---------------|
| kisz-18z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 148.0194          | 44.4316          | 235           | 25         | 44.86         |
| kisz-19a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 147.3262          | 43.5619          | 233           | 25         | 23.73         |
| kisz-19b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 147.6625          | 43.2368          | 233           | 22         | 5             |
| kisz-19y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.6463          | 44.2121          | 233           | 25         | 65.99         |
| kisz-19z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.9872          | 43.8870          | 233           | 25         | 44.86         |
| kisz-20a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.3513          | 43.0633          | 237           | 25         | 23.73         |
| kisz-20b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.6531          | 42.7219          | 237           | 22         | <b>5</b>      |
| kisz-20y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.7410          | 43.7461          | 237           | 25         | 65.99         |
| kisz-20z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.0470          | 43.4047          | 237           | 25         | 44.86         |
| kisz-21a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.3331          | 42.5948          | 239           | 25         | 23.73         |
| kisz-21b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.6163          | 42.2459          | 239           | 22         | <b>5</b>      |
| kisz-21y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 144.7603          | 43.2927          | 239           | 25         | 65.99         |
| kisz-21z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.0475          | 42.9438          | 239           | 25         | 44.86         |
| kisz-22a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 144.3041          | 42.1631          | 242           | 25         | 23.73         |
| kisz-22b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 144.5605          | 41.8037          | 242           | 22         | 5             |
| kisz-22y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.7854          | 42.8819          | 242           | 25         | 65.99         |
| kisz-22z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 144.0455          | 42.5225          | 242           | 25         | 44.86         |
| kisz-23a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.2863          | 41.3335          | 202           | 21         | 21.28         |
| kisz-23b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.8028          | 41.1764          | 202           | 19         | 5             |
| kisz-23v | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.6816          | 42.1189          | 202           | 21         | 110.9         |
| kisz-23w | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.2050          | 41.9618          | 202           | 21         | 92.95         |
| kisz-23x | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.7273          | 41.8047          | 202           | 21         | 75.04         |
| kisz-23y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.2482          | 41.6476          | 202           | 21         | 57.12         |
| kisz-23z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.7679          | 41.4905          | 202           | 21         | 39.2          |
| kisz-24a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.9795          | 40.3490          | 185           | 21         | 21.28         |
| kisz-24b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.5273          | 40.3125          | 185           | 19         | 5             |
| kisz-24x | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.3339          | 40.4587          | 185           | 21         | 75.04         |
| kisz-24y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.8827          | 40.4221          | 185           | 21         | 57.12         |
| kisz-24z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.4312          | 40.3856          | 185           | 21         | 39.2          |
| kisz-25a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.8839          | 39.4541          | 185           | 21         | 21.28         |
| kisz-25b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.4246          | 39.4176          | 185           | 19         | 5             |
| kisz-25y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.8012          | 39.5272          | 185           | 21         | 57.12         |
| kisz-25z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.3426          | 39.4907          | 185           | 21         | 39.2          |
| kisz-26a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.7622          | 38.5837          | 188           | 21         | 21.28         |
| kisz-26b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.2930          | 38.5254          | 188           | 19         | 5             |
| kisz-26x | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.1667          | 38.7588          | 188           | 21         | 75.04         |
| kisz-26y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.6990          | 38.7004          | 188           | 21         | 57.12         |
| kisz-26z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.2308          | 38.6421          | 188           | 21         | 39.2          |
| kisz-27a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.5320          | 37.7830          | 198           | 21         | 21.28         |

| Segment  | Description                           | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------------------|-------------------|------------------|---------------|------------|---------------|
| kisz-27b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.0357          | 37.6534          | 198           | 19         | 5             |
| kisz-27x | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.0142          | 38.1717          | 198           | 21         | 75.04         |
| kisz-27y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.5210          | 38.0421          | 198           | 21         | 57.12         |
| kisz-27z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.0269          | 37.9126          | 198           | 21         | 39.2          |
| kisz-28a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.1315          | 37.0265          | 208           | 21         | 21.28         |
| kisz-28b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.5941          | 36.8297          | 208           | 19         | 5             |
| kisz-28x | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.7348          | 37.6171          | 208           | 21         | 75.04         |
| kisz-28y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.2016          | 37.4202          | 208           | 21         | 57.12         |
| kisz-28z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.6671          | 37.2234          | 208           | 21         | 39.2          |
| kisz-29a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.5970          | 36.2640          | 211           | 21         | 21.28         |
| kisz-29b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.0416          | 36.0481          | 211           | 19         | 5             |
| kisz-29y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.7029          | 36.6960          | 211           | 21         | 57.12         |
| kisz-29z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.1506          | 36.4800          | 211           | 21         | 39.2          |
| kisz-30a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.0553          | 35.4332          | 205           | 21         | 21.28         |
| kisz-30b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.5207          | 35.2560          | 205           | 19         | <b>5</b>      |
| kisz-30y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.1204          | 35.7876          | 205           | 21         | 57.12         |
| kisz-30z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.5883          | 35.6104          | 205           | 21         | 39.2          |
| kisz-31a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.6956          | 34.4789          | 190           | 22         | 22.1          |
| kisz-31b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.1927          | 34.4066          | 190           | 20         | 5             |
| kisz-31v | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 138.2025          | 34.8405          | 190           | 22         | 115.8         |
| kisz-31w | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 138.7021          | 34.7682          | 190           | 22         | 97.02         |
| kisz-31x | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 139.2012          | 34.6958          | 190           | 22         | 78.29         |
| kisz-31y | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 139.6997          | 34.6235          | 190           | 22         | 59.56         |
| kisz-31z | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.1979          | 34.5512          | 190           | 22         | 40.83         |
| kisz-32a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.0551          | 33.0921          | 180           | 32         | 23.48         |
| kisz-32b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.5098          | 33.0921          | 180           | 21.69      | 5             |
| kisz-33a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.0924          | 32.1047          | 173.8         | 27.65      | 20.67         |
| kisz-33b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.5596          | 32.1473          | 173.8         | 18.27      | <b>5</b>      |
| kisz-34a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.1869          | 31.1851          | 172.1         | 25         | 18.26         |
| kisz-34b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.6585          | 31.2408          | 172.1         | 15.38      | 5             |
| kisz-35a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.4154          | 30.1707          | 163           | 25         | 17.12         |
| kisz-35b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.8662          | 30.2899          | 163           | 14.03      | 5             |
| kisz-36a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.6261          | 29.2740          | 161.7         | 25.73      | 18.71         |
| kisz-36b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.0670          | 29.4012          | 161.7         | 15.91      | 5             |
| kisz-37a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.0120          | 28.3322          | 154.7         | 20         | 14.54         |
| kisz-37b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.4463          | 28.5124          | 154.7         | 11         | 5             |
| kisz-38a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.2254          | 27.6946          | 170.3         | 20         | 14.54         |
| kisz-38b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.6955          | 27.7659          | 170.3         | 11         | 5             |
| kisz-39a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.3085          | 26.9127          | 177.2         | 24.23      | 17.42         |

