
NOAA Technical Memorandum ERL PMEL-70

THEORY OF FLUORESCENT IRRADIANCE FIELDS IN LAKES AND SEAS

Rudolph W. Preisendorfer

Pacific Marine Environmental Laboratory
Seattle, Washington
March 1987

UNITED STATES
DEPARTMENT OF COMMERCE

Malcolm Baldrige,
Secretary

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION

Anthony J. Calio,
Administrator

Environmental Research
Laboratories

Vernon E. Derr,
Director





PREFACE

This technical memorandum preserves an essentially complete manuscript

which was found among the papers of Dr. Rudolph Preisendorfer after his

untimely death. No editing of the manuscript has been done, other than a

careful proofreading by Dr. Curtis Mobley.
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THEORY OF FLUORESCENT IRRADIANCE FIELDS
IN LAKES AND SEAS

Rudolph W. Preisendorfer

ABSTRACT. It is shown how to determine the irradiance field in
lakes and seas that have fluorescing stratified layers of
chlorophyll and other organic material. This is the direct
solution of the irradiance field which starts from the depth
distribution of optical properties, in particular the spectral
absorption and scattering functions of the material. Conversely,
it is shown how to determine these optical properties, from
irradiance probe measurements in situ, by inverting the direct
solutions for the irradiance field. The present work forms the
basis for applications of radiative transfer theory to remote
sensing of seas and lakes and specifically for optically-based
chlorophyll assays within such media. In particular, it is shown
how to determine the intrinsic (or specific) optical properties of
a natural hydrosol from irradiance measurements in the hydrosol.

1. INTRODUCTION

The theory of monochromatic radiative transfer in natural hydrosols is

here extended to the heterochromatic case, with particular applications in

mind for the optical assays of chlorophyll and related organic substances in

lakes and seas. The present heterochromatic theory is designed to describe

the spectral behavior of fluorescent processes in near-surface water layers

containing chlorophyll-bearing plankton. These plankton stand at the base of

the food chain in natural hydrosols. It will be shown how, knowing the

spectral signatures of chlorophyll fluorescence and various other hydrosol

ingredients, as viewed from within these layers, one can infer from optical

measurements the concentrations of these materials present in the hydrosols.

By determining the spectral reflectance of the medium as seen from the

atmosphere, some applications to remotely sensed natural media are also

possible. In general, with the present theory, which helps sort out the

appearance of the spectral signatures as seen through intervening layers of

water and the water surface itself, one can apply the principles of hydrologic
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optics to the problem of determining certain key physical and biological

constituents of natural waters.

A. Background

Two recent works, namely Gordon (1979) and Spitzer and Wernand (1983),

form the immediate point of departure for the present study. In Gordon (1979)

it was shown that it is possible to explain the observed enhancement of the

reflectance of the sea in the wavelength region around 685 nm by the presence

of fluorescing chlorophyll-a in the near surface layers. This was established

by setting up the equation of transfer for transpectral (inelastic) scatter,

solving it in the first-order scattering approximation, and using the solution

to compute the irradiance reflectance just beneath the surface. In this study

we shall present exact numerical procedures to determine the irradiance

reflectance just below and just above the surface. The work of Spitzer and

Wernand applies the exact two-flow monochromatic irradiance model (as defined

in H.O., Vol. V, sec. 8.4),* with a source term, to describe the fluorescence

contribution to upward and downward irradiances at each wavelength for each

depth in the water column. They developed a remote sensing procedure for

rhodamine B concentrations that occur on the order of 1 mg-m- 3 in near-surface

layers. In the present study, the two-flow monochromatic irradiance model is

generalized to the heterochromatic case. As a result the source term in the

monochromatic case disappears, and the resulting equations are homogeneous,

i.e., source free. This permits a simpler formalism for the solutions of the

direct and inverse problems.

* 'H.O.' is short for the hydrologic optics reference, Preisendorfer, 1976b.

2
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B. Overview

In the present work, we begin with the derivation of the equation of

transfer for unpolarized radiance in which the volume scattering function

accounts for scattering of photons with change of wavelength. The derivation

is patterned after the procedure in Preisendorfer (1965, p. 63-66) using the

volume transpectral scattering function (loc. cit., p. 59). In the

derivation, care is taken to identify the various losses and gains of radiant

energy due to absorption and scattering processes (cf. loco cit. p. 60). As a

result we obtain a general form of the equation of radiance transfer (cf.

