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Rudolph W. Preisendorfer 1
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ABSTRACT. The Principal Discriminant Method (PDM) of prediction
employs a novel combination of principal component analysis and
statistical discriminant analysis. Discriminant analysis is based
on the construction of discrete category subsets of predictor
values in a multidimensional predictor space. A category subset
contains those predictor values which give rise to a predictand
(or observation) in that particular category. A new predictor
value is then assigned to a particular category (i.e., a forecast
is made) through the use of probability distribution functions
which have been fitted to the category subsets. The PDM uses
principal component analysis to define the multidimensional
probability distribution functions associated with the category
subsets. Because of its underlying discriminant nature, the PDM
is also applicable to problems in data classification.

After presenting the theory of the PDM, it is subjected to
four analyses. The first uses actual data to forecast discrete
values of horizontal visibility over the ocean, using the PDM in a
Model Output Statistics (MOS) setting. The second analysis is
also in an MOS setting, but this time artificially constructed
data sets are used, with predetermined levels of noise and
inherent predicability. In each study the PDM is compared with
other forecast methods (such as linear regression). The third
analysis uses the PDM to forecast the onset of the 1982-83 El
Nino, as expressed by sea surface temperature anomalies, using
wind anomalies as the predictors. In the fourth analysis, sea
level pressures over the North Pacific are used to predict surface
air temperatures over North America.

It is found that when applied to artificial data, the PDM
shows forecast skills which are comparable to other standard
forecast techniques. However, when applied to actual data sets,
the PDM is generally outperformed by other forecast techniques.
It is concluded that the failure of the PDM in these situations is
a consequence of the noisy nature of the data sets, which prevents
the PDM from adequately defining the category subsets. If the
input data sets are suitably smoothed or filtered in order to
increase the signal-to-noise ratio, then the PDM is once again
comparable in skill to other forecast techniques. The underlying
concepts of the PDM do, therefore, appear sound, and it is felt
that the PDM shows considerable promise.

1 NOAA/Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE,
Seattle, WA, 98115-0070

2 Joint Institute for the Study of the Atmosphere and Ocean, University of
Washington, AK-40, Seattle, WA 98195.

3 Climate Research Group, Scripps Institute of Oceanography, La Jolla, CA
92093



PART I. THEORY OF THE PRINCIPAL DISCRIMINANT METHOD

1. Introduction

Discriminant methods in general, and the Principal Discriminant Method

(PDM) in particular, can be applied to forecasting problems in which it is

desired to forecast a discrete state of the atmosphere or ocean. An example

is the forecasting of seasonal temperatures as one of the three discrete

states "above average," "average," or "below average." Because of its

underlying discriminant nature, the PDM can also be used in data

classification. An example is the assignment of the observed state of the

atmosphere to one of several discrete "climate types." A further application

of the PDM is the linking of the output of a General Circulation Model (GCM)

of the atmosphere with observed fields in order to produce Model-Output

Statistic (MOS) schemes of prediction. Our description of the PDM shows its

essential form so as to facilitate applications to any of the problems just

mentioned.

The successful construction of category subsets in a multidimensional

predictor space is a sine qua non of any discriminant method, along with the

fitting of versatile probability density functions to these subsets. The

modifier "principal" in the name of the present method derives from the fact

that, for multiple-predictors, essential use is made of Principal Component

Analysis (PCA) in order to determine appropriate probability density functions

for the category subsets. Another feature of the PDM is that of self­

evaluation of predictive skill. This is supplied by three indices of skill:

the potential predictability, the potential O-class error and the potential

l-class error in the predictand categories. These indices along with their

critical values, supplied by a Monte Carlo technique, help the user decide how
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much confidence to place on a given prediction made by the PDM. Also, during

the construction of the PDM's working parts, provision is made to test the

method on an independent data set. This testing gives another indication of

how well a data set is constituted to allow predictions of its variables'

future states.

The exposition of the PDM will be made in two parts. The first part

treats the case of a single predictor, in which case the PDM reduces to a

classical discriminant method. In real applications the single-predictor mode

can yield much information about the potential predictability of a predictand

by a given predictor, along with some information about the skill of the

predictions. The single-predictor mode of the PDM can therefore stand as an

independent, preliminary prediction method. The second part treats the case

of multiple predictors. It is expected that the predictability will increase

when a single predictor is joined by several more predictors, and when the

category subsets in the resultant multidimensional predictor space can be

carved out of the swarm of data points there. It is in this mode that the PDM

realizes its full power, via its application of Principal Component Analysis

to the multidimensional swarm of data points.

The reader desiring an elementary discussion of discriminant analysis in

its conventional statistical formulation is referred to Lachenbruch (1975).

This compact text also contains a bibliography of 579 references showing an

amazing diversity of problems amenable to solution by discriminant analysis.

A pioneering application of classical discriminant analysis in meteorology

will be found in Miller (1962).

3



2. The Single-Predictor Stage

It is assumed that we have available a data set consisting of

simultaneous observations of both predictors and predictands. Such a data set

is required in order to construct the PDM model. After the model has been

constructed, it is capable of making forecasts when given new predictor

values.

A. The Predictor-Predictand Pair. Let X(J,K) denote the value of the

Kth predictor X at time J. It is convenient to standardize the predictor in

time so that the time series X(J,K), J = 1,2, ••• ,N, has zero mean and unit

variance for each K, K = 1,2, ••• ,NK. Let Y(J) denote the value of the

predictand Y at the same time J. For example, in a Model Output Statistic

setting, the various predictors X(J,K) might be the sea surface temperature

(K = 1), the surface pressure (K = 2), the relative humidity (K = 3), etc.,

all at the same spatial location, and a particular predictand Y(J) might be

the horizontal visibility at the same time J and at the same or a different

location.

B. The Time-lagged Predictor-Predictand Pair. In order to fully use the

predictive capabilities of the PDM, we introduce a time lag NTAU into Y(J), so

as to pair Y(J + NTAU) with X(J,K), NTAU ~ O. For simplicity, it will be

assumed that NTAU has been introduced into Y(J), and we will retain the

notation "X(J,K)" and "Y(J)" for the lagged predictor-predictand pair, where

now J = 1,2, ••• ,NT labels the common range of times of the lagged pair. (Our

notation is designed to facilitate the coding of the associated computer

programs.) Thus X(J,K) might denote a wind anomaly for month J and region K

of the ocean, and Y(J) might denote an SST anomaly for a later month J + NTAU

and the same or a different region of the ocean.

4



C. Q-tiling the Predictand. Divide the range of predictand values

(Y(J): J = 1, ••• ,NT} into Q intervals. By judicious choice of the boundary

values B1 ,B 2 , ••• ,BQ_1 between these intervals, we can "Q-tile" the predictand

Y(J) into Q discrete categories. Let NY(J) denote the value of the discrete

category to which Y(J) belongs; thus NY(J) = M if Y(J) falls into category M,

15M 5 Q. Figure 1 illustrates these ideas for the case of Q = 3, called a

tercile categorization. In the figure we define

NY(J) _ 1

NY(J) _ 2

NY(J) _ 3

if Y(J) < B 1 ,

if B 1 5 Y(J) < B 2 ,

if B2 5 Y(J),

for J = 1, ••• ,NT. There is no requirement that the Q categories be equally

populated after the Q-tiling of the predictand: Fig. 1c shows five points 1n

category 1, nine in category 2, and seven in category 3.

D. The Discriminant Set. The time series for the Kth predictor X(J,K)

(Fig. 1a) and the Q-tiled predictand NY(J) (Fig. 1c) can be combined to form a

single diagram, called the discriminant diagram. Figure 2 shows the

discriminant diagram corresponding to Fig. 1. In this example diagram, one

sees at a glance that large, positive predictor values tend to be associated

with terciled predictand values in category 1; predictor values near zero are

associated with category 2 predictand values; and large, negative predictor

values tend to correspond to predictand values in category 3. The

discriminant set consists of the NT pairs of points [X(J,K),NY(J)],

J = 1,2, ••• ,NT.

E. Training and Testing Sets. The discriminant set of NT points 1S

randomly split into two subsets of predetermined sizes NTRN and NTST. The

5
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Figure 1.--Illustration of a predictor-predictand pair and a tercile
categorization. Panel a shows a standardized predictor time series
X(J,K), J = 1, ••• ,NT = 21 and K fixed. Panel b shows the corresponding
time series of the predictand values, Y(J), J = 1, ••• ,NT; boundary values
8 1 and 8 2 are indicated. The terciled values of the predictand, NY(J),
are shown in panel c.
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Figure 2.--The discriminant diagram corresponding to Fig. la and Fig. Ie. K
is held fixed as J runs from 1 to NT = 21.
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subset containing NTRN points is the training set, and the subset containing

NTST points it the testing set. Typically we choose NTRN = 2·NTST, so that

two-thirds of the NT available data points can be used to "train," or

construct, the PDM; and one-third of the points can be used to "test" the

PDM. Figure 3 shows a possible partition of the points of Fig. 2 into

training and testing sets. Let TRNX(I,K), I = 1,2, ••• ,NTRN, denote those

values of X(J,K), J = 1, ••• ,NT, which fall into the training set. Likewise,

let NTRNY(I), I = 1, ••• ,NTRN, denote the corresponding values of NY(J). Those

points of the discriminant set which have been randomly assigned to the

testing set are denoted by [TSTX(I,K), NTSTY(I)], I = 1,2, ••• ,NTST.