| Segment  | Description                           | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------------------|-------------------|------------------|---------------|------------|---------------|
| kisz-39b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.7674          | 26.9325          | 177.2         | 14.38      | 5             |
| kisz-40a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.2673          | 26.1923          | 189.4         | 26.49      | 22.26         |
| kisz-40b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.7090          | 26.1264          | 189.4         | 20.2       | 5             |
| kisz-41a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.1595          | 25.0729          | 173.7         | 22.07      | 19.08         |
| kisz-41b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.6165          | 25.1184          | 173.7         | 16.36      | 5             |
| kisz-42a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.7641          | 23.8947          | 143.5         | 21.54      | 18.4          |
| kisz-42b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.1321          | 24.1432          | 143.5         | 15.54      | 5             |
| kisz-43a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.5281          | 23.0423          | 129.2         | 23.02      | 18.77         |
| kisz-43b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.8128          | 23.3626          | 129.2         | 15.99      | 5             |
| kisz-44a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 144.2230          | 22.5240          | 134.6         | 28.24      | 18.56         |
| kisz-44b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 144.5246          | 22.8056          | 134.6         | 15.74      | 5             |
| kisz-45a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.0895          | 21.8866          | 125.8         | 36.73      | 22.79         |
| kisz-45b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.3171          | 22.1785          | 125.8         | 20.84      | 5             |
| kisz-46a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.6972          | 21.3783          | 135.9         | 30.75      | 20.63         |
| kisz-46b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.9954          | 21.6469          | 135.9         | 18.22      | <b>5</b>      |
| kisz-47a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.0406          | 20.9341          | 160.1         | 29.87      | 19.62         |
| kisz-47b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.4330          | 21.0669          | 160.1         | 17         | 5             |
| kisz-48a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.3836          | 20.0690          | 158           | 32.75      | 19.68         |
| kisz-48b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.7567          | 20.2108          | 158           | 17.07      | <b>5</b>      |
| kisz-49a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.6689          | 19.3123          | 164.5         | 25.07      | 21.41         |
| kisz-49b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 147.0846          | 19.4212          | 164.5         | 19.16      | 5             |
| kisz-50a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.9297          | 18.5663          | 172.1         | 22         | 22.1          |
| kisz-50b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 147.3650          | 18.6238          | 172.1         | 20         | <b>5</b>      |
| kisz-51a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.9495          | 17.7148          | 175.1         | 22.06      | 22.04         |
| kisz-51b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 147.3850          | 17.7503          | 175.1         | 19.93      | 5             |
| kisz-52a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.9447          | 16.8869          | 180           | 25.51      | 18.61         |
| kisz-52b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 147.3683          | 16.8869          | 180           | 15.79      | 5             |
| kisz-53a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.8626          | 16.0669          | 185.2         | 27.39      | 18.41         |
| kisz-53b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 147.2758          | 16.0309          | 185.2         | 15.56      | 5             |
| kisz-54a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.7068          | 15.3883          | 199.1         | 28.12      | 20.91         |
| kisz-54b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 147.0949          | 15.2590          | 199.1         | 18.56      | 5             |
| kisz-55a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.4717          | 14.6025          | 204.3         | 29.6       | 26.27         |
| kisz-55b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.8391          | 14.4415          | 204.3         | 25.18      | 5             |
| kisz-56a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.1678          | 13.9485          | 217.4         | 32.04      | 26.79         |
| kisz-56b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 146.4789          | 13.7170          | 217.4         | 25.84      | 5             |
| kisz-57a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.6515          | 13.5576          | 235.8         | 37         | 24.54         |
| kisz-57b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.8586          | 13.2609          | 235.8         | 23         | 5             |
| kisz-58a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 144.9648          | 12.9990          | 237.8         | 37.72      | 24.54         |
| kisz-58b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 145.1589          | 12.6984          | 237.8         | 23         | 5             |
#### Table B5: (continued)

| Segment  | Description                           | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|---------------------------------------|-------------------|------------------|---------------|------------|---------------|
| kisz-59a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 144.1799          | 12.6914          | 242.9         | 34.33      | 22.31         |
| kisz-59b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 144.3531          | 12.3613          | 242.9         | 20.25      | 5             |
| kisz-60a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.3687          | 12.3280          | 244.9         | 30.9       | 20.62         |
| kisz-60b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 143.5355          | 11.9788          | 244.9         | 18.2       | <b>5</b>      |
| kisz-61a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.7051          | 12.1507          | 261.8         | 35.41      | 25.51         |
| kisz-61b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 142.7582          | 11.7883          | 261.8         | 24.22      | <b>5</b>      |
| kisz-62a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.6301          | 11.8447          | 245.7         | 39.86      | 34.35         |
| kisz-62b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 141.7750          | 11.5305          | 245.7         | 35.94      | <b>5</b>      |
| kisz-63a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.8923          | 11.5740          | 256.2         | 42         | 38.46         |
| kisz-63b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.9735          | 11.2498          | 256.2         | 42         | 5             |
| kisz-64a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.1387          | 11.6028          | 269.6         | 42.48      | 38.77         |
| kisz-64b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 140.1410          | 11.2716          | 269.6         | 42.48      | 5             |
| kisz-65a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 139.4595          | 11.5883          | 288.7         | 44.16      | 39.83         |
| kisz-65b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 139.3541          | 11.2831          | 288.7         | 44.16      | 5             |
| kisz-66a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 138.1823          | 11.2648          | 193.1         | 45         | 40.36         |
| kisz-66b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 138.4977          | 11.1929          | 193.1         | 45         | <b>5</b>      |
| kisz-67a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 137.9923          | 10.3398          | 189.8         | 45         | 40.36         |
| kisz-67b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 138.3104          | 10.2856          | 189.8         | 45         | 5             |
| kisz-68a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 137.7607          | 9.6136           | 201.7         | 45         | 40.36         |
| kisz-68b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 138.0599          | 9.4963           | 201.7         | 45         | 5             |
| kisz-69a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 137.4537          | 8.8996           | 213.5         | 45         | 40.36         |
| kisz-69b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 137.7215          | 8.7241           | 213.5         | 45         | 5             |
| kisz-70a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 137.0191          | 8.2872           | 226.5         | 45         | 40.36         |
| kisz-70b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 137.2400          | 8.0569           | 226.5         | 45         | 5             |
| kisz-71a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 136.3863          | 7.9078           | 263.9         | 45         | 40.36         |
| kisz-71b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 136.4202          | 7.5920           | 263.9         | 45         | 5             |
| kisz-72a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 135.6310          | 7.9130           | 276.9         | 45         | 40.36         |
| kisz-72b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 135.5926          | 7.5977           | 276.9         | 45         | 5             |
| kisz-73a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 134.3296          | 7.4541           | 224           | 45         | 40.36         |
| kisz-73b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 134.5600          | 7.2335           | 224           | 45         | 5             |
| kisz-74a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 133.7125          | 6.8621           | 228.1         | 45         | 40.36         |
| kisz-74b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 133.9263          | 6.6258           | 228.1         | 45         | 5             |
| kisz-75a | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 133.0224          | 6.1221           | 217.7         | 45         | 40.36         |
| kisz-75b | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | 133.2751          | 5.9280           | 217.7         | 45         | 5             |





| Segment  | Description                       | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|-----------------------------------|-------------------|------------------|---------------|------------|---------------|
| mosz-1a  | Manus-Oceanic Convergent Boundary | 154.0737          | -4.8960          | 140.2         | 15         | 15.88         |
| mosz-1b  | Manus-Oceanic Convergent Boundary | 154.4082          | -4.6185          | 140.2         | 15         | 2.94          |
| mosz-2a  | Manus-Oceanic Convergent Boundary | 153.5589          | -4.1575          | 140.2         | 15         | 15.91         |
| mosz-2b  | Manus-Oceanic Convergent Boundary | 153.8931          | -3.8800          | 140.2         | 15         | 2.97          |
| mosz-3a  | Manus-Oceanic Convergent Boundary | 153.0151          | -3.3716          | 143.9         | 15         | 16.64         |
| mosz-3b  | Manus-Oceanic Convergent Boundary | 153.3662          | -3.1160          | 143.9         | 15         | 3.7           |
| mosz-4a  | Manus-Oceanic Convergent Boundary | 152.4667          | -3.0241          | 127.7         | 15         | 17.32         |
| mosz-4b  | Manus-Oceanic Convergent Boundary | 152.7321          | -2.6806          | 127.7         | 15         | 4.38          |
| mosz-5a  | Manus-Oceanic Convergent Boundary | 151.8447          | -2.7066          | 114.3         | 15         | 17.57         |
| mosz-5b  | Manus-Oceanic Convergent Boundary | 152.0235          | -2.3112          | 114.3         | 15         | 4.63          |
| mosz-6a  | Manus-Oceanic Convergent Boundary | 151.0679          | -2.2550          | 115           | 15         | 17.66         |
| mosz-6b  | Manus-Oceanic Convergent Boundary | 151.2513          | -1.8618          | 115           | 15         | 4.72          |
| mosz-7a  | Manus-Oceanic Convergent Boundary | 150.3210          | -2.0236          | 107.2         | 15         | 17.73         |
| mosz-7b  | Manus-Oceanic Convergent Boundary | 150.4493          | -1.6092          | 107.2         | 15         | 4.79          |
| mosz-8a  | Manus-Oceanic Convergent Boundary | 149.3226          | -1.6666          | 117.8         | 15         | 17.83         |
| mosz-8b  | Manus-Oceanic Convergent Boundary | 149.5251          | -1.2829          | 117.8         | 15         | 4.89          |
| mosz-9a  | Manus-Oceanic Convergent Boundary | 148.5865          | -1.3017          | 112.7         | 15         | 17.84         |
| mosz-9b  | Manus-Oceanic Convergent Boundary | 148.7540          | -0.9015          | 112.7         | 15         | 4.9           |
| mosz-10a | Manus-Oceanic Convergent Boundary | 147.7760          | -1.1560          | 108           | 15         | 17.78         |
| mosz-10b | Manus-Oceanic Convergent Boundary | 147.9102          | -0.7434          | 108           | 15         | 4.84          |
| mosz-11a | Manus-Oceanic Convergent Boundary | 146.9596          | -1.1226          | 102.5         | 15         | 17.54         |
| mosz-11b | Manus-Oceanic Convergent Boundary | 147.0531          | -0.6990          | 102.5         | 15         | 4.6           |
| mosz-12a | Manus-Oceanic Convergent Boundary | 146.2858          | -1.1820          | 87.48         | 15         | 17.29         |
| mosz-12b | Manus-Oceanic Convergent Boundary | 146.2667          | -0.7486          | 87.48         | 15         | 4.35          |
| mosz-13a | Manus-Oceanic Convergent Boundary | 145.4540          | -1.3214          | 83.75         | 15         | 17.34         |
| mosz-13b | Manus-Oceanic Convergent Boundary | 145.4068          | -0.8901          | 83.75         | 15         | 4.4           |
| mosz-14a | Manus-Oceanic Convergent Boundary | 144.7151          | -1.5346          | 75.09         | 15         | 17.21         |
| mosz-14b | Manus-Oceanic Convergent Boundary | 144.6035          | -1.1154          | 75.09         | 15         | 4.27          |
| mosz-15a | Manus-Oceanic Convergent Boundary | 143.9394          | -1.8278          | 70.43         | 15         | 16.52         |
| mosz-15b | Manus-Oceanic Convergent Boundary | 143.7940          | -1.4190          | 70.43         | 15         | 3.58          |
| mosz-16a | Manus-Oceanic Convergent Boundary | 143.4850          | -2.2118          | 50.79         | 15         | 15.86         |
| mosz-16b | Manus-Oceanic Convergent Boundary | 143.2106          | -1.8756          | 50.79         | 15         | 2.92          |
| mosz-17a | Manus-Oceanic Convergent Boundary | 143.1655          | -2.7580          | 33            | 15         | 16.64         |
| mosz-17b | Manus-Oceanic Convergent Boundary | 142.8013          | -2.5217          | 33            | 15         | 3.7           |