(8.1), below) with a new form of divergence relation for irradiance (cf.

(9.5» that includes the effects of transpectral scattering, true emission,

and true absorption.

There are some other advances in the theory of the light field in lakes

and seas in the present work that may be noted here. First, the theory of

directly observable light fields (cf. e.g. Preisendorfer, 1961; or H.O.,

vol. V, sec. 9.2) is extended to the heterochromatic case (sec. 12, below).

Moreover, virtually all of the material from sec. 15 onward is a new treatment

of radiative transfer problems in natural hydrosols beyond that given in H.O.,

the main new features being (a) the elevation of all two-flow model equations

in H.O. from the scalar (monochromatic) level to the vector (heterochromatic)

level and (b) the inclusion of source terms in all the statements of the

global interaction principles and their logical descendants (union rules,

imbed rules and Riccatian quartets). These innovations, incidentally, are

drawn directly from the applications of invariant imbedding procedures to

water wave transport theory, developed by the author during his stay at the

Hawaii Institute of Geophysics in the period from 1971 to 1976. For a list of

these works, see the bibliography in Preisendorfer, 1977b, the last of the

3
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series of 14 water wave transport studies. The Hawaiian work most directly

relevant to the present one is Preisendorfer, 1976a.

Finally, the inverse solution procedure for the present heterochromatic

theory of the two-flow irradiance model is given in Part IV. This generalizes

the monochromatic inverse theory presented in Preisendorfer and Mobley (1984).

C. Level of the Theory

Radiative transfer theory is a predominantly phenomenological theory of

the interactions of photons with electrons located on or near the surfaces of

complex atoms and molecules making up the pure water, the solutes, and the

suspensoids comprising natural waters. In particular we can set up a theory

of fluorescence consistent with experimental optical procedures without having

to know the detailed quantum electrodynamic (QED) processes of photon-electron

interactions. (For a useful perspective of photon interactions with matter,

see Feynman, 1986). Rather, by choice, the attenuation and scattering

functions in the equation of transfer (8.1) are consistently determinable by

optical procedures conducted in situ. Indeed, Part IV below is designed to

show how all the optical properties needed in the heterochromatic two-flow

model (11.19) can be found from in situ irradiance measurements alone. The

basic ideas for this self-consistent two-way model were recently illustrated

in the monochromatic case in Preisendorfer and Mobley (1984). However, for

knowledgeable application of the concepts of the present model, it still 1S

advisable to become familiar with at least the rudiments of classical

molecular theory of fluorescent photosynthetic processes. For this one may

consult, e.g., Pringsheim (1963), and the books by Clayton (1965, 1970,

1971).

4
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PART I. RADIANCE MODEL

2. RADIOMETRIC PRELIMINARIES

We collect here the four main radiometric concepts needed in the present

study. These are the radiance function N and its three irradiance relatives,

namely the plane irradiance H, the scalar irradiance h, and the vector

irradiance H.

The operational definition of the (unpolarized) radiance N(y,~,A) at

point y in the direction (unit vector) ~ of wavelength A (in nanometer = nm)

is shown in Fig. 1. A narrow tube of small solid angle opening 6n

(steradian = sr) allows radiant flux (Watt =W = Joule second- l = Jos-l) to be

collected over a plane diffusing surface D of small area 6A (in m2) normal to

~. The flux passes through a wavelength filter F that transmits a residual

amount of radiant flux of a specified wavelength A and small bandwidth 6A

(nm). The transmitted flux activates an electric signal in a photocell P.

Let 6P(y,~,A) (in Wonm- l ) be the amount of the recorded spectral radiant flux

(i.e., radiant power). Then the empirical (spectral) radiance at y along unit

vector ~ of wavelength A is defined by writing

(2.1)

The ideal radiance is obtained from this in the limit as 6A, 6n, and 6A

approach zero, at y, along ~, and at A, respectively. The mks units of N are

Wom-2osr-lonm-l.