NTRN= 143

2

1

/---- - - --------- .... ,
~. •• • • ;XCAT3,-------------- "

,'-----------------~,

~. • • • • .} XCAT2, ~

~----------------~
~---- - ---- - ..... ,
~.. • ~ XCAT1, ,.... _--------...;

a

-2 -1 o 1 2

TRNX(I, K)

3
-.
~--
~ 2
~
00
~ 1
Z

-2

• •

-1

• •

o

TSTX (I, K)

•

•

1

NTST = 7

•

2

b

Figure 3.--A partitioning of the discriminant set shown in Fig. 2 into a
training set (panel a) and a testing set (panel b). The category subsets
of the training set are indicated.
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F. Category Subsets of Predictor Space. The subset of predictor points

in the training set which are associated with category M of predictand values

is termed the Mth category subset of the predictor space, denoted by

XCATM(I,K), I = l,2, ••• ,NCATM, M = 1,2, ••• ,Q. That is, if NTRNY(I) = M, the

corresponding TRNX(I,K) is an element of XCATM(I,K). Figure 3 shows the three

category subsets for the illustrated training set: XCAT 1 with NCAT 1 = 3,

XCAT 2 with NCAT 2 = 6, and XCAT 3 with NCAT 3 = 5. The category subsets form the

heart of the discriminant structure of the PDM.

G. Fitting the Probability Density Functions. Once the category subsets

of predictor points have been obtained, any discriminant method, including the

PDM, requires the fitting of probability density functions to these category

subsets. A decisive point in the discriminant method can arise when choosing

the specific form of the probability density function (pdf) to be fitted to

the category subsets. To be specific, we will choose the gaussian

distribution for this exposition. However, it may occasionally be worthwhile

to use a pdf specifically tailored to a given data set. The form of the

gaussian pdf for category M is

-x..)2]
20 2

M

where

~ is the average over I of the Mth category subset (XCATM(I,K):

I = 1, ••• ,NCATM}

and

0 2 1S the variance of this set of points.
M

8



Note that although the original data set X(J,K), J = 1, ••• ,NT, was

standardized to zero mean and unit variance, the category subsets XCATM(I,K)

in general have nonzero means and non-unit variances. Figure 4 shows the

fitted gaussian pdf's, ~l(X), ~2(X) and ~3(X), for the category subsets of

Fig. 3a. Once the ~M(X), M = 1, ••• ,Q, have been determined, the construction

(or training) of the PDM model is complete. Observe that implicit in the

~M(X) is the fact that they were constructed for a particular realization of

the training set. A different partition of the discriminant set into training

and testing sets would yield somewhat different ~M(X) functions.

H. Making a Prediction. Suppose a new predictor realization X' occurs

for predictor K; i.e. X' = X(J,K) for some time J. We wish to use the PDM

model constructed above in order to make a predictand forecast for the new

predictor value X'. Various strategies can be adopted regarding the manner in

which the pdf's ~M(X) are employed in making a forecast.

1.0

21o-1

0.5

o.0 -F-------r"-=::;....---l..---r--------T!!'---~

-2

x
Figure 4.--The pdf's ~l(X), ~2(X) and ~3(X) for the category subsets of

Fig. 3a.
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1. Maximum Probability Strategy. Given a predictor value XI, we compute

~M(X') for each category M = 1, ••• ,Q and note which M value, call it MI , has

the maximum pdf value. The prediction is then that NY(J) = MI. In Fig. 4 we

see, for example, that X' = -0.5 would yield a prediction of NY in category 3,

X' = 0.0 would predict NY = 2, and so on.

ii. Bayesian Strategy. The maximum probability strategy is easily

interpreted and computationally simple; however, it may not make the best use

of the available information. The method of Bayesian inference is perhaps

better suited to the problem at hand.

Strictly speaking, the ~M(X) pdf's relate to conditional probabilities:

namely, ~M(X) gives the pdf of X given that category M is observed. To fix

this idea, let us write ~(XIM) = ~M(X), What we really need in order to make

a forecast is the probability that category M occurs given that a specific

value of X occurs; let us denote this by p(MIX). The category, call it M',

with the greatest probability p(MIX) for the given value of X = X' is then the

category forecasted by the PDM when X' is observed. Since the Q predictand

categories are mutually exclusive and exhaustive, Bayes' theorem (see, for

example, Box and Tiao, 1972)

P(MIX) = ---=-P-,-(X......I'--M.;;...)P.....;.(_M)'---­

~ P(XIM)P(M)
M=l

= ~(XIM)P(M)

~ ~(XIM)P(M)
M=l

can be used to obtain the desired p(MIX) values. Here P(XIM) is the

probability of X given M, which is just ~(XIM). (Note that ~ P(XIM) < 1 in
M=l

general. ) P(M), known as the a priori probability of category M occurring,

lies at the heart of Bayesian inference. P(M) is a measure of our knowledge

about what forecast category will occur, before the predictor value X is

10



obtained. The selection of appropriate P(H) values is a task which falls on

the user of the Bayesian strategy and is an extra computation above those

required for the maximum probability strategy. If we were making a random

forecast of NY(J), it would be reasonable (but not necessary) to make the

probability of randomly choosing category H proportional to the number of

points of the training set which fall in category H. So a reasonable choice

of P(H) is

P(H)
NeATH
---- NTRN H=l, ••• ,Q.

It should be understood that in making this choice of P(H) we are allowing

information about the relative distribution of points in the category subsets

to influence the POH's forecast of the predictand when given a new predictor

value X'. This is the whole point of the Bayesian strategy. Another choice

of P(H) could lead to an entirely different forecast being made for the same

X' value. If we wish to make no use of our knowledge about the distribution

of points in the category subsets, we can pick P(H) = l/Q for all H. This is

the case of equally likely a priori distributions, for which the Bayesian

strategy reduces to the maximum probability strategy.

An example of the difference in the Bayesian and maximum probability

strategies can be obtained from Figs. 3 and 4. From the category subsets of

the training set of Fig. 3a and the above choice for P(H) we get

pO) 3=
14

P(2) 6= 14 pO) 5=14·

From the pdf's of Fig. 4 evaluated at X' = -0.5 we get the P(X' IH) values

11



p(X' 11) = .06 p(X' 12) = .42 P(X' 13) = .48.

Then from Bayes' theorem we get

pOI X' =-0.5) =
(.06)

3
(.06) 14

3 614 + (.42) 14 5
+ (.48) 14

= 0.0353

p(2IX'=-0.5) = 0.4941

P(3!X'=-0.5) = 0.4706.

We see that p(Mlx'=-0.5) is largest for M = 2, and therefore the forecast is

NY(J) = 2. But recall that the maximum probability strategy gave NY(J) = 3

for this X va1uel Clearly the use of the additional information contained in

the P(M) has had a profound influence on the forecast. For a further

discussion of philosophical matters relating the choice of the a priori

distributions see, for example, the work of Box and Tiao (1972).

One can devise other forecast strategies than the two discussed here.

Which is best can be determined, if at all, only by trial and error evaluation

of the competing strategies. It is quite possible that for one type of

problem (e.g. forecasting in a noisy environment), one forecast strategy will

prove superior, whereas for another type of problem (e.g. data classification

in a noise-free environment), another strategy will yield more accurate

forecasts.

I. Potential Predictability. The PDM as it now stands is ready to make

predictions by whichever strategy is chosen in the previous paragraph.

However, it is of great interest also to compute some measure of confidence in

these predictions. When the pdf's $M(X) are not well separated, then the

predictions have low skill, no matter what prediction strategy we choose.

12



Note, for example, in Fig. 4 that for predictor values X' near 0.5 it 1S

nearly equally probable that the predictand is 1n category 1 or 2, if we use

the maximum probability strategy. Conversely, if the ~M(X) are well

separated, then the PDM has no difficulty in determining which pdf has the

maximum value for a given X', and we have greater confidence that the

predictions will be correct. Therefore a measure of our confidence 1n the

predictions can be obtained via a measure of how well separated are the

pdf's. One measure of this separation is given by the potential

predictability index, PP, now to be defined.

Let

SCI) _ ~ ~M(TRNX(I,K»
M=l

for I = 1, ••• ,NTRN and K held fixed. Then define

P'(I,M) _
~M(TRNX(I ,K»

sO)

[P'(I,M) - ijP.

for M = 1, ••• ,Q and I = 1, ••• ,NTRN.

are identical, P'(I,M)

being identical 1S ~
M=l

separated, then

= l/Q. Thus

Note that ~ P'(I,M) = 1. If the pdf's
M=l

a measure of how far the pdf's are from

Moreover, if the pdf's are perfectly

----------------~
M=l

[P'(I,M) - !]2 = (1 - !)2 + (0 - !)2 +
Q Q Q

-- - ........ -
+ (0 - !)2

Q

or

one such
term when
pO ,M) = 1
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~
M=1

[P'(I,M) -.!.]2
Q
=~

Q

Thus we are led to define

PP(I) _ -9- ~ [P'(I,M) - .!.]2
Q-1 M~1 Q

Clearly PP(I) = 1 if the pdf's are perfectly separated and PP(M) = 0 if the

pdf's are identical.

1
PP - NTRN

Finally we define the potential predictability, PP, as

NTRN
L pp(I)

1=1

Thus PP has the property 0 ~ PP ~ 1 and is a measure of how distinct the pdf's

are: PP approaches zero as the pdf's become identical (and our confidence in

a prediction decreases), and PP approaches 1 as the pdf's become widely

separated (and our confidence in a prediction increases). This definition for

PP is consistent with the choice of the maximum probability strategy for

making a forecast, as discussed in §H.i above. If the Bayesian strategy of

§H.ii is chosen, the definition must be modified slightly by using

P'(I,M) _ p(MIX = TRNX(I,K».

~M(TRNX(I,K»P(M)
= --.,.......:.::.....-_-------

~ ~M(TRNX(I,K»P(M)
M=1

which reduces to the previous definition of P'(I,M) if the a priori

distributions P(M) are chosen to be equally likely, i.e., P(M) = 1/Q.
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PP is implicitly indexed by K for the particular predictor X(J,K) in

question. Moreover, PP depends on the particular partition of the

discriminant set into training and testing sets. Thus one should make several

(say NR) random partitions of the discriminant set, and compute PP for each.

Then in the final tally, the average PP over all partitions should be taken:

AVGPP(K)
1 NR

= -- L PP(K,JR),
NR JR=l

where we now explicitly show the predictor (K) and partition (JR) indices.

When comparing two possible predictors for a given predictand, the one with

the higher AVGPP will represent the higher predictability, on average.

J. Monte Carlo Significance Test for PP. However, while one predictor

may have a higher potential predictability than another, for a given

predictand, it is possible that neither is significant in the statistical

sense.