**Table B6**: Earthquake parameters for Manus–Oceanic Convergent Boundary Subduction Zone unit sources.





| Segment  | Description | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|-------------|-------------------|------------------|---------------|------------|---------------|
| ngsz-1a  | New Guinea  | 143.6063          | -4.3804          | 120           | 29         | 25.64         |
| ngsz-1b  | New Guinea  | 143.8032          | -4.0402          | 120           | 29         | 1.4           |
| ngsz-2a  | New Guinea  | 142.9310          | -3.9263          | 114           | 27.63      | 20.1          |
| ngsz-2b  | New Guinea  | 143.0932          | -3.5628          | 114           | 21.72      | 1.6           |
| ngsz-3a  | New Guinea  | 142.1076          | -3.5632          | 114           | 20.06      | 18.73         |
| ngsz-3b  | New Guinea  | 142.2795          | -3.1778          | 114           | 15.94      | 5             |
| ngsz-4a  | New Guinea  | 141.2681          | -3.2376          | 114           | 21         | 17.76         |
| ngsz-4b  | New Guinea  | 141.4389          | -2.8545          | 114           | 14.79      | 5             |
| ngsz-5a  | New Guinea  | 140.4592          | -2.8429          | 114           | 21.26      | 16.14         |
| ngsz-5b  | New Guinea  | 140.6296          | -2.4605          | 114           | 12.87      | 5             |
| ngsz-6a  | New Guinea  | 139.6288          | -2.4960          | 114           | 22.72      | 15.4          |
| ngsz-6b  | New Guinea  | 139.7974          | -2.1175          | 114           | 12         | 5             |
| ngsz-7a  | New Guinea  | 138.8074          | -2.1312          | 114           | 21.39      | 15.4          |
| ngsz-7b  | New Guinea  | 138.9776          | -1.7491          | 114           | 12         | 5             |
| ngsz-8a  | New Guinea  | 138.0185          | -1.7353          | 113.1         | 18.79      | 15.14         |
| ngsz-8b  | New Guinea  | 138.1853          | -1.3441          | 113.1         | 11.7       | 5             |
| ngsz-9a  | New Guinea  | 137.1805          | -1.5037          | 111           | 15.24      | 13.23         |
| ngsz-9b  | New Guinea  | 137.3358          | -1.0991          | 111           | 9.47       | 5             |
| ngsz-10a | New Guinea  | 136.3418          | -1.1774          | 111           | 13.51      | 11.09         |
| ngsz-10b | New Guinea  | 136.4983          | -0.7697          | 111           | 7          | 5             |
| ngsz-11a | New Guinea  | 135.4984          | -0.8641          | 111           | 11.38      | 12.49         |
| ngsz-11b | New Guinea  | 135.6562          | -0.4530          | 111           | 8.62       | 5             |
| ngsz-12a | New Guinea  | 134.6759          | -0.5216          | 110.5         | 10         | 13.68         |
| ngsz-12b | New Guinea  | 134.8307          | -0.1072          | 110.5         | 10         | 5             |
| ngsz-13a | New Guinea  | 133.3065          | -1.0298          | 99.5          | 10         | 13.68         |
| ngsz-13b | New Guinea  | 133.3795          | -0.5935          | 99.5          | 10         | 5             |
| ngsz-14a | New Guinea  | 132.4048          | -0.8816          | 99.5          | 10         | 13.68         |
| ngsz-14b | New Guinea  | 132.4778          | -0.4453          | 99.5          | 10         | 5             |
| ngsz-15a | New Guinea  | 131.5141          | -0.7353          | 99.5          | 10         | 13.68         |
| ngsz-15b | New Guinea  | 131.5871          | -0.2990          | 99.5          | 10         | 5             |

 Table B7: Earthquake parameters for New Guinea Subduction Zone unit sources.



Figure B8: New Zealand–Kermadec–Tonga Subduction Zone unit sources.

|          |                            | T • · ·           | T /•/ 1          | QL 11         | <b>D'</b>  | D (1          |
|----------|----------------------------|-------------------|------------------|---------------|------------|---------------|
| Segment  | Description                | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
| ntsz-1a  | New Zealand–Kermadec–Tonga | 174.0985          | -41.3951         | 258.6         | 24         | 25.34         |
| ntsz-1b  | New Zealand–Kermadec–Tonga | 174.2076          | -41.7973         | 258.6         | 24         | 5             |
| ntsz-2a  | New Zealand–Kermadec–Tonga | 175.3289          | -41.2592         | 260.6         | 29.38      | 23.17         |
| ntsz-2b  | New Zealand–Kermadec–Tonga | 175.4142          | -41.6454         | 260.6         | 21.31      | 5             |
| ntsz-3a  | New Zealand–Kermadec–Tonga | 176.2855          | -40.9950         | 250.7         | 29.54      | 21.74         |
| ntsz-3b  | New Zealand–Kermadec–Tonga | 176.4580          | -41.3637         | 250.7         | 19.56      | 5             |
| ntsz-4a  | New Zealand–Kermadec–Tonga | 177.0023          | -40.7679         | 229.4         | 24.43      | 18.87         |
| ntsz-4b  | New Zealand–Kermadec–Tonga | 177.3552          | -41.0785         | 229.4         | 16.1       | 5             |
| ntsz-5a  | New Zealand–Kermadec–Tonga | 177.4114          | -40.2396         | 210           | 18.8       | 19.29         |
| ntsz-5b  | New Zealand–Kermadec–Tonga | 177.8951          | -40.4525         | 210           | 16.61      | <b>5</b>      |
| ntsz-6a  | New Zealand–Kermadec–Tonga | 177.8036          | -39.6085         | 196.7         | 18.17      | 15.8          |
| ntsz-6b  | New Zealand–Kermadec–Tonga | 178.3352          | -39.7310         | 196.7         | 12.48      | 5             |
| ntsz-7a  | New Zealand–Kermadec–Tonga | 178.1676          | -38.7480         | 197           | 28.1       | 17.85         |
| ntsz-7b  | New Zealand–Kermadec–Tonga | 178.6541          | -38.8640         | 197           | 14.89      | 5             |
| ntsz-8a  | New Zealand–Kermadec–Tonga | 178.6263          | -37.8501         | 201.4         | 31.47      | 18.78         |
| ntsz-8b  | New Zealand–Kermadec–Tonga | 179.0788          | -37.9899         | 201.4         | 16         | 5             |
| ntsz-9a  | New Zealand–Kermadec–Tonga | 178.9833          | -36.9770         | 202.2         | 29.58      | 20.02         |
| ntsz-9b  | New Zealand–Kermadec–Tonga | 179.4369          | -37.1245         | 202.2         | 17.48      | 5             |
| ntsz-10a | New Zealand–Kermadec–Tonga | 179.5534          | -36.0655         | 210.6         | 32.1       | 20.72         |
| ntsz-10b | New Zealand–Kermadec–Tonga | 179.9595          | -36.2593         | 210.6         | 18.32      | 5             |
| ntsz-11a | New Zealand–Kermadec–Tonga | 179.9267          | -35.3538         | 201.7         | 25         | 16.09         |
| ntsz-11b | New Zealand–Kermadec–Tonga | 180.3915          | -35.5040         | 201.7         | 12.81      | 5             |
| ntsz-12a | New Zealand–Kermadec–Tonga | 180.4433          | -34.5759         | 201.2         | 25         | 15.46         |
| ntsz-12b | New Zealand–Kermadec–Tonga | 180.9051          | -34.7230         | 201.2         | 12.08      | 5             |
| ntsz-13a | New Zealand–Kermadec–Tonga | 180.7990          | -33.7707         | 199.8         | 25.87      | 19.06         |
| ntsz-13b | New Zealand–Kermadec–Tonga | 181.2573          | -33.9073         | 199.8         | 16.33      | 5             |
| ntsz-14a | New Zealand–Kermadec–Tonga | 181.2828          | -32.9288         | 202.4         | 31.28      | 22.73         |
| ntsz-14b | New Zealand–Kermadec–Tonga | 181.7063          | -33.0751         | 202.4         | 20.77      | 5             |
| ntsz-15a | New Zealand–Kermadec–Tonga | 181.4918          | -32.0035         | 205.4         | 32.33      | 22.64         |
| ntsz-15b | New Zealand–Kermadec–Tonga | 181.8967          | -32.1665         | 205.4         | 20.66      | 5             |
| ntsz-16a | New Zealand–Kermadec–Tonga | 181.9781          | -31.2535         | 205.5         | 34.29      | 23.59         |
| ntsz-16b | New Zealand–Kermadec–Tonga | 182.3706          | -31.4131         | 205.5         | 21.83      | 5             |
| ntsz-17a | New Zealand–Kermadec–Tonga | 182.4819          | -30.3859         | 210.3         | 37.6       | 25.58         |
| ntsz-17b | New Zealand–Kermadec–Tonga | 182.8387          | -30.5655         | 210.3         | 24.3       | 5             |
| ntsz-18a | New Zealand–Kermadec–Tonga | 182.8176          | -29.6545         | 201.6         | 37.65      | 26.13         |
| ntsz-18b | New Zealand–Kermadec–Tonga | 183.1985          | -29.7856         | 201.6         | 25         | 5             |
| ntsz-19a | New Zealand–Kermadec–Tonga | 183.0622          | -28.8739         | 195.7         | 34.41      | 26.13         |
| ntsz-19b | New Zealand–Kermadec–Tonga | 183.4700          | -28.9742         | 195.7         | 25         | 5             |
| ntsz-20a | New Zealand–Kermadec–Tonga | 183.2724          | -28.0967         | 188.8         | 38         | 26.13         |
| ntsz-20b | New Zealand–Kermadec–Tonga | 183.6691          | -28.1508         | 188.8         | 25         | 5             |