From the preceding definitions, we see that N(y,~,A) may be envisioned as

the radiant flux carried by photons of wavelength A (or frequency v = cIA)

streaming at the speed of light c across 6A through a solid angle 6n about the

direction ~ normal to 6A. Each photon contains a small, definite amount

6
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N(y, ~, A)

Figure l--A meter used in the operational definition of the radiance N(y,~,A).
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(i.e., a quantum) of energy of magnitude hov = hoc/x J-photon- l (of wavelength

X), where ho = 6.626 x 10- 34 J-s-photon- l 1S Planck's constant (action per

photon) and c = 3.000 x 10 8 m-s- l , with X in nm. Let us write

'n(y,1,X)' for N(y,1,X)p(X)

where we write

(2.2a)

n(y,~,X) is the photon radiance at y, along ~, of wavelength X. The

units of n(y,~,X) are photon-s- l -m- 2 -sr- l -nm- l when X is in nanometers, say.

Then p(X) = X/hoc = 5.03 x 10 15 X photon·J-l. Thus n(y,~,X) is the number of

photons of wavelength X streaming across the collector, per second per square

meter (of collector surface) per steradian (of collector acceptance cone) per

nanometer (of spectrum wavelength scale). Note that photons of higher

frequency (shorter wavelength) carry more energy (i.e., their quantum of

energy hoc/x is larger) than those photons with lower frequency (longer

wavelength). For instance, to generate the same radiance N, all else the

same, one must have twice as many 700 nm photons as 350 nm photons. For

example, the number of photons of wavelength 555 nm needed to generate 1 Watt

per square meter on normal incidence, is 2.76 x 10 18 •

The radiant flux at a point y generally streams in along all possible

directions~. The totality of directions ~ is the unit sphere = (cf.

Fig. 2). It is useful to partition = into an upward hemisphere =+ and a lower

hemisphere =_ consisting, respectively, of all ~ such that ~-i3 > 0 and

~'i3 < 0 where i3 is the unit upward normal in a natural hydrosol. Then the

upward (+) and downward (-) (spectral) plane irradiances at yare given by

8
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H(y,±,A) _ J N(y,1.' ,A) 11.' -i.3 1 dO(1.')

-±

(2.3)

where dO(~') is an element of solid angle about direction 1'. In the

spherical coordinate frame of Fig. 2 we have

dO(1.) = sinS dS d~

and

~-i = cosS (: ~)
- -3

Hence H(y,±,A) In (2.3) may also be written

H(y.+.'> = ret N(y•• ' •• ' .'>Ieo,.' I'in.'d.]d.'

The expression for H(y,-,A) is similar (~' now ranges from -1 to 0).

(2.4)

(2.5)

(2.6)

(2. n

An operational definition of plane irradiance H(y,±,A) is given by means

of the device shown in Fig. 3. A flat diffusing surface D of unit inward

normal n and of small area 6A at y sends radiant flux to a wavelength filter F

which in turn transmits an amount 6P(y,~,A) of spectral radiant flux (W-nm- 1 )

in the wavelength band 6A to a photocell P. Then we write

'H(y,~,A)' for 6P(y,~,A)/6A (2.8 )

The collecting surface D in Fig. 3 may be arbitrarily oriented. When its

inward normal n is !3' then we set H(y,~,A) = H(y,+,A) and when n is -!3' then

we set H(y,-~,A) = H(y,-,A). The ideal surface in Fig. 3 collects amounts of

10
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Figure 3--A meter used in the operational definition of the plane irradiance
H(y,!!,X).
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radiant flux along ~ proportional to the amount of its projected area n"rmal

to~. Such a surface is called a 'cosine collector', and when D is SUCll a

collector, then (2.8) is consistent with (2.3) and may be used to deterloine

H(y,±,X) from an irradiance meter such as that indicated in Fig. 3.

Another type of irradiance that will be useful in the developments below

1S the hemispherical (spectral) scalar irradiance h(y,±,X) at y defined by

h(y,±,X) _ f N(y,1',x) dn(1')
~±

and the sum of these, the scalar irradiance:

= h(y,+,A) + h(y,-,A)

(2.9a)

(2.9b)

A device that in principle may be used to measure h(y,-,X) is

schematically shown in Fig. 4 when n = -!3. A spherical diffusing shell D

collects radiant flux streaming in from all directions ~' in The

environmental flux along directions in =+ to D is stopped by a shield 5S which

has a nonreflecting upper surface. The diffused transmitted flux within the

cavity of D is funneled down to a filter F which passes only flux of

wavelength X in a band 6X on to a photocell P. If each small element cf outer

area of D is a cosine collector then the reading h(y,-,X) in Fig. 4 is, to

within a fixed factor, proportional to that given in (2.9). In practice it is

relatively difficult to accurately collect radiant flux in the way sho~m in

Fig. 4. The better way is to measure N(y,~',X) for a sufficient number of ~'

in =_ and compute h(y,±,X) as shown in (2.9a). Fig. 4 merely serves to give

an intuitive meaning to the integrations in (2.9a,b).