Recall Fig. 1. The situation there indicates a correlational (and

perhaps a causal) connection between X(J,K) and NY(J). A random relation

between predictor and predictand would occur if, for example, the category (1,

2 or 3 in Fig. 1) at time J were assigned to NY(J) in a random way. Thus, for

the Monte Carlo tests to be devised here, let a random number generator

choose, at each time J, a class M and define a new array NRANY(J) = M,

J = 1,···,NT. NRANY is thus a random version of NY. The probability of

. randomly assigning a particular M value to NRANY(J) should be made

proportional to the relative frequency of occurrence of the Mth category in

the Q-tiling of the original data set, so that the Monte Carlo test will

simulate as closely as possible the real experiment.
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We can now use the given predictor set X(J,K) and the newly defined

random predictand NRANY(J) to produce training and testing sets (as in

paragraph E), and carry through all the subsequent steps to obtain a value of

PP. This entire process can then be repeated after generating a new

realization of the random predictand NRANY, to obtain another value of PP for

a random relation between predictor and predictand. This process can be

repeated to generate, say, 100 values of PP for random predictor-predictand

connections. These 100 values can be ordered from smallest to largest; call

them PP(l) for the smallest to PP(lOO) for the largest. The 5% critical value

for PP is then determined from the 96th smallest PP value, PP(96). Thus the

probability that a randomly produced PP value will equal or exceed PP(96) is

approximately 0.05. Therefore, if the PP value determined for the actual

predictor-predictand pair satisfies

PP ~ PP(96),

we will say that PP is significant at the 5% level.

If one wants to establish a critical value for AVGPP(K), then the Monte

Carlo simulation is conducted so as to mimic the generation of AVGPP(K), as

described in paragraph I. Thus one randomly produces NR realizations of

PP(K,JR), finds their average, and goes through this average-finding procedure

100 times in all. The 96th smallest randomly generated AVGPP value then gives

the 5% initial value for AVGPP.

We note also that there are other measures of separation of the category

swarms. For example, Hotellings T2 test (the multivariate generalization of

Student's t test) can be used to test for significant separation of a palr of

category means X
M

• However, such tests often depend on assumptions of
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normality or independence of events. The potential predictability measure of

separation was developed in an attempt to have a nonparametric test.

K. Class Errors. The potential predictability gives us one measure of

how well a particular predictor can be expected to forecast predictand

values. Another straightforward indicator of how well a prediction method is

doing, when predicting categories, is to count the number of predictions that

are correct (O-class errors) and the number of predictions that are off by one

category (l-class errors). In the PDM we shall do this two ways: we will

determine the potential 0- and l-class errors, PAO and PAl respectively, using

the training set; and we will determine the actual 0- and l-class errors, AO

and Al, using the testing set.

i. PAO and PAl. Recall the probabilities P'(I,M) which were defined

when developing the PP index (using either the maximum probability or Bayesian

strategies). For each I value, find the maximum of the Q probabilities,

(P'(I,M): M = 1, ••• ,Q}, and let M'(I) be the M value for which P(I,M) is a

maximum. We now define the potential O-class error as

PAO 1
- NTRN

NTRN
2 P'(I,M'(I».

1=1

Note that as the pdf's ~M(X) become well separated, P'(I,M'(I», and

consequently PAO, approach one. As the pdf's become identical, P'(I,M'(I»

and PAO approach the value l/Q. PAO is therefore another measure, based on

the pdf's ~M(X), of how confidently we can expect the PDM to make a correct

category forecast.

But even if the PDM makes an incorrect forecast, it is clearly better to

have a forecast that misses by only one category than to have a forecast that

misses by two or more categories. For example, if category 1 is observed, a
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forecast of category 2 is closer to the truth than is a forecast of

category 3. Thus it is useful to have a measure of how likely it is that the

PDM will err by only one category, if it indeed makes an incorrect forecast.

Toward this end, we define

AP(I,1) _ 0

AP(1,2) _ P'(1,l)

AP(1,3) _ P'(1,2)

AP(1,Q+1) _ P'(1,Q)

AP (I , Q+2) _ O.

The idea here is to have P'(1,M'(1)-l) = 0 if M'(1) = 1 and P'(1,M'(1)+l) = 0

if M'(1) = Q. Then define

PAl
NTRN

L
1=1

[AP(1,M'(1» + AP(1,M'(1)+2)] •

A moment's reflection shows that PAl is a measure of the probability that a

category one less or one greater than the correct forecast category will be

selected, if indeed the M'(1) value gives a false forecast. As the pdf's

'M(X) become well separated, PAl approaches 0; and as the pdf's become

identical, PAl approaches ij. Thus we have

o ~ PAl 1
~ Q ~ PAO ~ 1 •

The larger is PAO, the better may X(J,K) predict NY(J), and the smaller is

PAl, the better may X(J,K) predict NY(J).
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ii. AO and AI. After the POM has been constructed, or trained, uSing

the training set [TRNX(I,K), NTRNY(I)], we can apply the POM to the testing

set predictors, TSTX(I,K), and verify the predictions it makes against the

actual observations for the testing set, NTSTY(I). Each time the POM makes a

correct forecast, we tally one to the O-class error score, and each time the

POM forecast errs by one category we tally one to the I-class error score.

Then define

IAO _ NTST [number of O-class errors]

IAl _ NTST [number of I-class errors] •

AO and Al satisfy

o ~ AO ~ I

o ~ Al ~ I •

The larger AO, the better has the POM forecasted the testing set values, and

the smaller AI, the better has the POM performed. Unlike PP, PAO and PAl,

which are based on the fitted pdf's defining the POM model, AO and Al are

actual forecast scores made by the POM when applied to an independent testing

set. Our studies of the POM in the following Parts II and III will make use

of the training and testing sets in the manner just discussed: the POM will

be defined using the training set, and its performance will then be evaluated

using the testing set. The AO and Al scores are a convenient means of

presenting forecast skill when discrete forecast categories are used. See,

for example, Preisendorfer and Mobley (1984) for the use of AO and Al in

scoring seasonal climate forecasts.
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L. Significance Tests for Class Errors. The Monte Carlo procedure, used

in paragraph J to determine the 5% critical value for potential

predictability, is equally applicable to the determination of critical values

for PAO, PAl, AO and Al. For each of the 100 realizations of the random data

set NRANY, we can compute PAO and PAl from the associated training set, and we

can compute AO and Al scores from the associated testing set. We then

determine the 5% upper critical levels PAO(96) and AO(96), and the 5% lower

critical values PAI(05) and AI(05). Significantly good predictions will have

PAO and AO scores that equal or exceed PAO(96) and AO(96), respectively.

Significantly good predictions will have PAl and Al scores that equal or are

less than PAI(05) and AI(05), respectively.

M. Ranking and Screening Single Predictors. The net result of this

section 18 the ability to individually rank (for a given predictand Y(J» the

predictors X(J,K), K = 1, ••• ,NK, in terms of their PP, PAO, PAl, AO and Al

scores. Those predictors that have significant potential predictability and

class-error scores become candidates for further consideration in the multiple

predictor stage. Predictors that have non-significant scores as single­

predictors of a predictand are unlikely to add useful information if they are

combined with other predictors in the multiple-predictor stage, and therefore

can be dropped from further consideration.

3. The Multiple-Predictor Stage

After performing the single-predictor analyses of the previous section on

each predictor X(J,K), K = 1, ••• ,NK, we have, for a fixed predictand Y(J), a

set of predictors ordered by their potential predictability scores. We drop

from further consideration any predictors which did not have statistically

significant PP scores in the single-predictor stage, so that NP ~ NK
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predictors remain. We now turn our attention to the task of constructing a

PDM model which has more than one predictor for a given predictand.

We choose the predictor with the highest potential predictability score

as the first predictor to be included in the multiple-predictor PDM model. We

then must screen the remaining NP-1 predictors in order to select those which,

when combined with the first predictor, yield a multiple-predictor model which

is, in some sense, optimum.

A. Correlational Screening of Predictors. Suppose we have already

selected L-1 predictors, L = 2, ••• ,NP-1. Let these selected predictors be

X(J,KX), KX = 1, ••• ,L-1. Let the remaining set of unse1ected predictors be

denoted by W(J,KW), KW = 1, ••• ,NW; NW+L-1 = NP. Let "Cor[KW,KX]" or

"Cor[W(·,KW),X(·,KX)]" denote the correlation between the indicated

predictors. The number

C(KW) _ Max{ICor[KW,KX]I}

KX = 1, ••• ,L-1

is a measure of the distance between the KWth unse1ected predictor W(J,KW) and

the set of L-1 previously selected predictors X(J,KX). The larger C(KW) is,

the closer W(J,KW) is to {X(J,KX), KX = 1, ••• ,L-1} as a whole.

When choosing a new candidate predictor for addition to the previously

selected predictors, we choose that predictor W(J,KW) which has the minimum

correlation magnitude, Cor[KW,KX]. In so doing, we are selecting that

predictor which is least correlated with the existing predictors and therefore

most likely to add new information to the model. If LW is the value of KW

giving the minimum C(KW), then we set X(J,L) = W(J,LW), J = 1, ••• ,NT. This

correlational screening is the first step in choosing the Lth predictor.

Whether or not this candidate predictor is retained in the PDM model will
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depend on its effect on the PP, PAD and PAl scores, to be discussed in

paragraph K below.

B. The L-dimensional Discriminant Set. Having added a candidate Lth

predictor, we now have a set of L predictors which at each time J form a

vector X(J) = [X(J,l),X(J,2), ••• ,X(J,L») in euclidean L-space EL• As the time

index J varies, !(J) moves about in EL• The category-valued predictand NY(J)

concurrently changes with J. The set of all ordered pairs [!(J),NY(J»),

J = 1, ••• ,NT, constitutes the L-dimensional discriminant set.