 Table B8: Earthquake parameters for New Zealand–Kermadec–Tonga Subduction Zone unit sources.

continued on next page

### Table B8: (continued)

| Segment  | Description                | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|----------------------------|-------------------|------------------|---------------|------------|---------------|
| ntsz-21a | New Zealand–Kermadec–Tonga | 183.5747          | -27.1402         | 197.1         | 32.29      | 24.83         |
| ntsz-21b | New Zealand–Kermadec–Tonga | 183.9829          | -27.2518         | 197.1         | 23.37      | 5             |
| ntsz-22a | New Zealand–Kermadec–Tonga | 183.6608          | -26.4975         | 180           | 29.56      | 18.63         |
| ntsz-22b | New Zealand–Kermadec–Tonga | 184.0974          | -26.4975         | 180           | 15.82      | 5             |
| ntsz-23a | New Zealand–Kermadec–Tonga | 183.7599          | -25.5371         | 185.8         | 32.42      | 20.56         |
| ntsz-23b | New Zealand–Kermadec–Tonga | 184.1781          | -25.5752         | 185.8         | 18.13      | 5             |
| ntsz-24a | New Zealand–Kermadec–Tonga | 183.9139          | -24.6201         | 188.2         | 33.31      | 23.73         |
| ntsz-24b | New Zealand–Kermadec–Tonga | 184.3228          | -24.6734         | 188.2         | 22         | 5             |
| ntsz-25a | New Zealand–Kermadec–Tonga | 184.1266          | -23.5922         | 198.5         | 29.34      | 19.64         |
| ntsz-25b | New Zealand–Kermadec–Tonga | 184.5322          | -23.7163         | 198.5         | 17.03      | 5             |
| ntsz-26a | New Zealand–Kermadec–Tonga | 184.6613          | -22.6460         | 211.7         | 30.26      | 19.43         |
| ntsz-26b | New Zealand–Kermadec–Tonga | 185.0196          | -22.8497         | 211.7         | 16.78      | 5             |
| ntsz-27a | New Zealand–Kermadec–Tonga | 185.0879          | -21.9139         | 207.9         | 31.73      | 20.67         |
| ntsz-27b | New Zealand–Kermadec–Tonga | 185.4522          | -22.0928         | 207.9         | 18.27      | 5             |
| ntsz-28a | New Zealand–Kermadec–Tonga | 185.4037          | -21.1758         | 200.5         | 32.44      | 21.76         |
| ntsz-28b | New Zealand–Kermadec–Tonga | 185.7849          | -21.3084         | 200.5         | 19.58      | 5             |
| ntsz-29a | New Zealand–Kermadec–Tonga | 185.8087          | -20.2629         | 206.4         | 32.47      | 20.4          |
| ntsz-29b | New Zealand–Kermadec–Tonga | 186.1710          | -20.4312         | 206.4         | 17.94      | 5             |
| ntsz-30a | New Zealand–Kermadec–Tonga | 186.1499          | -19.5087         | 200.9         | 32.98      | 22.46         |
| ntsz-30b | New Zealand–Kermadec–Tonga | 186.5236          | -19.6432         | 200.9         | 20.44      | 5             |
| ntsz-31a | New Zealand–Kermadec–Tonga | 186.3538          | -18.7332         | 193.9         | 34.41      | 21.19         |
| ntsz-31b | New Zealand–Kermadec–Tonga | 186.7339          | -18.8221         | 193.9         | 18.89      | 5             |
| ntsz-32a | New Zealand–Kermadec–Tonga | 186.5949          | -17.8587         | 194.1         | 30         | 19.12         |
| ntsz-32b | New Zealand–Kermadec–Tonga | 186.9914          | -17.9536         | 194.1         | 16.4       | 5             |
| ntsz-33a | New Zealand–Kermadec–Tonga | 186.8172          | -17.0581         | 190           | 33.15      | 23.34         |
| ntsz-33b | New Zealand–Kermadec–Tonga | 187.2047          | -17.1237         | 190           | 21.52      | 5             |
| ntsz-34a | New Zealand–Kermadec–Tonga | 186.7814          | -16.2598         | 182.1         | 15         | 13.41         |
| ntsz-34b | New Zealand–Kermadec–Tonga | 187.2330          | -16.2759         | 182.1         | 9.68       | 5             |
| ntsz-34c | New Zealand–Kermadec–Tonga | 187.9697          | -16.4956         | 7.62          | 57.06      | 6.571         |
| ntsz-35a | New Zealand–Kermadec–Tonga | 186.8000          | -15.8563         | 149.8         | 15         | 12.17         |
| ntsz-35b | New Zealand–Kermadec–Tonga | 187.1896          | -15.6384         | 149.8         | 8.24       | 5             |
| ntsz-35c | New Zealand–Kermadec–Tonga | 187.8776          | -15.6325         | 342.4         | 57.06      | 6.571         |
| ntsz-36a | New Zealand–Kermadec–Tonga | 186.5406          | -15.3862         | 123.9         | 40.44      | 36.72         |
| ntsz-36b | New Zealand–Kermadec–Tonga | 186.7381          | -15.1025         | 123.9         | 39.38      | 5             |
| ntsz-36c | New Zealand–Kermadec–Tonga | 187.3791          | -14.9234         | 307           | 57.06      | 6.571         |
| ntsz-37a | New Zealand–Kermadec–Tonga | 185.9883          | -14.9861         | 102           | 68.94      | 30.99         |
| ntsz-37b | New Zealand–Kermadec–Tonga | 186.0229          | -14.8282         | 102           | 31.32      | 5             |
| ntsz-38a | New Zealand–Kermadec–Tonga | 185.2067          | -14.8259         | 88.4          | 80         | 26.13         |
| ntsz-38b | New Zealand–Kermadec–Tonga | 185.2044          | -14.7479         | 88.4          | 25         | 5             |
| ntsz-39a | New Zealand–Kermadec–Tonga | 184.3412          | -14.9409         | 82.55         | 80         | 26.13         |
| ntsz-39b | New Zealand–Kermadec–Tonga | 184.3307          | -14.8636         | 82.55         | 25         | 5             |