12
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s s

h(y, A)

Figure 4--A hypothetical device used to measure the scalar irradiance
h(y,-,A).
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The final irradiance construct needed 1n the studies below is that of

vector irradiance ~(y,A) defined by

~(y,A) _ J N(y,~',A) ~'dn(~') (2.10)

The intuitive meaning of the vector ~(y,A) may be discerned as follows. First

we generalize (2.3) by writing

H(y,!!,A) (2.11 )

where

i.e., =+(~) is the positive hemisphere of = defined by the arbitrarily

oriented unit inward normal n of an irradiance meter (Fig. 3) measuring

(2.12)

H(y,~,A). Now, taking the inner product of n and the vector irradiance ~(y,A)

in (2.10), we find by (2.11) that

!!·~(y,A) = H(y,!!,A) - H(y,-!!,A)

_ H(y,!!,A)

(2.13)

(2.14)

Hence knowing ~(y,A) we can compute the net irradiance H(y,~,A) at y along any

direction n.

Another way of using (2.14) is to choose n 1n turn to be the cartesian

coordinate axis directions il,i2,i3 in Fig. 2. This in effect resolves ~(y,A)

into its cartesian components. Thus write

14
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'H.(y,A)' for i.·H(y,A)
J -J -

j = 1,2,3.

By (2.10), (2.11) and (2.13), (2.14), it follows that

H.(y,A) = H(y,i.,A) - H(y,-i.,A), J = 1,2,3
J -J -J

=H(y,i.,A)
-J

and by vector algebra we have in general

As a vector, ~(y,A) has a direction given by the unit vector

where
1

IH(y,A)1 _ 1~(y,A)1 = [Hf(y,A) + H~(y,A) + H~(y,A)]~ •

Then we can write ~(y,A) as

From (2.14) and (2.17c), we find that, for any direction n:

H(y,~,A) = ~·~(y,A) = ~·~I~(y,A)1

= COSIjJI~(y,A)1

15
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where ~ is the angle between the arbitrary direction n and the fixed direction

m of g(y,X) (cf. Fig. 5).

By this we obtain the desired intuitive interpretation of g(y,X): The

direction ~ of g(y,X) is that of the greatest net irradiance H(y,~,X) at y,

and the length Ig(y,xl is equal to this maximum net irradiance.

16
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Figure 5--Geometry used in the definition of the vector irradiance ~(y,A).
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3. VOLUME SCATTERING FUNCTION, MONOCHROMATIC CASE

The most important optical property of a scattering-absorbing optical

medium in which radiative transfer of energy takes place is the volume

scattering function. In the present section we define this concept for the

case of elastic scattering--i.e., scattering without change in wavelength, the

monochromatic case. In the next section the heterochromatic case is

considered.

The in situ experimental setup for photon scattering 1S shown

schematically in plan V1ew by Fig. 6. A monochromator-collimator device

shoots a narrow beam of radiant flux of wavelength A from point A to point y,

and beyond in the scattering absorbing medium. All along the extent of the

beam photons are being absorbed and scattered by the molecules of the

medium. The scattering activity 1S examined in detail at point y of the beam

by a radiance meter. The narrow beam from A to y and the narrow field of V1ew

of y as seen at B define an element of volume R in the medium about y, as

shown in the inset of Fig. 6. This plan view of the volume is in effect an

optically small parallelogram of dimensions depicted in the inset. The

photons in R are scattered throughout the volume, and those that go off toward

*B produce an observed spectral radiance N6r(y,~,A) at y, along ~, of

wavelength A, in accordance with (2.1). This radiance is generated within the

short path of length 6r (in m) in R along the direction~. Thus the spectral

*radiance generated per unit length along ~ is N6r(y,~,A)/6r. The photons of

wavelength A' (= A) from A giving rise to this scattered radiance are

generated by unpo1arized, incoherent incident radiant flux of spectral

irradiance N(y,~',A)6C' over the normally projected incident face of R, normal

to ~', and of area 6A'. We then expect N:r(y,~,A)/6r, for fixed 6r, y, ~, ~'

and A to vary in direct proportion to this incident irradiance N(y,~',A)6C'.