C. L-dimensional Training and Testing Sets. The L-dimensional

discriminant set is randomly split into two parts, exactly as in §l.E. The

result is a set of L-component vectors TRNX(I), I = l, ••• ,NTRN, containing

those elements of !(J) randomly falling into the training set, and another set

of vectors TSTX(I), I = l, ••• ,NTST, containing the remaining elements of

X(J). The associated sets of predictands NTRNY(J) and NTSTY(J) are defined

just as before.

D. Category Subsets of Predictor Space. We can now define subsets of

EL, the setting of the predictor space, that are associated with each of the Q

predictand categories. The logic of this definition is the same as that of

§l.F. Thus we set XCATM(I) = TRNX(I) if NTRNY(I) = M; the number of points

tallied to XCATM(I) is NCATM•

It is to the Q subsets of EL, XCATM(I), M = l, ••• ,Q, that we will

eventually fit L-dimensional probability density functions. However, before

fitting the pdf's, we perform a preliminary analysis of the L-dimensional

category subsets using Principal Component Analysis (PCA). It is in this

application of PeA that the PDH parts company with classical discriminan~

analysis.
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E. Binary PCA Decomposition of Category Subsets. Let us consider, for

didactic purposes, the case of two predictors (L = 2) and a terciled

predictand (Q = 3). Figure 5 shows three swarms of points in E2 , representing

the three category subsets. These sets of points were artificially generated

for the purpose of illustrating this section. In classical discriminant

analysis, each category subset would be fitted with a bivariate normal pdf.

For a point swarm shaped like that of category 2, the bivariate normal pdf

would probably be quite satisfactory: Fig. 6 shows the category 2 swarm and

the best-fit binormal pdf. However, for an irregularly shaped swarm, such as

category 1 of Fig. 5, the bivariate normal pdf is clearly a poor

representation of the actual shape of the category subset. Figure 7 shows the

best-fit bivariate normal pdf for category 1. Since discriminant methods

depend upon having pdf's which accurately delineate the category subsets, we

could not expect accurate forecasts from a model based on fits as poor as that

of Fig. 7. (See Fig. 7 of Miller, 1962, for an example of a binormal pdf

being forced upon a category subset which is clearly bimodal in E2 ).

Principal Component Analysis (PCA) enables us to systematically and

objectively subdivide an arbitrarily shaped category swarm into a number of

smaller point swarms in EL• If each of the smaller swarms is then roughly

elliptical in shape (in terms of hyperellipses in EL), then a multinormal pdf

can be well-fitted to each smaller swarm. The pdf describing the original,

irregularly shaped category swarm can then be constructed as a weighted sum of

the multinormal pdf's of the smaller swarms. This is the central idea of the

PDM.

Let ~M = {XCATM(I), I = 1, ••• ,NCATM}, M = 1, ••• ,Q, represent the Mth

category subset. ~M is viewed as an NCATM by L data matrix. A general

outline of the ~M category swarm for E2 is illustrated in Fig. 8. PCA of the

category swarm ~ provides the following:
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symbols; NCAT 3 = 112) in E2 • ----
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Figure 6.--The category 2 point swarm of Fig. 5 and the probability contours
of the best-fit bivariate normal pdf.
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Figure 7.--The category 1 point swarm of Fig. 5 and the probability contours
of the best-fit bivariate normal pdf.
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PREDICTOR 1

Figure 8.--A general category swarm Xu in E2 , represented by the heavy line.
The eigenvectors ~l an~ ~2 resur~ing from the peA of ~_are shown at the
centroid of the swarm X. Level 1 subswarms !M(l) and-~(2) are
identified, along with-~heir centroids and eigenvectors: Four level 2
subswarms ~M(al,a2) are also labeled.
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~M: the centroid in EL of the point swarm ~M

!l' ••• '!L: a set of L-dimensional orthonormal eigenvectors at ~M

~l' ••• '~L: a set of eigenvalues associated with the eigenvectors. ~. is
J

the scatter (= (NCATM-l) times the variance) of the swarm in the !j

direction. The eigenvalues are ordered so that

~l ~ ~2 ~ ••• ~ ~L ~ 0, with an associated ordering of the

eigenvectors.

!l: the first principal component of ~; !l is an NCATM-dimensional

vector defined by !l = (~ - ~)!l.

The steps of PCA are reviewed in the Appendix.

The signs of the NCATM elements of !l divide the category swarm ~ into

two subswarms separated by a hyperplane in EL which passes through the

centroid ~ perpendicular to !l. Thus

if al(I) > 0, place the point XCATM(I) in subswarm 1, denoted by ~(l),

and

if al(I) S 0, place the point XCATM(I) in subswarm 2, denoted by ~(2).

It is this elegant property of PCA that allows us to use it as a tool for

dividing sinuous category swarms into smaller, and hopefully more symmetrical,

point swarms. The subswarms ~(l) and ~M(2) individually may be close to an

elliptical shape, so that a multivariate normal pdf adequately fits each

subswarm. If either of the subswarms is still too distorted in shape, it can

be further subdivided by another application of PCA to that subswarm. This

subdivision process can continue until the original category swarm has been

reduced to a number of smaller swarms, each of which is roughly elliptical in

shape in EL•

These successive subdivisions are conveniently displayed as a tree. The

general notation is that ~M(al,···,a~), ~ = 1,2, ••• , represents a "parent"
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swarm, which is itself the result of ~ binary subdivisions of the original

category set~. If ~M(al,···,a~) is subdivided again by peA, the subswarms

are denoted by ~(al,···,a~,I) and ~M(al,···,a~,2). The a-indices thus take

on the value 1 or 2 at each binary decomposition. Figure 8 illustrates the

division of category swarm ~M' with centroid at FM, into subswarms ~M(I)

and ~M(2), with centroids at ~ (1) and FM(2), respectively. The figure also

shows the further subdivision of ~(1) into ~(1,1) and ~(1,2), and of ~M(2)

into ~(2,1) and ~(2,2). Figure 9 shows the tree representation of the

decompositions of Fig. 8.

Level 0

Levell

Level 2

~M

~M (2)

~M (2, 2)

Figure 9.--A tree showing the level 2 subdivision of a category swarm ~.

This figure corresponds to the diagram of Fig. 8.
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F. Termination of the PCA Decomposition Process. The question now

arises: When is it necessary to subdivide a point swarm, or equivalently, how

can we determine when a point swarm is sufficiently close to an elliptical

shape? This problem of deciding whether or not to subdivide a point swarm is

not a trivial one, and no really satisfactory solution has yet been found.

However, several proposed solutions have been investigated, and we will

discuss these briefly.

Let NM(a1,···,a1 ) be the number of points Ln ~M(a1,···,a1). In order to

perform PCA on ~(a1,···,a1)' NM(a1,···,a1 ) must satisfy

This requirement merely assures us that there are enough points to give a non-

trivial PCA. If there are too few points in the swarm, we make ~M(a1,···,a1)

a terminal node of the PCA decomposition process; i.e., we declare the

swarm ~(a1,···,a1) ready to be fit with a multivariate normal pdf. However,

if sufficient points are available, we can proceed as follows.

i. Strategy 1. Perform a PCA on ~(a1,···,a1). From the resulting

ordered eigenvalues, 1 1 ~ 1 2 ~ ••• ~ 1L ~ 0, compute

One can now invoke a Monte Carlo strategy to see if A is significantly

large. In practice, however, such an approach is both computationally

expensive and overly strenuous, in the sense that category swarms are

subdivided just because they are non-spherical. Swarms can deviate greatly

from a spherical shape and still be adequately fit by a multivariate normal
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pdf; it is the sinuous shapes (cf. Fig. 8) and multimodal (or clustered) point

swarms that need to be decomposed.

ii. Strategy 2. Perform a PCA on ~M(al,···,at). From the resulting

ordered eigenvalues, compute

Al
A - L

1
~ t.(L-l) j=2 J

This A is a measure of the largest eigenvalue relative to the average of the

other eigenvalues, or in geometric terms, it is a measure of the scatter of

the point swarm along the direction of greatest variance relative to the

average scatter in the other directions. If the swarm is spherical, A = 1; A

increases as the swarm becomes elongated. We then test A against some ad hoc

value AO (AO = 2, say) to see if the swarm 1S too far from spherical to be

acceptable. Thus if A ~ AO' declare the swarm to be a terminal node; if

This criterion is easily applied, but is sometimes too lenient in forcing

a further subdivision of ~M(al,···,at). Recall, for example, the "C-shaped"

swarm of category 1 in Fig. 5. Clearly, this category swarm needs to be

subdivided. However, when PCA is performed on this initial swarm, t 1 = 1.63

and t 2 = 1.09, since PCA detects comparable variances in any direction about

the centroid. Thus A = 1.5 and no subdivision is called for by the test

A > AO = 2. For category 2, A = 1.4 and the decision to make no further

subdivision is reasonable. The elongated category 3 swarm has A = 14.6,

consistent with its clear need for further subdivision.

iii. Strategy 3. We can force subdivision of the category swarms to

continue until one or both of the subswarms ~M(al,···,at,l)

and ~(al,···,at,2) of ~(al,···,at) fail to satisfy the requirements
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NM(al,···,a~,l) > L

NM(al,···,a~,2) > L

on the minimum number of points necessary for performing further PCA. The

parent swarm ~M(al,···,a~) can then be declared terminal. This procedure

works quite well at reducing the original swarm to a (sometimes large) number

of subswarms, each of which can be fitted with a multivariate normal pdf.

However, we must suspect that at some level of this lengthy decomposition, the

resulting pdf's are being influenced more by the noise in the original point

swarm than by the signal. That is to say, referring to the "C-shaped"

category 1 swarm of Fig. 5, we want a final pdf which describes the overall

"C-shape," but which is not unduly influenced by the exact positions of the

individual points of the swarm. Having too fine a resolution of the category

swarms may in fact degrade the class error scores AD and Al of the PDM model

when it is applied to independent data, even though the PP, PAD and PAl scores

have all been improved by the finer resolution of the testing set. (This

phenomenon will be seen in part III, below.)