|          |                              | T 1               | T (*/ 1          | G/ 1          | D'         |               |
|----------|------------------------------|-------------------|------------------|---------------|------------|---------------|
| Segment  | Description                  | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | D1p<br>(°) | Depth<br>(km) |
| nvsz-1a  | New Britain–Solomons–Vanuatu | 148.6217          | -6.4616          | 243.2         | 32.34      | 15.69         |
| nvsz-1b  | New Britain–Solomons–Vanuatu | 148.7943          | -6.8002          | 234.2         | 12.34      | 5             |
| nvsz-2a  | New Britain–Solomons–Vanuatu | 149.7218          | -6.1459          | 260.1         | 35.1       | 16.36         |
| nvsz-2b  | New Britain–Solomons–Vanuatu | 149.7856          | -6.5079          | 260.1         | 13.13      | 5             |
| nvsz-3a  | New Britain–Solomons–Vanuatu | 150.4075          | -5.9659          | 245.7         | 42.35      | 18.59         |
| nvsz-3b  | New Britain–Solomons–Vanuatu | 150.5450          | -6.2684          | 245.7         | 15.77      | 5             |
| nvsz-4a  | New Britain–Solomons–Vanuatu | 151.1095          | -5.5820          | 238.2         | 42.41      | 23.63         |
| nvsz-4b  | New Britain–Solomons–Vanuatu | 151.2851          | -5.8639          | 238.2         | 21.88      | 5             |
| nvsz-5a  | New Britain–Solomons–Vanuatu | 152.0205          | -5.1305          | 247.7         | 49.22      | 32.39         |
| nvsz-5b  | New Britain–Solomons–Vanuatu | 152.1322          | -5.4020          | 247.7         | 33.22      | 5             |
| nvsz-6a  | New Britain–Solomons–Vanuatu | 153.3450          | -5.1558          | 288.6         | 53.53      | 33.59         |
| nvsz-6b  | New Britain–Solomons–Vanuatu | 153.2595          | -5.4089          | 288.6         | 34.87      | 5             |
| nvsz-7a  | New Britain–Solomons–Vanuatu | 154.3814          | -5.6308          | 308.3         | 39.72      | 19.18         |
| nvsz-7b  | New Britain–Solomons–Vanuatu | 154.1658          | -5.9017          | 308.3         | 16.48      | 5             |
| nvsz-8a  | New Britain–Solomons–Vanuatu | 155.1097          | -6.3511          | 317.2         | 45.33      | 22.92         |
| nvsz-8b  | New Britain–Solomons–Vanuatu | 154.8764          | -6.5656          | 317.2         | 21         | 5             |
| nvsz-9a  | New Britain–Solomons–Vanuatu | 155.5027          | -6.7430          | 290.5         | 48.75      | 22.92         |
| nvsz-9b  | New Britain–Solomons–Vanuatu | 155.3981          | -7.0204          | 290.5         | 21         | 5             |
| nvsz-10a | New Britain–Solomons–Vanuatu | 156.4742          | -7.2515          | 305.9         | 36.88      | 27.62         |
| nvsz-10b | New Britain–Solomons–Vanuatu | 156.2619          | -7.5427          | 305.9         | 26.9       | 5             |
| nvsz-11a | New Britain–Solomons–Vanuatu | 157.0830          | -7.8830          | 305.4         | 32.97      | 29.72         |
| nvsz-11b | New Britain–Solomons–Vanuatu | 156.8627          | -8.1903          | 305.4         | 29.63      | 5             |
| nvsz-12a | New Britain–Solomons–Vanuatu | 157.6537          | -8.1483          | 297.9         | 37.53      | 28.57         |
| nvsz-12b | New Britain–Solomons–Vanuatu | 157.4850          | -8.4630          | 297.9         | 28.13      | 5             |
| nvsz-13a | New Britain–Solomons–Vanuatu | 158.5089          | -8.5953          | 302.7         | 33.62      | 23.02         |
| nvsz-13b | New Britain–Solomons–Vanuatu | 158.3042          | -8.9099          | 302.7         | 21.12      | 5             |
| nvsz-14a | New Britain–Solomons–Vanuatu | 159.1872          | -8.9516          | 293.3         | 38.44      | 34.06         |
| nvsz-14b | New Britain–Solomons–Vanuatu | 159.0461          | -9.2747          | 293.3         | 35.54      | 5             |
| nvsz-15a | New Britain–Solomons–Vanuatu | 159.9736          | -9.5993          | 302.8         | 46.69      | 41.38         |
| nvsz-15b | New Britain–Solomons–Vanuatu | 159.8044          | -9.8584          | 302.8         | 46.69      | 5             |
| nvsz-16a | New Britain–Solomons–Vanuatu | 160.7343          | -10.0574         | 301           | 46.05      | 41            |
| nvsz-16b | New Britain–Solomons–Vanuatu | 160.5712          | -10.3246         | 301           | 46.05      | 5             |
| nvsz-17a | New Britain–Solomons–Vanuatu | 161.4562          | -10.5241         | 298.4         | 40.12      | 37.22         |
| nvsz-17b | New Britain–Solomons–Vanuatu | 161.2900          | -10.8263         | 298.4         | 40.12      | 5             |
| nvsz-18a | New Britain–Solomons–Vanuatu | 162.0467          | -10.6823         | 274.1         | 40.33      | 29.03         |
| nvsz-18b | New Britain–Solomons–Vanuatu | 162.0219          | -11.0238         | 274.1         | 28.72      | 5             |
| nvsz-19a | New Britain–Solomons–Vanuatu | 162.7818          | -10.5645         | 261.3         | 34.25      | 24.14         |
| nvsz-19b | New Britain–Solomons–Vanuatu | 162.8392          | -10.9315         | 261.3         | 22.51      | 5             |
| nvsz-20a | New Britain–Solomons–Vanuatu | 163.7222          | -10.5014         | 262.9         | 50.35      | 26.3          |

Table B9: Earthquake parameters for New Britain-Solomons-Vanuatu Subduction Zone unit sources.

continued on next page

#### Table B9: (continued)

| Segment  | Description                  | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|----------|------------------------------|-------------------|------------------|---------------|------------|---------------|
| nvsz-20b | New Britain–Solomons–Vanuatu | 163.7581          | -10.7858         | 262.9         | 25.22      | 5             |
| nvsz-21a | New Britain–Solomons–Vanuatu | 164.9445          | -10.4183         | 287.9         | 40.31      | 23.3          |
| nvsz-21b | New Britain–Solomons–Vanuatu | 164.8374          | -10.7442         | 287.9         | 21.47      | <b>5</b>      |
| nvsz-22a | New Britain–Solomons–Vanuatu | 166.0261          | -11.1069         | 317.1         | 42.39      | 20.78         |
| nvsz-22b | New Britain–Solomons–Vanuatu | 165.7783          | -11.3328         | 317.1         | 18.4       | 5             |
| nvsz-23a | New Britain–Solomons–Vanuatu | 166.5179          | -12.2260         | 342.4         | 47.95      | 22.43         |
| nvsz-23b | New Britain–Solomons–Vanuatu | 166.2244          | -12.3171         | 342.4         | 20.4       | <b>5</b>      |
| nvsz-24a | New Britain–Solomons–Vanuatu | 166.7236          | -13.1065         | 342.6         | 47.13      | 28.52         |
| nvsz-24b | New Britain–Solomons–Vanuatu | 166.4241          | -13.1979         | 342.6         | 28.06      | <b>5</b>      |
| nvsz-25a | New Britain–Solomons–Vanuatu | 166.8914          | -14.0785         | 350.3         | 54.1       | 31.16         |
| nvsz-25b | New Britain–Solomons–Vanuatu | 166.6237          | -14.1230         | 350.3         | 31.55      | <b>5</b>      |
| nvsz-26a | New Britain–Solomons–Vanuatu | 166.9200          | -15.1450         | 365.6         | 50.46      | 29.05         |
| nvsz-26b | New Britain–Solomons–Vanuatu | 166.6252          | -15.1170         | 365.6         | 28.75      | <b>5</b>      |
| nvsz-27a | New Britain–Solomons–Vanuatu | 167.0053          | -15.6308         | 334.2         | 44.74      | 25.46         |
| nvsz-27b | New Britain–Solomons–Vanuatu | 166.7068          | -15.7695         | 334.2         | 24.15      | <b>5</b>      |
| nvsz-28a | New Britain–Solomons–Vanuatu | 167.4074          | -16.3455         | 327.5         | 41.53      | 22.44         |
| nvsz-28b | New Britain–Solomons–Vanuatu | 167.1117          | -16.5264         | 327.5         | 20.42      | 5             |
| nvsz-29a | New Britain–Solomons–Vanuatu | 167.9145          | -17.2807         | 341.2         | 49.1       | 24.12         |
| nvsz-29b | New Britain–Solomons–Vanuatu | 167.6229          | -17.3757         | 341.2         | 22.48      | 5             |
| nvsz-30a | New Britain–Solomons–Vanuatu | 168.2220          | -18.2353         | 348.6         | 44.19      | 23.99         |
| nvsz-30b | New Britain–Solomons–Vanuatu | 167.8895          | -18.2991         | 348.6         | 22.32      | 5             |
| nvsz-31a | New Britain–Solomons–Vanuatu | 168.5022          | -19.0510         | 345.6         | 42.2       | 22.26         |
| nvsz-31b | New Britain–Solomons–Vanuatu | 168.1611          | -19.1338         | 345.6         | 20.2       | 5             |
| nvsz-32a | New Britain–Solomons–Vanuatu | 168.8775          | -19.6724         | 331.1         | 42.03      | 21.68         |
| nvsz-32b | New Britain–Solomons–Vanuatu | 168.5671          | -19.8338         | 331.1         | 19.49      | 5             |
| nvsz-33a | New Britain–Solomons–Vanuatu | 169.3422          | -20.4892         | 332.9         | 40.25      | 22.4          |
| nvsz-33b | New Britain–Solomons–Vanuatu | 169.0161          | -20.6453         | 332.9         | 20.37      | 5             |
| nvsz-34a | New Britain–Solomons–Vanuatu | 169.8304          | -21.2121         | 329.1         | 39         | 22.73         |
| nvsz-34b | New Britain–Solomons–Vanuatu | 169.5086          | -21.3911         | 329.1         | 20.77      | 5             |
| nvsz-35a | New Britain–Solomons–Vanuatu | 170.3119          | -21.6945         | 311.9         | 39         | 22.13         |
| nvsz-35b | New Britain–Solomons–Vanuatu | 170.0606          | -21.9543         | 311.9         | 20.03      | 5             |
| nvsz-36a | New Britain–Solomons–Vanuatu | 170.9487          | -22.1585         | 300.4         | 39.42      | 23.5          |
| nvsz-36b | New Britain–Solomons–Vanuatu | 170.7585          | -22.4577         | 300.4         | 21.71      | 5             |
| nvsz-37a | New Britain–Solomons–Vanuatu | 171.6335          | -22.3087         | 281.3         | 30         | 22.1          |
| nvsz-37b | New Britain–Solomons–Vanuatu | 171.5512          | -22.6902         | 281.3         | 20         | 5             |