18
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Monochromator
and Collimator

kntFluX

Radiance Meter

Figure 6--The setup used in the experimental determination of the volume
scattering function o(y;1';1;A).
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The proportionality constant is by definition the value of the volume

scattering function o(Y;~';~;A), where we write

'O(Y;~';~;A)' for
*N~r(y,~,A)/~r
N(y,~f ,A)~OI

(m- 1 • s r- 1 ) • (3.1)

*Let P~V(y,~,A) be the spectral radiant flux (in W·nm- 1, cf. (2.1» generated

by the scattering region R of volume 6V = 6r~A, and set AH(y,~',A) =

N(y,~',A)~O'. From simple geometric considerations of the parallelepiped R in

Fig. 6, and on observing via (2.1) that N:r(y,~,A) = p:v(y,~,A)/~A~O, we may

also write (3.1) as

*

o(y;~' ;~;A)
P~V(y,~,A)f~O 1=

~H(y,~f ,A)~V

*
J~V(y,~,A) 1 (3.2 )-

~v ~H(y,~1 ,A)

This alternate View of a allows the role of the volume ~v of R to be

discerned. J:V(y,~,A) _ p:v(y,~,A)/~O is the spectral radiant intensity (in

W·sr-1·nm- 1) of this volume produced by the scattered photons in R.

The form of a most appropriate for theoretical and practical radiometry

is given in (3.1), which we rewrite as

N*(y,~,A)

- N(1.,~1 ,A)~Of
(3.3)

where N*(y,~,A) is the spectral (monochromatic) path function:

20
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The form (3.3) is useful because it converts immediately into an integral

representation of the path function:

(3.5)

which forms part of the equation of transfer, derived below. The relation

(3.5) shows how the radiance per unit length N*(y,1,A) at y along 1 is

generated by the scattering into the direction 1 of photons arriving at y

along all directions l' in the unit sphere _.

The reverse of the operation in (3.5) is to sum up the radiant flux

scattered out of R in all directions 1 about y. The result is denoted in

general by writing

(m- 1 ) (3.6 )

The quantity s(y,1',A) is the volume total scattering function at y. In

most natural hydrosols s(y,1',A) is independent of l' and we shall henceforth

write 'S(y,A)' for s(y,1',A).

In analogy to the scalar irradiance h(y,A) in (2.9b), the integral of the

path function over = generates the scattered scalar irradiance h*(y,A), where

we write

(W·m- 3 ·nm- 1 ) (3.7)

Using (3.5) and (3.6) the scattered scalar irradiance has the representation
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h*(y,A) =i [i N(y,s.' ,,) a(y;s.' ;s.;') dQ(§.]dn(s.)

= i N(y,s.' ,,) [i a(y;s.' ;i;') dn(§.jdn(§.')

= S(y,A) I N(y,~' ,A)dO(~')

-
i.e.,

h*(y,A) = S(y,A) h(y,A) . (3.8)

This relation describes the scattering losses of radiant flux at point y in

all directions, from a unit volume about y, given the scalar irradiance h(y,A)

at y.

A sharper relation of the kind shown in (3.8) comes from (3.5) in which

the incident radiance N(y,~',A) is confined to a single narrow beam along

direction ~o. Thus, using the dirac delta function, 0, on = (so that the

dimensions of 0 are sr- 1 ) we set

N(y,~' ,A) _ h'(y,~' ,A) o(~-~')

Here h'(y,~',A) (in W·m- 2 ·nm- 1 ) is the scalar irradiance of the beam. Then

(3.5) reduces to

h'(y,~ ,A) a(y;~ ;~;A)
--0 --0 -

(3.10)

and the scattered radiant flux loss from the unit volume at y irradiated by

this beam along ~o is

= s{y,X) h'(y,t ,X)
-0

22
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4. VOLUME SCATTERING FUNCTION, HETEROCHROMATIC CASE

We return to the setting depicted in Fig. 6 and now irradiate the element

of volume R by radiant flux of wavelength A' over a band ~A' distinct from the

wavelength A for which the radiance meter 1S set. In some materials, such as

various compounds comprising chlorophyll molecules, the incident radiant flux

~H(Y,1',A')~A' on R excites an emission of spectral radiance N~r(Y,1,A) at

this distinct and usually longer wavelength A. In analogy with (3.1) we then

write, for A' * A,

'&(y;i';i;A',A)' for
*N~r(Y,i,A)/~r

N(Y,ii,AI)~nl~AI

Also, in analogy with (3.4), for small r, we write, 1n the present

heterochromatic case,

'N (y,~,A)1
s -

(4.2)

which is the transpectral path function (Preisendorfer, 1965, p. 59).