One simple way to terminate the PCA subdivision process is to simply

force all initial category swarms ~M to undergo a fixed number of

subdivisions, say to level 2, as shown in Fig. 9. This procedure seems to

work fairly well in practice. If a category swarm ~M is nearly spherical to

begin, as is category 2 of Fig. 5, little harm is done in decomposing it into,

say, the four subswarms of a level 2 decomposition. If ~ is sinuous, as are

categories 1 and 3 of Fig. 5, then a 2-level decomposition goes a long way

toward generating a reasonable resolution of the original swarm, but without

getting too near the noise level.
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G. Fitting pdf's to the Terminal Nodes. Let us suppose that the Mth

category subset ~ has been decomposed into a number of terminal

nodes ~(al,···,al). Let !M(t) denote the tth terminal node ~M(al,···,al)

of ~, and let NTM be the number of terminal nodes of~; t = 1,2, ••• ,NTM•

Thus NTM = 1 for the case of no decomposition of the original category subset,

NTM = 4 for a level 2 decomposition like that of Figs. 8 and 9, and so on.

Let NM(t) denote the number of points NM(al,···,a1 ) in the tth terminal
NT

node; LM NM(t) = NCATM• The centroid of !M(t) is located at IM(t).
t=l

Finally, let ~M(t) be the LxL covariance matrix of !M(t) (cf. the Appendix),

with determinant DETCM(t) and inverse ~Ml(t).

The best-fit multivariate normal pdf for the tth terminal node !M(t) is

then

~M(t,!) = (2n)-L/2(DETCM(t»-~ x

EXP{-0.5[! - IM(t)]T ~Ml(t) [! - IM(t)]}

(It is assumed that DETCM(t) * 0, so that ~Ml(t) exists; if this 1S not the

case, the PCA decomposition leading to this terminal node is not made, and the

parent swarm is declared terminal. Alternatively, the swarm can be

discarded.) ! is an arbitrary point in EL• As noted in Appendix A, ~Ml(t) is

readily obtained from the eigenvalues and eigenvectors obtained in the PCA

C-l(t)
-M

L 1 T= (NCATM - 1) \ n- e.e.
j~l ~j -J-J

H. Assembling the pdf's. A multivariate normal pdf is fitted to each

terminal node !M(t) of NM(t) points, t = 1, ••• ,NTM• We define a weighting
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distribution function for the

NT
Mso that L WM(t) = 1. The probability

t=l
Mth category subset is then taken to be

for M = 1,···,Q, ~ in EL• These pdf's ~M(~) define the desired PDH model.

Figure 7 showed the binormal pdf for the category 1 point swarm of

Fig. 5; this is the case of NTM = 1, or no PCA decomposition of the category

set. Figure 10 shows the contours of ~l(~) when determined by a level 2

decomposition, as illustrated in Figs. 8 and 9 and discussed in the latter

part of §3.F above. This pdf is clearly a much more realistic description of

the category 1 swarm than is the pdf of Fig. 7. If the PCA decomposition is

allowed to proceed until just before the minimum point requirement NM(t) > L

is violated, the category 1 point swarm of Fig. 5 is reduced to 23 terminal

nodes. Figure 11 shows the tree diagram of this maximum possible

decomposition. Figure 12 shows the ~l(~) contours determined from the

terminal nodes of Fig. 11. This pdf gives a very sharp delineation of the

category subset, but the finestructure of the probability contours is clearly

being determined by the individual points of the category subset, which may be

undesirable, as discussed in §3.F.

I. Making a Prediction. Just as in the single predictor case, we must

choose a prediction strategy (maximum probability, Bayesian, or another) for

using the pdf's ~M(~) to make a prediction. If the maximum probability

strategy is chosen, then given a new predictor realization X' (now an L-

dimensional vector), we evaluate ~M(~')' M = 1, ••• ,Q. The prediction is then

that the predictand falls into category M', where M' is the M value

corresponding to the maximum ~M(~')' M = 1, ••• ,Q. If the Bayesian strategy is
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2
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PREDICTOR 1

Figure lO.--The category 1 point swarm of Fig. 5 and the probability contours
of tl(~) as determined by a level 2 peA decomposition.

35



W Q
\

L
ev

el
0

L
ev

el
l

L
ev

el
2

L
ev

el
3

L
ev

el
4

L
ev

el
S

t=
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

13
14

15
16

1
7

1
8

1
9

2
0

2
1

2
2

2
3

F
ig

u
re

ll
.-

-T
h

e
tr

e
e

d
ia

g
ra

m
sh

ow
in

g
th

e
m

ax
im

um
p

o
ss

ib
le

d
ec

o
m

p
o

si
ti

o
n

o
f

th
e

ca
te

g
o

ry
I

su
b

se
t

o
f

F
ig

.
5.

T
he

c
ir

c
le

s
re

p
re

se
n

t
th

e
~

(a
1

,·
··

,a
)

su
b

se
ts

,
an

d
th

e
nu

m
be

rs
w

it
h

in
th

e
c
ir

c
le

s
g

iv
e

th
e

nu
m

be
r

o
f

p
o

in
ts

in
th

e
su

bs
w

ar
m

,
Nl

ta
l,

··
·,

al
~.

T
er

m
in

al
no

de
s

!
l(

t)
a
re

re
p

re
se

n
te

d
by

b
o

x
es

;
th

e
en

cl
o

se
d

nu
m

be
rs

g
iv

e
N

1
(t

).



3...----------------------,

2

N 1
~
0 +*f-l
U 0
~

0
~ -1
~

-2

-3~3----l..--2-~1--0.L....-....-------L1-------'-2-----'3

PREDICTOR 1

Figure 12.--The category 1 points of Fig. 5 and the t1(X) probability contours
as constructed from the 23 terminal nodes of Fig. II.
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chosen, the a priori probabilities can be set to P(M) = NCATM/NTRN, as in the

single-predictor case, and the pdf's ~M(!) = ~(!IM) are used in Bayes'

formula.

J. Potential Predictability, Class Errors, and Significance Tests.

These matters all proceed in exact analogy to the single predictor case. Thus

in computing the potential predictability index, PP, for the maximum

probability strategy we first compute

and

for M = 1, ••• ,Q and I = 1, ••• ,NTRN. The only difference from the sing1e-

predictor case is that we are now using the L-dimensiona1 training set values

TRNX(I) in the multivariate pdf's ~M(!)' Subsequent formulas leading to PP or

AVGPP are unchanged. Likewise, the modifications required for the Bayesian

strategy are trivial.

The potential predictability is now measuring the separation of pdf's in

an L-dimensiona1 space. Figures 13-15 show three sets of pdf's as determined

for the example point swarms of Fig. 5, where L = 2. Figure 13 (reproducing

parts of Figs. 6 and 7) shows in superposition contours of equal probability

of the three best-fit binormal pdf's, ~M(!)' as would be obtained in classical

discriminant theory. The potential predictability for these pdf's is

PP = 0.39, when using the maximum probability forecast strategy. Figure 14

shows the pdf's, ~M(!)' as obtained by level 2 peA, as illustrated in

Figs. 8-10. The eye can now easily distinguish the three pdf's determined

from the three point swarms of Fig. 5, and the potential predictability has
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PREDICTOR 1

Figure 13.--Contours of equal probability of the three binormal pdf's ~M(!)'

M = 1,2,3, fitting the three category subsets of Fig. 5. The contour
interval is different for each of the three pdf's.
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PREDICTOR 1

Figure l4.--Contours of equal probability of the three pdf's ~M(~) as
determined from a level 2 PCA decomposition of each category subset of
Fig. 5. Contour intervals vary.
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Figure 15.--Contours of equal probability of the three pdf's ~M(!) as
determined from the maximum possible PCA decomposition of the category
subsets of Fig. 5. Contour intervals vary.
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rIsen to PP = 0.77. Figure 15 shows the pdf's as determined from the maXImum

possible PCA decomposition of the category swarms, as shown in Figs. 11 and

12. These pdf's show even better separation, as verified by their PP value of

PP = 0.87, but the noise in the data (i.e., the positions of the individual

points) has clearly affected the pdf's themselves. If the pdf's of Fig. 15

were used for actual forecasting, it might often occur that predictor values

~' would "fall into the gaps" of these irregularly shaped pdf's in such a

manner as to cause the point to be ascribed to the wrong pdf, thus giving an

incorrect forecast.

Given the probabilities P'(I,M), the potential class errors PAD and PAl

are immediately available. The actual class errors AD and Al are now computed

from the multipredictor testing set TSTX(I), I = 1, ••• ,NTST.

Monte Carlo experiments for determining 5% significance levels on PP,

PAD, PAl, AD and Al proceed, in principal, as before. Now, however, when the

randomly generated predictand NRANY(I) is analyzed using the multivariate

predictors, it is necessary to perform a full PCA decomposition in order to

get the needed pdf's (as described in paragraphs E-H above). This PCA

analysis becomes prohibitively expensive when it must be repeated 100 times in

a Monte Carlo experiment. Thus, in practice, the 5% significance levels may

not be available.

K. Final Screening of the Candidate Predictor. We recall from paragraph

A that we have admitted a candidate Lth predictor to the PDM model, based upon

the correlation screening described there. We now may use the information

gathered in the previous paragraph to decide whether or not to keep the

candidate predictor in the model. Let PAO(L-l) and PAl(L-l) denote the PAD

and PAl scores obtained from the PDM model before the candidate Lth predictor

was admitted (if L = 2, we have the single predictor potential class errors
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available). Let PP(L), PAO(L) and PA1(L) be the scores obtained after the

candidate Lth predictor was admitted. Moreover, let PP(96;L), PAO(96;L) and

PA1(05;L) be the appropriate 5% critical values as determined by Monte Carlo

simulations. We then accept the candidate Lth predictor X(J,L) into the PDM

model if the following conditions hold:

(i)

(ii)

(iii)

PP(L) ~ PP(96;L)

PAO(L) > PAO(L-l) and PA1(L) ~ PA1(L-l)

PAO(L) ~ PAO(96;L) and PA1(L) ~ PA1(05;L).