Figure B10: New Zealand–Puysegur Subduction Zone unit sources.

| Segment | Description          | Longitude<br>(°E) | Latitude<br>(°N) | Strike<br>(°) | Dip<br>(°) | Depth<br>(km) |
|---------|----------------------|-------------------|------------------|---------------|------------|---------------|
| nzsz-1a | New Zealand–Puysegur | 168.0294          | -45.4368         | 41.5          | 15         | 17.94         |
| nzsz-1b | New Zealand–Puysegur | 167.5675          | -45.1493         | 41.5          | 15         | 5             |
| nzsz-2a | New Zealand–Puysegur | 167.3256          | -46.0984         | 37.14         | 15         | 17.94         |
| nzsz-2b | New Zealand–Puysegur | 166.8280          | -45.8365         | 37.14         | 15         | 5             |
| nzsz-3a | New Zealand–Puysegur | 166.4351          | -46.7897         | 39.53         | 15         | 17.94         |
| nzsz-3b | New Zealand–Puysegur | 165.9476          | -46.5136         | 39.53         | 15         | 5             |
| nzsz-4a | New Zealand–Puysegur | 166.0968          | -47.2583         | 15.38         | 15         | 17.94         |
| nzsz-4b | New Zealand–Puysegur | 165.4810          | -47.1432         | 15.38         | 15         | 5             |
| nzsz-5a | New Zealand–Puysegur | 165.7270          | -48.0951         | 13.94         | 15         | 17.94         |
| nzsz-5b | New Zealand–Puysegur | 165.0971          | -47.9906         | 13.94         | 15         | 5             |
| nzsz-6a | New Zealand–Puysegur | 165.3168          | -49.0829         | 22.71         | 15         | 17.94         |
| nzsz-6b | New Zealand–Puysegur | 164.7067          | -48.9154         | 22.71         | 15         | 5             |
| nzsz-7a | New Zealand–Puysegur | 164.8017          | -49.9193         | 23.25         | 15         | 17.94         |
| nzsz-7b | New Zealand–Puysegur | 164.1836          | -49.7480         | 23.25         | 15         | <b>5</b>      |

Table B10: Earthquake parameters for New Zealand–Puysegur Subduction Zone unit sources.





|          |                      | T an attack       | T atituda | Q4            | D:    | Denth         |
|----------|----------------------|-------------------|-----------|---------------|-------|---------------|
| Segment  | Description          | Longitude<br>(°E) | (°N)      | Strike<br>(°) | (°)   | Depth<br>(km) |
| rnsz-1a  | Ryukyu–Kyushu–Nankai | 122.6672          | 23.6696   | 262           | 14    | 11.88         |
| rnsz-1b  | Ryukyu–Kyushu–Nankai | 122.7332          | 23.2380   | 262           | 10    | 3.2           |
| rnsz-2a  | Ryukyu–Kyushu–Nankai | 123.5939          | 23.7929   | 259.9         | 18.11 | 12.28         |
| rnsz-2b  | Ryukyu–Kyushu–Nankai | 123.6751          | 23.3725   | 259.9         | 10    | 3.6           |
| rnsz-3a  | Ryukyu–Kyushu–Nankai | 124.4604          | 23.9777   | 254.6         | 19.27 | 14.65         |
| rnsz-3b  | Ryukyu–Kyushu–Nankai | 124.5830          | 23.5689   | 254.6         | 12.18 | 4.1           |
| rnsz-4a  | Ryukyu–Kyushu–Nankai | 125.2720          | 24.2102   | 246.8         | 18    | 20.38         |
| rnsz-4b  | Ryukyu–Kyushu–Nankai | 125.4563          | 23.8177   | 246.8         | 16    | 6.6           |
| rnsz-5a  | Ryukyu–Kyushu–Nankai | 125.9465          | 24.5085   | 233.6         | 18    | 20.21         |
| rnsz-5b  | Ryukyu–Kyushu–Nankai | 126.2241          | 24.1645   | 233.6         | 16    | 6.43          |
| rnsz-6a  | Ryukyu–Kyushu–Nankai | 126.6349          | 25.0402   | 228.7         | 17.16 | 19.55         |
| rnsz-6b  | Ryukyu–Kyushu–Nankai | 126.9465          | 24.7176   | 228.7         | 15.16 | 6.47          |
| rnsz-7a  | Ryukyu–Kyushu–Nankai | 127.2867          | 25.6343   | 224           | 15.85 | 17.98         |
| rnsz-7b  | Ryukyu–Kyushu–Nankai | 127.6303          | 25.3339   | 224           | 13.56 | 6.26          |
| rnsz-8a  | Ryukyu–Kyushu–Nankai | 128.0725          | 26.3146   | 229.7         | 14.55 | 14.31         |
| rnsz-8b  | Ryukyu–Kyushu–Nankai | 128.3854          | 25.9831   | 229.7         | 9.64  | 5.94          |
| rnsz-9a  | Ryukyu–Kyushu–Nankai | 128.6642          | 26.8177   | 219.2         | 15.4  | 12.62         |
| rnsz-9b  | Ryukyu–Kyushu–Nankai | 129.0391          | 26.5438   | 219.2         | 8     | 5.66          |
| rnsz-10a | Ryukyu–Kyushu–Nankai | 129.2286          | 27.4879   | 215.2         | 17    | 12.55         |
| rnsz-10b | Ryukyu–Kyushu–Nankai | 129.6233          | 27.2402   | 215.2         | 8.16  | 5.45          |
| rnsz-11a | Ryukyu–Kyushu–Nankai | 129.6169          | 28.0741   | 201.3         | 17    | 12.91         |
| rnsz-11b | Ryukyu–Kyushu–Nankai | 130.0698          | 27.9181   | 201.3         | 8.8   | 5.26          |
| rnsz-12a | Ryukyu–Kyushu–Nankai | 130.6175          | 29.0900   | 236.7         | 16.42 | 13.05         |
| rnsz-12b | Ryukyu–Kyushu–Nankai | 130.8873          | 28.7299   | 236.7         | 9.57  | 4.74          |
| rnsz-13a | Ryukyu–Kyushu–Nankai | 130.7223          | 29.3465   | 195.2         | 20.25 | 15.89         |
| rnsz-13b | Ryukyu–Kyushu–Nankai | 131.1884          | 29.2362   | 195.2         | 12.98 | 4.66          |
| rnsz-14a | Ryukyu–Kyushu–Nankai | 131.3467          | 30.3899   | 215.1         | 22.16 | 19.73         |
| rnsz-14b | Ryukyu–Kyushu–Nankai | 131.7402          | 30.1507   | 215.1         | 17.48 | 4.71          |
| rnsz-15a | Ryukyu–Kyushu–Nankai | 131.9149          | 31.1450   | 216           | 15.11 | 16.12         |
| rnsz-15b | Ryukyu–Kyushu–Nankai | 132.3235          | 30.8899   | 216           | 13.46 | 4.48          |
| rnsz-16a | Ryukyu–Kyushu–Nankai | 132.5628          | 31.9468   | 220.9         | 10.81 | 10.88         |
| rnsz-16b | Ryukyu–Kyushu–Nankai | 132.9546          | 31.6579   | 220.9         | 7.19  | 4.62          |
| rnsz-17a | Ryukyu–Kyushu–Nankai | 133.6125          | 32.6956   | 239           | 10.14 | 12.01         |
| rnsz-17b | Ryukyu–Kyushu–Nankai | 133.8823          | 32.3168   | 239           | 8.41  | 4.7           |
| rnsz-18a | Ryukyu–Kyushu–Nankai | 134.6416          | 33.1488   | 244.7         | 10.99 | 14.21         |
| rnsz-18b | Ryukyu–Kyushu–Nankai | 134.8656          | 32.7502   | 244.5         | 10.97 | 4.7           |
| rnsz-19a | Ryukyu–Kyushu–Nankai | 135.6450          | 33.5008   | 246.5         | 14.49 | 14.72         |
| rnsz-19b | Ryukyu–Kyushu–Nankai | 135.8523          | 33.1021   | 246.5         | 11.87 | 4.44          |
| rnsz-20a | Ryukyu–Kyushu–Nankai | 136.5962          | 33.8506   | 244.8         | 15    | 14.38         |
| rnsz-20b | Ryukyu–Kyushu–Nankai | 136.8179          | 33.4581   | 244.8         | 12    | 3.98          |
| rnsz-21a | Ryukyu–Kyushu–Nankai | 137.2252          | 34.3094   | 231.9         | 15    | 15.4          |
| rnsz-21b | Ryukyu–Kyushu–Nankai | 137.5480          | 33.9680   | 231.9         | 12    | 5             |
| rnsz-22a | Ryukyu–Kyushu–Nankai | 137.4161          | 34.5249   | 192.3         | 15    | 15.4          |
| rnsz-22b | Ryukyu–Kyushu–Nankai | 137.9301          | 34.4327   | 192.3         | 12    | 5             |