We can now define the heterochromatic counterpart to (3.5) by writing

'N (y ~ A)'
s '-'

for J J N(y,i',A') &(Y;i';~;A',A)dA'dn(i')
_ A

(4.3)

where A is the electromagnetic spectrum [0,00] or some subset of A such as

[400 nm, 700 nm]. Eq. (4.3) describes the space rate of gain at y along the

direction 1 of radiance generated by directional and transpectral scattering

of radiant flux. The integration over A in (4.3) 1S defined even though & has

been constructed only for A' * A. The value of &1n singular case A' = A may
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be arbitrarily assigned and the result (by a basic property of Riemann

integrals) will not contribute to the integral of & over A. Accordingly, we

shall set the value of & for A' = A to zero: &(Y;~';~;A,A) = 0 for all A 1n

A.

The volume total transpectral scattering function 1S defined by writing

'S(Y;~';A',A)' for J &(Y;~';~;A',A) dn(~) (4.4)

As in the monochromatic case (cf. (3.6» the function s(Y;~';A',A) is

independent of the incident direction ~l in most natural hydrosols. Therefore

we will shorten 's(Y;~';A',A)' to 'S(y,A',A)'.

In analogy to the scattered scalar irradiance ~(y,A) in (3.8), we have

the transpectrally scattered scalar irradiance:

h (y,A)
s

= J h(y,A') S(y,A',A) dA'
A

(4.5)

which follows from (4.3), (4.4), and the definition

'hs(y,A)' for J NS(y,~,A) dn(~)

-

24
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5. VOLUME ABSORPTION FUNCTIONS: TRUE, TRANSPECTRAL, AND TOTAL

The introduction of the volume absorption function into radiative

transfer theory requires care in accounting for the particular fate of an

absorbed photon (cf. Preisendorfer, 1965, p. 60). There are essentially two

distinct cases of absorption-type activity to consider when a photon of

wavelength X' in the incident beam of Fig. 6 arrives in region R about point

y: In case (i), the photon is truly absorbed by an electron, and the energy

of the photon is converted into non-radiant energy [potential (ionized,

orbital) energy of the capturing electron, kinetic energy of the recoiling

molecule, potential energy required to liberate an oxygen molecule, etc.].

This action is called true absorption. In case (ii), the photon's energy is

used by a molecule to momentarily raise the electron's or molecule's orbital

energy, and then the energy is subsequently released (as described by a in

(4.1» in the form of a photon of a generally (but not always) longer

wavelength X. This action is called transpectral absorption because, as far

as the incident radiant flux of that wavelength X is concerned, there has been

a loss or an 'absorption' from flux of that wavelength.

We shall denote the true volume absorption function by l ae(y,X')' (in

m- 1 ) and the transpectral volume absorption function is, in accordance with

the above description, defined by writing

'a(y,X')' for J s(y,X' ,X) dX
h

(5.1)

Both a e and a are to be used in mathematical statements in the same way

that the volume total scattering function s is used. In more detail, and

being guided by (3.11) and Fig. 6, suppose a beam of photons of radiance

N(y,~',X) impinges on region R and undergoes losses only by scattering of
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photons. After passage a distance ~r' through R, let the beam have radiance

N(y+~r'~',~',A'). By the physical meaning of (3.11), the latter radiance is

given approximately by

N(y+~r'~',~',A') = N(y,~',A') - S(y,A') ~r' N(y,~',A') (5.2)

We want ae(y,A') and a(y,A') to account for absorptive losses to radiance in a

similar way. Thus, for the two absorptive cases described above, .and

excluding losses by scattering we write

= N(y,~',A') - [a(y,A') + a (y,A')]~r' N(y,~',A') (5.3)
e

The total space rate of loss of N(y,~',A') at y by absorption and scattering

is then generally given by

dN(y,~',A')

dr'

where we have written

'a(y,A')'

= -[a(y,A') + S(y,A')] N(y,~',A')

for a(y,A') + a (y,A')
e

(5.4)

(5.5)

We call a(y,A') the volume total absorption function evaluated at y for

wavelength A'. In sum then, a(y,A') consists of two types of absorption:

transpectra1 absorption a (loss by scattering to other wavelengths) and true

absorption or extinction absorption ae (conversion to non-radiant energy).