If these three conditions are not satisfied, we delete the candidate predictor

from the model and return to paragraph A above to select the next candidate

predictor. We continue in this manner until all possible predictors have been

examined, at which time the PDM model is complete.

Condition (i) is simply the requirement that the model have a

statistically significant potential predictability. Condition (ii) is the

requirement that the addition of the Kth predictor improves the potential

class error scores, and condition (iii) expresses the requirement that the

model's potential class error scores be statistically significant. Conditions

(i) and (iii) can be relaxed by using, say, a 10% significance level instead

of the 5% level shown. Condition (ii) cannot be relaxed.

L. Scoring the PDM Model. Once the PDM model is complete, we can

compute the actual class errors AO and Al, using the testing set TSTX(I),

I = l, ••• ,NTST, generated during the examination of the final predictor which

was admitted to the model. These AO and Al scores, together with the

information shown in (i), (ii), (iii) of the previous paragraph, are the data

by which we measure the PDM model's actual and potential skills.
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4. Appendix. PCA of the Point Swarm ~M'

Let the category swarm ~M as defined in §3.E be regarded as an NCATM by L

matrix: the L columns of the matrix correspond to the L predictors of the PDM

model; the rows of the matrix correspond to the points (times) of the training

set. Thus

~=

XCATM(I,I)

XCATM(2,1)

XCATMO,2)

XCATM(2,2)

XCATMO, L)

XCATM(2,L)

The centroid of the swarm ~ is located at

where

Recall that the category swarms are not centered in time, even though the

original data set was standardized.

The first step in the PCA of ~ is to center its columns in time.

Let Z denote the time centered ~:

where I = 1, ••• ,NCATM and KX = 1, ••• ,L.

We then define the L by L scatter matrix, ~' by
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Twhere ~ denotes the transpose of Z. Let t j and ~j' j = 1, ••• ,L, be the

eigenvalues and eigenvectors, respectively, of the scatter matrix. Since S is

a real, symmetric matrix, the eigenvalues t j are non-negative and can be

ordered by size:

The correspondingly ordered eigenvectors ~j have their directions fixed by

requiring that the first element of each eigenvector be positive:

~j(l) > O. (The ~j are sometimes referred to as the empirical orthogonal

Eunctions of Z.) The principal components of ~, denoted by !j' are vectors of

length NCATH defined by

Only the first principal component of ~, namely

or
L

a 1 (1) = I [XCAT
H

(I,KX) - XCAT
H

(o,KX)]e 1 (KX)
KX=l

is needed for our decomposition of the category swarm.

I = 1, ••• ,NCATH '

We also note that the covariance matrix, ~, of the data set ~ is given

by
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C I S
= NCAT

M
- I -

Therefore C has eigenvalues

where ~j are the eigenvalues of ~, and C has the same eigenvectors as S. The

determinant of C is

L
det{C) = II

j=l

L
A. = (NCATM-I)-L II

J j=l

Horeover, since S has the representation-
L T

S = 2 ~.e.e.

j=l J-J-J

and T 6jk , it follows thate.~ =
-J

C-l = (NCAT -1)S-1
M -

L I T= (NCATH-I) 2 1 e.e.
j=l . -J-J

J

L I T= 2 X e.e.
j=l . -J-J

J

Thus no explicit matrix inversion is required to obtain ~-1 after the PCA

of ~ has been performed. This result is of great use in fitting the

multivariate normal pdf's.
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PART II. EVALUATION OF THE PDM IN A MODEL OUTPUT STATISTICS SETTING

1. Forecasting Visibility

The first application of the PDM was made by Elias (1985) 1n a Master's

Thesis study. This section briefly summarizes this work.

The problem studied was the forecasting of horizontal atmospheric

visibility over selected regions of the North Atlantic Ocean. The potential

predictors were the output quantities of the Fleet Numerical Oceanography

Center's Navy Operational Global Atmospheric Prediction System (NOGAPS).

Examples of these potential predictors are the air temperature at the surface

and at the 1000, 925, 850, 700 and 500 mb levels; geopotentia1 height, vapor

pressure, and wind components, all at the same levels; surface pressure,

surface moisture flux, and cloud parameters. Other potential predictors were

derived from the NOGAPS output; e.g. relative humidity and vertical gradients

of temperature, geopotentia1 height, vapor pressure, and winds. Visibility

observations were obtained from ship reports. The predictor-predictand data

set was constructed by interpolating the gridded NOGAPS output to the

locations of the reporting ships. The reported visibilities first were

terci1ed as follows: category 1, visibility less than 2 km; category 2,

visibility between 2 and 10 km; category 3, visibility greater than or equal

to 10 km. A later part of the study used only- two categories of visibility:

category 1 for visibility less than Do amd category 2 for visibility greater

than or equal to Do' where Do was either 2 km or 4 km.

The PDM initially was implemented with these options:

(1) The maximum probability strategy of forecasting was used, as described in

§I.2.H.i.

(2) A point swarm was split by PCA if ~ > ~(96), as described in §I.3.F.i.
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(3) Hote11ing's T2 test was applied pairwise to the category swarms in order

to determine the separation of each pair of category swarms (i.e.

categories 1 and 2, 1 and 3, 2 and 3 were compared in the case of 3

categories). If the average separation of all category pairs was

significant at the 5% level, then the category swarms were considered to

be significantly separated.

(4) The 5% significance levels for PAD and AD were found from standard

statistical procedures based on the assumption that PAD and AD are

normally distributed.

Other characteristics of the PDM, such as randomly splitting the entire data

set into two-thirds training set and one-third testing set, were all as

described in part I of this report.

Forecasts made by the PDM were compared with the corresponding forecasts

made by three other MOS forecast models. These other models also were

proposed by Preisendorfer (1983a,b,c) and previously had been investigated by

Karl (1984), Diunizio (1984), and Wooster (1984) in Master's Theses. These

competing models are all characterized by the discrete Q-ti1ing of both

predictor and predictand values (unlike the PDM which Q-ti1es only the

predictand values). The training set is used to define discrete conditional

probabilities for the predictand category given the predictor category. The

three models differ in how these discrete conditional probabilities are used

to make a forecast when given a new predictor value. In the multiple

predictor stage, these predictor values are of course vectors in EL, just as

with the PDM. The previous studies found that the discrete conditional

probability techniques are comparable in skill to multiple linear regression

when used as an MOS forecast model. Both the PDM and the discrete conditional

probability models are expected to have an advantage over linear regression

whenever the relation between predictor and predictand is non-linear.
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Forecasts were made for three regions of the North Atlantic. A total of

2200 to 4500 predictor-predictand pairs was available for analysis, depending

on the region. Time lags of 0, 24 and 48 hours were studied, in the sense

that the NOGAPS forecast valid at a given time 0, 24 or 48 hours in the future

was used to forecast the visibility at the same time. It was found in the

original terciling of the visibilities that most observations fell into

category 3 (good visibility) and that categories 1 and 2 were not well

separated. This observation led to the two-category classification mentioned

above.

The two ma1n conclusions of the Elias study are as follows.

(1) The PDM model, as initially implemented, was outperformed by all

competing models in all measures of skill (e.g. AO and Al scores) for all

regions and time lags.

(2) When the PDM was reprogrammed to use the point swarm splitting criterion

A > AO = 2, as described in §I.2.H.ii, the skill of the PDM approached

that of the other models. However, only one such case study was made.

2. Artificial Data

After the disappointing performance of the PDM in the Elias study, it was

felt that a comparison of the PDM and its competitors should be made using an

artificial data set, constructed with known properties. Such a study was made

1n a Master's Thesis by Fatjo (1986).

The first hurdle of such a study 1S the construction of an artificial

data set which realistically simulates an actual MOS forecast situation. This

is not an easy problem, since it requires the simulation of four data sets:

(1) the natural primary fields (e.g. winds and temperatures as produced by

nature), (2) the modeled primary fields (e.g. winds and temperatures as
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predicted by the NOGAPS general circulation model), (3) the natural secondary

fields (e.g. visibility as produced by nature), and (4) the observed secondary

fields (e.g. visibility as recorded by a human observer or instrument). The

time series of the natural primary fields are to be constructed with

prescribed autocorrelations, cross correlations and signal-to-noise ratios.

The associated natural secondary fields must have the desired connections with

the natural primary fields, so that they are in principle predictable from the

primary fields. The modeled primary fields must simulate the inherent

imperfections of a general circulation model as a predictor of the natural

primary fields. And finally, the observed secondary fields must simulate the

errors made by an observer when measuring the natural secondary fields. Once

the desired data sets are available, a MOS model (e.g. the PDM) is constructed

using a part of the modeled primary fields and observed secondary fields (the

training set). Then the remainder of the modeled primary fields (the testing

set) is used as input to the MOS model, and its predictions of the secondary

fields are scored against the natural secondary fields. The mathematical

techniques for constructing these data sets are found in Preisendorfer

(1985) •

Fatjo used the Preisendorfer (1985) technique to generate two natural

data sets with 1200 time values for each of 8 predictors and one predictand.

One natural data set, termed the "easy set" had a signal-to-noise ratio of 4,

thus making it relatively easy to predict the secondary fields from the

primary fields. The other data set, termed the "hard set," had a signal-to­

noise ratio of 1, making it relatively hard to discern the relation between

predictors and predictand. Two general circulation models were also

simulated: a "good model," which did a relatively good job of "predicting"

the natural primary field (95% of the original field was reproduced), and a
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"bad model," which did a poorer job of simulating nature (only SO% of the

natural field was reproduced). And finally, three observers were simulated:

a "perfect observer," who never made a mistake in recording the natural

secondary field to make the observed secondary field; a "good observer," who

occasionally made a wrong observation (87% correct observations), but never by

more than one predictand category; and a "bad observer," who more often made

incorrect observations, sometimes by more than one category (69% correct

observations).

Three models were used for comparison with the PDM. The first was the

most successful of the three discrete conditional probability models mentioned

in the discussion of the Elias study. The second was classical discriminant

analysis, and the third competitor was multiple linear regression. The PDM

was used with these options:

(1) The predictand was terciled so that each category subset had 400 points,

and nearly the same var1ance.