 Table B11: Earthquake parameters for Ryukyu–Kyushu–Nankai Subduction Zone unit sources.

# Appendix C. Synthetic Testing: Elfin Cove, Alaska<sup>\*</sup>

### C1. Purpose

Forecast models are tested with synthetic tsunami events covering a range of tsunami source locations and magnitudes ranging from mega-tsunami events to micro-tsunami events. Testing is also done with selected historical tsunami events when available.

The purpose of forecast model testing is three-fold. The first objective is to assure that the results obtained with NOAA's tsunami forecast system, which has been released to the Tsunami Warning Centers for operational use, are consistent with those obtained by the researcher during the development of the forecast model. The second objective is to test the forecast model for consistency, accuracy, time efficiency, and quality of results over a range of possible tsunami locations and magnitudes. The third objective is to identify bugs and issues in need of resolution by the researcher who developed the forecast model or by the forecast software development team before the next version release to NOAA's two Tsunami Warning Centers.

Local hardware and software applications are used with tools familiar to the researcher(s) to run the Method of Splitting Tsunami (MOST) model during the forecast model development. The test results presented in this report lend confidence that the model performs as developed and produces the same results when initiated within the forecast application in an operational setting as those produced by the researcher during the forecast model development. The test results assure those who rely on the tsunami forecast model for Elfin Cove, Alaska, that consistent results are produced irrespective of the system used.

#### C2. Testing procedure

The general procedure for forecast model testing is to run a set of synthetic tsunami scenarios and a selected set of historical tsunami events through the forecast system application, and compare the results with those obtained by the researcher during the forecast model development (as presented in the Tsunami Forecast Model Report). Specific steps taken to test the model include:

- 1. Identification of testing scenarios, including the standard set of synthetic events, appropriate historical events, and customized synthetic scenarios that may have been used by the researcher(s) in the development of the forecast model.
- 2. Creation of new events to represent customized synthetic scenarios used by the researcher(s) in the development of the forecast model, if any.
- 3. Submission of test model runs with the forecast system, and export of the results from A, B, and C grids, along with time series.

<sup>\*</sup> Authors: Mick Spillane, Lindsey Wright

- 4. Recording applicable metadata, including the specific version of the forecast system used for testing.
- 5. Examination of forecast system model results for instabilities in both time series and plot results.
- 6. Comparison of forecast model results obtained through the forecast system with those obtained during the forecast model development.
- 7. Summarization of results with specific mention of quality, consistency, and time efficiency.
- 8. Reporting of issues identified to modeler and forecast software development team.
- 9. Retesting the forecast models in the forecast system when reported issues have been addressed or explained.

Synthetic model runs were tested on a DELL PowerEdge R510 computer equipped with two Xeon E5670 processors at 2.93 GHz, each with 12 MBytes of cache and 32 GB memory. The processors are hex core and support hyperthreading, resulting in the computer performing as a 24 processor core machine. Additionally, the testing computer supports 10 Gigabit Ethernet for fast network connections. This computer configuration is similar or the same as the configurations of the computers installed at the Tsunami Warning Centers so the compute times should only vary slightly.

#### C3. Results

The Elfin Cove forecast model was tested with NOAA's tsunami forecast system, SIFT (Short-term Inundation Forecasting of Tsunamis). Test results from the forecast system and comparisons with the results obtained during the forecast model development are shown numerically in **Table C1** and graphically in **Figures C1–C5** as described below. The results show that the forecast model is stable and robust, with consistent and high-quality results across geographically distributed tsunami sources and mega-tsunami event magnitudes. The model run (wall-clock) times for all five cases were under 25.88 min for 8 hr of simulation, and under 12.92 min for 4.0 hr. This run time is not within the criterion of 10 min run time per 4 hr of simulation time for operational efficiency.

A suite of four synthetic events and one historical case were run on the Elfin Cove forecast model. The modeled scenarios were stable for all cases tested, with no instabilities or ringing. The largest modeled height (see **Table C1**) was 60 cm, from the Cascadia source ACSZ 56–65. Amplitudes less than 75 cm were recorded for all of the test sources; the smallest signal of 23 cm originated from the farfield South American source CSSZ 89–98. Direct comparisons of output from the forecast tool with results of both the historical event (2011 Tohoku, alternately referred to as 2011 Honshu) and available development synthetic events demonstrated that the wave patterns were similar in shape, pattern, and amplitude. The figure captions in this appendix point to the relevant figures of the main report. The extrema reported in **Table C1** were obtained from the output files produced during model development

| or synthetic and historical events tested using SIFT   |                                          |  |
|--------------------------------------------------------|------------------------------------------|--|
| itudes (cm) at the Elfin Cove, Alaska, warning point f | nt.                                      |  |
| <b>Fable C1</b> : Maximum and minimum ampl             | 3.2 and those obtained during developme: |  |

| o.4 allu vilos | onvattien untitig developitiette.     |                                                                                                                             |                           |      |             |       |             |
|----------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------|------|-------------|-------|-------------|
|                |                                       |                                                                                                                             |                           | Max  | iima (cm)   | Min   | ima (cm)    |
| Scenarios      | Source Zone                           | Tsunami Source                                                                                                              | α [m]                     | SIFT | Development | SIFT  | Development |
| Mega-tsunan    | ni Scenarios                          |                                                                                                                             |                           |      |             |       |             |
| KISZ 22–31     | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | A22-31, B22-31                                                                                                              | 25                        | 42.9 | 42.90       | -35.1 | -34.99      |
| ACSZ 56–65     | Aleutian-Alaska-Cascadia              | A56-65, B56-65                                                                                                              | 25                        | 59.9 | 59.60       | -70.3 | -70.41      |
| CSSZ 89–98     | Central and South America             | A89-98, B89-98                                                                                                              | 25                        | 22.9 | 22.90       | -32.9 | -32.9       |
| NTSZ 30–39     | New Zealand-Kermadec-Tonga            | A30-39, B30-39                                                                                                              | 25                        | 38.2 | 38.15       | -29.5 | -29.55      |
| Historical Ev  | vent                                  |                                                                                                                             |                           |      |             |       |             |
| 2011 Tohoku    | Kamchatka-Kuril-Japan-Izu-Mariana-Yap | $\begin{array}{c} 4.66 \times B24 + 12.23 \times \\ 26.31 \times A26 + 21.27 \times \\ 22.75 \times A27 + 4.98 \end{array}$ | B25 +<br>< B26 +<br>× B27 | 13.9 | 13.89       | -13.6 | -13.59      |



<sup>(</sup>a) A grid, (b) B grid, and (c) C grid. Sea surface elevation time series at the C-grid warning point (d). Panel (d) can be compared to the equivalent results obtained during model development, displayed in Figure 32a and Table C1.