(2) The Bayesian strategy for forecasting was used, as described 1n

§I.2 .H. ii.

(3) The X > 2 criterion for peA splitting of point swarms was used, as

described in §I.3.F.ii.

(4) The potential predictability, PP, was used to measure the separation of

the category swarms, but the S% significance levels of PP were not

determined because of computational expense (recall the comments at the

end of §I.3.J).

(S) In lieu of using the algorithm of §I.3.K (which requires significance

levels) to determine the final PDM model, the final model was taken to be

the three predictors which together gave the highest PP value. That is,

all combinations of three predictors were tested, and their PP scores

were ranked.
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The four MOS forecast models were applied to the varlOUS combinations of

easy and hard data sets; good and bad general circulation models; and perfect,

good, and bad observers. The resulting skill scores (AO, AI, etc. ) of the

MOS forecast models were compared using standard Analysis of Variance (ANOVA)

techniques, with the following general conclusions:

(1) As expected, all MOS forecast models gave their best results when

applied to the simulated data from the "easy" data sets, "good" GCM, and

"perfect" observers. All MOS forecast models then performed with less and

less success until the "hard" data, "bad" GCM, and "bad" observer case was

reached, at which time all MOS forecasters produced their lowest skill.

(2) The transition from "easy" to "hard" data sets of the natural

primary fields had a much larger effect on the forecast skills than the

transitions from "good" to "bad" GCMs or "perfect" to "bad" observers had.

(3) There was no statistically significant difference in the PDM,

classical discriminant, and linear regression skills for the various cases

studied, as determined by ANOVA. The discrete conditional probability method

scored better than the other forecasters when scored on the training set (PAD,

PAl), but scored poorer than the others on the testing set (AD, AI).
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PART III. EVALUATION OF THE PDM IN A CLIMATE FORECAST SETTING

1. Forecasting the El Nino of 1982-83

We have seen in part II that the PDM did not show any advantage over

other forecasters when applied in an MOS setting. However, the performance of

the PDM may be quite different when it is applied in some other forecast

situation. In particular, since the El Nino of 1982-83 displayed such large

anomalies, it might be hoped that the PDM can detect the separation between

normal and abnormal anomaly categories, and thereby successfully hindcast the

1982-83 event.

Barnett (1984) addressed the problem of statistically forecasting sea

surface temperature (SST) anomalies in the equatorial Pacific using wind

anomalies as predictors, during the 1982-83 El Nino. His study used a

sophisticated regression model which related the SST anomalies in the

predictand regions to the prior wind anomalies in the predictor regions.

Barnett found, among other things, that it was possible to forecast the onset

of El Nino, as measured by SST anomalies in a region off the coast of Peru

(his "SST5" region), using wind anomalies from various regions in the central

Pacific. These forecasts were quite successful at lead times of up to 4

months. Although the Barnett model did an acceptable job of forecasting the

onset of the 1982-83 El Nino, it failed to accurately predict the decline of

the El Nino, for reasons discussed in the 1984 paper. It was felt that a

repetition of his study would be another means of evaluating the PDM's

. forecast ability.

A. Using Unfiltered Predictors. The data set consists of monthly wind and

temperature anomalies for the 476 months from January 1947 to August 1986.

There are 4 regions of the equatorial Pacific for which u-component (East-
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West) wind anomalies are available, and 3 regions for which there are

v-component (North-South) wind anomalies. Thus there are 7 possible

predictors (labeled 1, ••• ,7 corresponding to Barnett's Ul, U2, U3, U4, VI, V2,

V3, respectively). It was desired to tercile the predictand SST anomalies so

that only the extreme events would fall outside the "normal" category.

Inspection of the SST record shows that if boundaries Bl = -0.5°C and

8 2 = 1.2°C are selected (see §I.2.C), then slightly less than one-sixth of the

anomalies fall into category 1 (below normal SST), somewhat more than two-

thirds fall into category 2 (normal SST), and slightly less than one-sixth

fall into category 3 (above normal SST). The above normal category so defined

contains only anomalies which are greater than two standard deviations from

the mean, which is a reasonable definition of El Nino. The 396 months from

January 1947 to December 1979 were taken to be the training set, and the 80

months from January 1980 to August 1986 were taken to be the testi~g set. The

training set contains several El Ninos, so that the PDM should have a good

opportunity to define the category pdf's. The 1982-83 event stands out

prominently in the testing set, as is seen in Fig. 16.
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Figure 16.--The testing set for prediction of the 1983 E1 Nino. The light
line and the scale at the right show the actual SST anomalies. The heavy
line and the scale at the left show the corresponding tercile category
values.
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The PDM was applied in various configurations:

(l) Both maximum probability and Bayesian strategies were used. In the

Bayesian case, the priors were made proportional to the number of points in

the category (cf. §I.2.H).

(2) Category swarms were forced to undergo a predetermined number of PCA

subdivisions, either 0 (as seen in Fig. 13), 2 (as seen in Fig. 14), or the

maximum possible number (as seen in Fig. 15), as discussed in §I.3.F.iii.

(3) The potential predictability was used to measure the separation of

the category pdf's, although the 5% significance levels were computed only in

the single predictor cases (owing to computational expense).

(4) The individual predictors were rated by their potential

predictability scores in order to select the first predictor. Subsequent

predictors were added to the model in the order given by the correlations, as

described in §I.3.A. Models containing 1 to 7 predictors were compared.

For a time lag of NTAU = 0, predictor 5 (wind in region Vl) has the

highest potential predictability score of any individual predictor. If the

maximum probability strategy is chosen, this value is PP = 0.196; the 5%

significance level is PP(96) = .019, so that PP is significant. For the

Bayesian strategy, PP = 0.377 and PP(96) = 0.316, so that PP is once again

significant. Predictor 5 thus becomes the first predictor of the PDM model.

Predictor 6 (wind in region V2) is least correlated with predictor 5, and

therefore becomes the next predictor added to the model. With two or more

predictors in the model, we also have the possibility of forecast skills

depending on the number of PCA decompositions of the category sets. Figure 17

shows the dependence of the potential predictability on the form of the PDM

model. In this figure we note the following behavior of the potential

predictability:
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1) All else being equal, PP is greater for the Bayesian forecast

strategy than for the maximum probability strategy.

2) All else being equal, PP increases as the number of PCA

decompositions of the category swarms increases.

3) All else being equal, PP increases as more predictors are added to

the model.

Similar results were found for PAO and PAl, e.g. PAl decreases (the model

becomes better) as predictors are added, all else being equal, and so on.

This behavior is consistent with our expectations.

However, when the various PDM models of Fig. 17 are applied to the

testing set, the AO and Al scores are quite disappointing. Figure 18 shows

the AO scores for the same situations as the PP scores of Fig. 17. We note

first of all that, since the terciling of the predictand was designed so that

most SST anomalies fall into the "normal" category, climatology (which always

predicts normal) is an excellent forecaster, with an AO score of 0.725. Since

climatology gets its high AO score by virtue of the chosen terciling, it 1S

not valid to compare the PDM's AO scores with climatology, and of course

climatology has no value as forecaster of the onset of an El Nino.

Conversely, poor AO scores of the PDM do not imply that it failed to forecast

the onset of the 1982-83 El Nino (the goal of this study), since AO is a

global measure of the PDM's performance.

In Fig. 18 we note that adding more predictors to the model does not

. always improve the AO score, all else being equal. Moreover, increasing the

number of PCA decompositions of the category swarms generally decreases the AO

scores. We have commented previously (§I.3.F.iii) on the possibility of this

sort of behavior, owing to the effects of noise in the data. The Bayesian

strategy generally gives better AO scores than the maximum probability
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strategy. The only model that generally outperforms climatology, though not

by much, is the Bayesian strategy with no PCA decomposition (i.e. classical

discriminant analysis).

The studies summarized 1n Figs. 17 and 18 were all made for the case of

zero time lag between predictor and predictand values; i.e., wind anomalies at

a given time were being used to forecast SST anomalies at the same time. But

a forecast technique is of real value only if it can predict the future. We

therefore now turn to a study of the PDM's behavior for time lags, NTAU,

greater than zero, so that wind anomalies at time T are being used to predict

SST anomalies at time T + NTAU.We narrow our discussion to PDM models using

the Bayesian forecast strategy and a level 2 PCA decomposition of category

swarms (even though no PCA decomposition gives somewhat better AO scores when

NTAU = 0). PDM models containing either two or five predictors, as shown in

Figs. 17 and 18, were considered. Figure 19 shows the various PP and AO

scores as a function of the time lag NTAU.

We note in Fig. 19 that the PP scores decrease somewhat as NTAU increases

from 0 to 4 months for the use of a two-predictor model, but that PP scores

are relatively independent of NTAU for the five-predictor model. The AO

scores of the five-predictor model, on the other hand, decrease with NTAU,

whereas the AO scores of the two-predictor model increase at a time lag of 3

months. In addition, Fig. 19 shows the AO scores as determined by persistence

of the predictand. Persistence simply uses the predictand value at time T as

. the forecast for time T + NTAU. If NTAU = 0, the predictand 1S used to

forecast itself and therefore persistence receives a perfect AO score. The AO

skill of persistence decreases with NTAU, as expected, but persistence is by

far the best forecaster at all time lags. These high AO scores are of course

a consequence of the chosen terciling scheme and the persistent nature of SST

anomalies. Persistence cannot forecast the onset of an El Nino.
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Figure 19 was generated for two-predictor and five-predictor models in

which the particular predictors in the model were held fixed (i.e., predictors

5 and 6 ~n the first case and predictors 5, 6, 7, 2 and 4 in the second

case). In general we would expect that the best predictors for one time lag

might not be the best for another time lag. Indeed, for NTAll = 0 or 1,

predictor 5 has the highest PP of any single predictor, whereas for NTAll = 2,

3, or 4, predictor 2 (Barnett's ll2) has the highest PP. However, for the

present data set, this dependence is weak: for NTAll = 4, predictor 2 has

PP = 0.336 and predictor 5 has PP = 0.316.