(a) A grid, (b) B grid, and (c) C grid. Sea surface elevation time series at the C-grid warning point (d). For extrema computed during model development, see Figure 32d and Table C1.





# Glossary

- **Arrival time** The time when the first tsunami wave is observed at a particular location, typically given in local and/or universal time, but also commonly noted in minutes or hours relative to the time of the earthquake.
- **Bathymetry** The measurement of water depth of an undisturbed body of water.
- **Cascadia Subduction Zone** Fault that extends from Cape Mendocino in Northern California northward to mid-Vancouver Island, Canada. The fault marks the convergence boundary where the Juan de Fuca tectonic plate is being subducted under the margin of the North America plate.
- **Current speed** The scalar rate of water motion measured as distance/time.
- **Current velocity** Movement of water expressed as a vector quantity. Velocity is the distance of movement per time coupled with direction of motion.
- **Deep-ocean Assessment and Reporting of Tsunamis (DART®)** Tsunami detection and transmission system that measures the pressure of an overlying column of water and detects the passage of a tsunami.
- **Digital Elevation Model (DEM)** A digital representation of bathymetry or topography based on regional survey data or satellite imagery. Data are arrays of regularly spaced elevations referenced to a map projection of the geographic coordinate system.
- **Epicenter** The point on the surface of the earth that is directly above the focus of an earthquake.
- **Far-field** Region outside of the source of a tsunami where no direct observations of the tsunami-generating event are evident, except for the tsunami waves themselves.
- **Focus** The point beneath the surface of the earth where a rupture or energy release occurs due to a buildup of stress or the movement of Earth's tectonic plates relative to one another.
- **Inundation** The horizontal inland extent of land that a tsunami penetrates, generally measured perpendicularly to a shoreline.
- **Marigram** Tide gauge recording of wave level as a function of time at a particular location. The instrument used for recording is termed a marigraph.
- **Method of Splitting Tsunami (MOST)** A suite of numerical simulation codes used to provide estimates of the three processes of tsunami evolution: tsunami generation, propagation, and inundation.

- **Moment magnitude (Mw)** The magnitude of an earthquake on a logarithmic scale in terms of the energy released. Moment magnitude is based on the size and characteristics of a fault rupture as determined from long-period seismic waves.
- **Near-field** Region of primary tsunami impact near the source of a tsunami. The near-field is defined as the region where non-tsunami effects of the tsunami-generating event have been observed, such as earth shaking from the earthquake, visible or measured ground deformation, or other direct (non-tsunami) evidences of the source of the tsunami wave.
- **Propagation database** A basin-wide database of precomputed water elevations and flow velocities at uniformly spaced grid points throughout the world oceans. Values are computed from tsunamis generated by earthquakes with a fault rupture at any one of discrete  $100 \times 50$  km unit sources along worldwide subduction zones.
- **Runup** Vertical difference between the elevation of tsunami inundation and the sea level at the time of a tsunami. Runup is the elevation of the highest point of land inundated by a tsunami as measured relative to a stated datum, such as mean sea level.
- **Short-term Inundation Forecasting for Tsunamis (SIFT)** A tsunami forecast system that integrates tsunami observations in deep ocean with numerical models to provide an estimate of tsunami wave arrival and amplitude at specific coastal locations while a tsunami propagates across an ocean basin.
- **Subduction zone** A submarine region of the earth's crust at which two or more tectonic plates converge to cause one plate to sink under another, overriding plate. Subduction zones are regions of high seismic activity.
- **Synthetic event** Hypothetical events based on computer simulations or theory of possible or even likely future scenarios.
- **Tele-tsunami** or **distant tsunami** or **far-field tsunami** Most commonly, a tsunami originating from a source greater than 1000 km away from a particular location. In some contexts, a tele-tsunami is one that propagates through deep ocean before reaching a particular location without regard to distance separation.
- **Tidal wave** Term frequently used incorrectly as a synonym for tsunami. A tsunami is unrelated to the predictable periodic rise and fall of sea level due to the gravitational attractions of the moon and sun; see **Tide**, below.
- **Tide** The predictable rise and fall of a body of water (ocean, sea, bay, etc.) due to the gravitational attractions of the moon and sun.
- **Tide gauge** An instrument for measuring the rise and fall of a column of water over time at a particular location.

- **Travel time** The time it takes for a tsunami to travel from the generating source to a particular location.
- **Tsunameter** An oceanographic instrument used to detect and measure tsunamis in the deep ocean. Tsunami measurements are typically transmitted acoustically to a surface buoy that in turn relays them in real time to ground stations via satellite.
- **Tsunami** A Japanese term that literally translates to "harbor wave." Tsunamis are a series of long-period shallow water waves that are generated by the sudden displacement of water due to subsea disturbances such as earthquakes, submarine landslides, or volcanic eruptions. Less commonly, meteoric impact to the ocean or meteorological forcing can generate a tsunami.
- **Tsunami hazard assessment** A systematic investigation of seismically active regions of the world oceans to determine their potential tsunami impact at a particular location. Numerical models are typically used to characterize tsunami generation, propagation, and inundation, and to quantify the risk posed to a particular community from tsunamis generated in each source region investigated.
- **Tsunami propagation** The directional movement of a tsunami wave outward from the source of generation. The speed at which a tsunami propagates depends on the depth of the water column in which the wave is traveling. Tsunamis travel at a speed of 700 km/hr (450 mi/hr) over the average depth of 4000 m in the open deep Pacific Ocean.
- **Tsunami magnitude** A number that characterizes the strength of a tsunami based on the tsunami wave amplitudes. Several different tsunami magnitude determination methods have been proposed.
- **Tsunami source** Location of tsunami origin, most typically an underwater earthquake epicenter. Tsunamis are also generated by submarine landslides, underwater volcanic eruptions, or, less commonly, by meteoric impact of the ocean.
- **Wall-clock time** The time that passes on a common clock or watch between the start and end of a model run, as distinguished from the time needed by a CPU or computer processor to complete the run, typically less than wall-clock time.
- **Wave amplitude** The maximum vertical rise or drop of a column of water as measured from wave crest (peak) or trough to a defined mean water level state.
- **Wave crest or peak** The highest part of a wave or maximum rise above a defined mean water level state, such as mean lower low water.
- **Wave height** The vertical difference between the highest part of a specific wave (crest) and its corresponding lowest point (trough).

- **Wavelength** The horizontal distance between two successive wave crests or troughs.
- **Wave period** The length of time between the passage of two successive wave crests or troughs as measured at a fixed location.
- **Wave trough** The lowest part of a wave or the maximum drop below a defined mean water level state, such as mean lower low water.

## **PMEL Tsunami Forecast Series Locations**

Adak, AK Apra Harbor, Guam Arecibo, Puerto Rico Arena Cove, CA — Vol. 10 Atka, AK Atlantic City, NJ Bar Harbor, ME Cape Hatteras, NC Charlotte Amalie, U.S. Virgin Islands Chignik, AK Christiansted, U.S. Virgin Islands Cordova, AK Craig, AK Crescent City, CA — Vol. 2 Daytona Beach, FL Elfin Cove, AK - Vol. 13 Eureka, CA Fajardo, PR Florence, OR Garibaldi, OR Haleiwa, HI Hilo, HI — Vol. 1 Homer, AK Honolulu, HI Kahului, HI Kailua-Kona, HI Kawaihae, HI Keauhou, HI Key West, FL Kihei, HI — Vol. 11 King Cove, AK Kodiak, AK — Vol. 4 Lahaina, HI La Push, WA Los Angeles, CA Mayaguez, PR Midway Atoll — Vol. 7 Montauk, NY

Monterey, CA Morehead City, NC Myrtle Beach, SC Nantucket, MA — Vol. 8 Nawiliwili, HI Neah Bay, WA Newport, OR - Vol. 5 Nikolski, AK Ocean City, MD Pago Pago, American Samoa Palm Beach, FL Pearl Harbor, HI Point Reyes, CA — Vol. 6 Ponce, PR Port Alexander, AK Port Angeles, WA Port Orford, OR Port San Luis, CA Port Townsend, WA Portland, ME San Diego, CA San Francisco, CA — Vol. 3 San Juan, Puerto Rico Sand Point, AK Santa Barbara, CA — Vol. 12 Santa Monica, CA — Vol. 9 Savannah, GA Seaside, OR Seward, AK Shemya, AK Sitka, AK Toke Point, WA Unalaska, AK Virginia Beach, VA Wake Island, U.S. Territory Westport, WA Yakutat, AK