As we have stated above, scores like AO are overall measures of a

predictor's performance. In this study we are, however, particularly

interested in forecasting the 1982-83 El Nino. Let us now see how the PDM

performed in this task. The upper panel of Fig. 20 shows the SST anomalies

for 1981-84, along with the prediction of Barnett's model for a lead time of

NTAll = 4 months. As seen in Fig. 20a and as noted previously, the Barnett

model does a respectable job of forecasting the onset of the E1 Nino, although

it fails to forecast the decay of the event, since it ignores local forcing.

Panel b of Fig. 20 shows the terciled predictand values; these values

represent a perfect forecast in terms of the tercile categories. From Fig. 19

we see that the best PDM forecaster for NTAll = 4 ~s the two-predictor model;

Fig. 20c shows the actual tercile forecasts made by this model. Figure 20d

shows the forecasts made by the five-predictor PDM model. It ~s quite clear

. from these figures that the PDM has failed even to detect the presence of the

El Nino, let alone predict the onset of the event. Other variations of the

PDM technique all show equally disappointing results.

We must now ask why the PDM makes such a poor showing when applied to

actual data, since the basic technique seems so powerful and promising. In
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the El Nino study just described, we may speculate that since the event of

1982-83 was so exceptional, it may be that the training set (1947-79) had no

events comparable to the one in the testing set (1980-86). If this were the

case, the pdf's defining the PDM model might not be able to place the extreme

predictor values into the proper category. This idea was tested by pooling

the entire 1947-86 data set and then randomly splitting it into two-thirds

training set and one-third testing set in the manner described before. The

training set then has some points from the 1982-83 event, as does the testing

set. However, the forecast scores obtained in this fashion show no

improvement over those already discussed.

The cause of the PDM's failure is that the data are so noisy that the

category swarms cannot be adequately distinguished. Figure 21 shows the

category swarms for the two-predictor model with NTAU = 4. The points for the

extreme categories 1 and 3 are nearly lost in the swarm of points for

category 2. The associated pdf's, ~M(~) are correspondingly overlapping.

Given such data, neither the PDM nor any similar technique can be expected to

show any usable degree of forecast skill. Poor data are also likely the cause

of the PDM's poor performance in forecasting visibilities, as described in

§II.1. That the Barnett forecast technique was able to make any sense of

these data and thereby generate the forecast shown in Fig. 20a speaks highly

of his method.

B. Using Filtered Predictors. If the poor performance of the PDM in the

El Nino forecast is indeed due to noise in the data, t~en perhaps filtering or

smoothing the raw predictor values will increase the signal-to-noise ratio and

thereby allow the PDM to extract the information needed to make its

forecast. To investigate this possibility, a series of forecasts was made

using two types of filters:
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(1) A 7-point runnlng mean was applied to each predictor time series.

Thus each predictor value X(J,K), K = 1, ••• ,NK, was replaced by a smoothed

value, XS(J,K), given by

XS(J ,K)
1 J+3

- - L X(JS,K).
7 JS=J-3

The three months at the beginning and end of the 476-month time series were

left unsmoothed. The PDM analysis then proceeded as before, but now using the

XS(J,K) as predictors.

(2) As before, the training set TRNX was selected to be the first NTRN =

396 months of each of the NK = 7 predictors. A PCA was then performed on the

training set (cf. the Appendix in §I) to get

A = TRNX·E--- -

where E = [~l'~2""'~7] is the 7 x 7 matrix of empirical orthogonal functions

(EOFs), and ~ = [!l'!2""'!7] is the 396 x 7 matrix of principal components

(amplitudes of the EOFs). The EOFs ~j are ordered by the size of the

associated eigenvalues t j , t 1 ~ t 2 ~ ••• ~ t 7 ~ o. Thus ~l is the EOF which

explains the most variance of ~ of any of the ~j. After performing the

PCA, the principal component time series !j = [aj(l), ... ,aj(NTRN)]T,

j = l, ••• ,NK, were used as the predictors in training the PDH, rather than

using the original X(J,K) as predictors.

The testing set TSTX was defined as before to be the predictors from--
1980-1986. However, before making a forecast using the testing set, we

replaced TSTX by amplitudes ATST, defined by-- ~
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ATST _ TSTX"E
,--- ---

where E is the EOF matrix of the training set. We thus performed the same

transformation to the training and testing sets, so that the ATST values can--
be used in the probability distribution functions ~M of the PDM.

It is a property of PCA that the amplitudes a" are uncorrelated:
-J

!j"!k = 1j 6j k. Therefore the idea of using the correlations between

predictors (recall §I.3.A) when constructing the PDM model is no longer

valid. However, the ordering of eigenvalues with 1 1 largest guarantees us

that the associatad !1 is the best possible predictor of any of the !j' in the

sense that the most variance is explained by this predictor. The second best

predictor is then !2, and so on. A two-predictor PDM model would always use

!1 and !2 to forecast the predictand.

A series of runs was made to compare the forecasts made using the

filtered predictors with the forecasts seen in paragraph A. The Bayesian

forecast strategy and a level 2 decomposition of the category swarms were

chosen. Figure 22 shows the AD scores comparable to those of the two-

predictor model (using unfiltered predictors 5 and 6) of Fig. 19. We note

first that the AD scores obtained after applying the 7-point running mean

filter to predictors 5 and 6 are in fact lower than the scores obtained using

unfiltered predictors 5 and 6. However, if we perform a PCA and then use

principal components 1 and 2, the AD scores are generally higher than the

scores of the unfiltered 2-predictor model. These results can be interpreted

as follows. The running mean is a low-pass temporal filter which leaves a low

frequency, but possibly still random, time series. The spatial correlations

between the predictor time series are relatively unchanged by the temporal

smoothing. The PCA operation on the other hand is a spatial filter, and the
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resulting time series ~l contains spatially coherent information from all of

the original predictor regions. Time series ~2 also contains spatially

coherent information from all of the original predictor regions, though of a

spatial pattern which is distinct from that of ~l' Thus merely filtering high

frequency noise from the predictor time series does not improve the AD scores,

whereas using the spatially coherent signal from all the original predictor

regions does lead to a better set of predictors ~l and !2' Figure 22 also

shows that if we first apply the 7-point running mean to each of the original

7 predictors and then perform a PCA on the smoothed time ser1es, we get

greatly improved AD scores for short time lags, although the AD scores are

degraded for longer time lags.

Figure 23 shows the actual category forecasts made by the two-predictor

PDM model using !l and ~2 as predictors. We now see that the POM forecasts

are similar to that of the Barnett model: a rise to the above-normal category

followed by a fall to the below-normal category. Thus with the aid of the

preliminary PCA spatial filtering of the noisy wind fields, the POM has been

able to extract the same information from the original data set as did the

Barnett linear prediction model. Both models show the same inadequacy of the

data set for predicting the latter part of the 1982-83 El Nino.

2. Forecasting Winter Surface Air Temperature over the U.S. Mainland

We next evaluate the PDM's ability to forecast air temperature over the

continental United States. The experiment setup was as follow$,:

(1) The predictor data set was the monthly sea level pressure (SLP) field

between 200 N and 80 0 N and between 1400 E and 10·W for the period 1930-80. Each

training set of predictors was screened against the training set predictands

to define regional predictor averaging areas. The average SLP over these
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regions became the final set of predictors used in the experiment. The

prescreening reduced the S1ze of the predictor set by order 100 and made

extensive PDH work feasible.

(2) The predictand set consisted of seasonal surface a1r temperature

anomalies at 33 widely spaced locations in the continental United States.

These anomalies were terciled into 3 equally populated classes; the tercile

class is the quantity predicted by the PDH.

(3) the PDM configuration was as follows:

i) The maximum probability strategy was used to select the forecast

ii) Category swarms underwent at most one PCA subdivision. The results

showed that most of the forecast skill was captured by the first predictor

chosen, so high-level splitting gained us nothing of substance.

iii) The potential predictability was used to rank predictors

iv) Monte Carlo simulations were made by replacing the data with "white

noise" in order to determine statistical significance levels. These

operations were performed on the training sets, and significance of the

potential predictability was determined. These models when run on the testing

sets gave similar estimates for forecast scores.

v) The PDM model construction was done on ten different realizations of

training/testing sets. Thus, different training/testing sets were chosen at

random for each realizations. The average scores over this ensemble are the

results discussed below.

4) Forecasts were made for winter at a lead time of one season. The

scores are shown as "percent correct category forecasts" and thus a randomly

made forecast has an expected value of 33%. Note that these are actual

forecast skills since the test sets in no way entered the predictor screening

or PDM pdf construction.
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The results of the single-predictor experiments are shown in Fig. 24.

Monte Carlo simulations showing forecast skill values (AO) averaged over the

entire u.s. in excess of 50% are significant at the 95% level. The highest

forecast skills are in the eastern and western thirds of the country; there is

a distinct skill minimum in the central region. Both results are in complete

accord with earlier studies (cf. Barnett, 1981; Barnett and Preisendorfer,

1987). The levels of skill are also comparable with the former work but are

slightly higher than the latter, particularly along the west coast.

Adding an additional predictor and allowing the possibility of a single

PCA subdivision of the category subset gives the results shown on Fig. 25.

Skill scores are increased typically by 5-10%, particularly in the northeast

part of the country. Notice that the central region, where skills were low,

exhibits either no change or a decrease in skill.

The above results can be contrasted against the average forecast skills

obtained from the Monte Carlo experiments (Fig. 26). The expected value of

33% is indeed realized on average over the entire u.S. The forecasts made by

the PDM are clearly much better than random chance.

We conclude that the PDM performance in forecasting winter air

temperature over the United States is highly statistically significant.

Further, the skill levels are comparable with those obtained by other

methods. If it is eventually found that the climate system is "regional" in

nature, then the PDM offers one of the few statistical techniques for long

range forecasting and diagnostics.
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Figure 26.--Percentage AO scores obtained from Monte Carlo experiments in
which the category forecast was made at random. The expected value is
33. The numbers in parentheses show the AO scores of the two-predictor
PDM, from Fig. 25.
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