The Ie' in ae serves to remind one of the extinction of radiant energy in this

sense.
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6. FLUORESCENCE FUNCTION, EFFICIENCY FUNCTION

The volume total transpectral scattering function s(y,X',X) defined in

(4.4) can be split into three factors, each of basic physical importance in

the theory of the fluorescent light field to be developed below.

To begin, we examine the X dependence of s(y;X',X) for fixed incident

wavelength X'. Let us define the fluorescence function by writing

'$(y,X',X)' for s(y,X',X)/a(y,X') (6.1)

where a(y,X') is defined in (5.1). Hence $ is a normalized function of X in

the sense that

f $(y,X',X)dX = 1 •
A

(6.2)

By means of experimental observations of fluorescing material (Pringsheim,

1963), it has been found that $'s X-behavior is nearly Gaussian, and largely

independent of X'. Thus we can represent $(y;X',X) by

(6.3)

Here A
O

is the wavelength about which the fluorescence peaks, and w is the

'half width' of the peak. Another possibility for $, particularly suited for

isolated absorption lines, is the Cauchy function

q,(y,A',A) = (6.4)
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Generally any fluorescing material's fluorescence function can be represented

through least square fits of suitable linear combinations of the Gaussian

functions in (6.3) or Cauchy functions in (6.4).

From (6.1) we have the representation of s,

S(y,A',A) = a(y,A') ~(y,A',A) (6.5)

We can introduce into (6.5) the total absorption function a(y,A) by recalling

(5.5) and writing a(y,A') as

a(y,A') = a(y,A') - a (y,A')
e

a (y,A')
a(y,A')[l - e= a(y,A')]

i.e.,

a(y,A') = a(y,A') n(y,A') (6.6)

where we have written

'n(y,A')' for 1 -
a (y,A')

e
a(y,A') (6.7)

= a(y,A')/a(y,A')

n(y,A') is the fluorescence efficiency of the medium at y for incident

wavelength A'. Clearly, if ae(y,A') = 0, then n(y,A') = 1 and all the

absorbed radiant energy has been transpectrally scattered, i.e., has

(6.8)

fluoresced. Hence 'efficiency' here refers to the efficiency of the material

to fluoresce. With this definition we attain the desired set of

representations of s:
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S(y,A',A) = a(y,A') ~(y,A',A)

= a(y,A') n(y,A') *(y,A',A)

= a(y,A') n(y,A',A)

where we have written

'n(y,A',A)' for n(y,A') ~(y,A',A)

(6.10)

(6.11)

(6.12)

and which we call the transpectral efficiency of the medium at y for the

wavelength pair (A',A).

This last form of 5 will be useful later in drawing an analogy between

geometric scattering (from~' to ~) and spectral scattering (from A' to A).

Finally, we observe that a quantum (or photon) version of the

transpectral scatter S(y,A',A) and transpectral efficiency n(y,A',A) can be

obtained by placing (4.5) into quantum form using the radiometric-to-quantum

conversion rule (2.2). Thus, multiplying each side of (4.5) by A/hoc,.and

rearranging A',A, we find

[h (y,A)A/h c]
s 0

=f [h(y,A')A'/h c][s(y,A',A)A/A']dA'
A 0

(6.13)

From (6.11) we find the required quantum forms of 5 and n:

(6.14)

refer to the transpectral scatter of quanta of the light field from A' to A.

29



§7

7. COMPLETE VOLUME SCATTERING FUNCTION; VOLUME ATTENUATION FUNCTION

The two volume scattering functions a and 0 of sections 3 and 4,

respectively, can be combined into a single complete volume scattering

function:

(m- I • S r- I • nm- I )

(7.0

where 6(A-A') (in nm- I ) is the dirac delta function on A.

In analogy to the fluorescence function ~(Y;A',A) we can define the

monochromatic and heterochromatic phase functions:

'p(y;1';1;A',A)' for &(y;1';1P',A)!S(y,A',A)

so that p and P are normalized In the sense that

J p(Y;1' ;1;A) dO(1) = 1
-

and

J p(Y;1' ;1;A' ,A) dO(1) = 1

-

Hence we can represent a and &as

30
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a(Y;~';~;A',A) = a(y,A') n(y,A') ~(Y;A',A) p(Y;~';i;A',A)

= S(y,A',A) p(Y;~';i;A',A)

The representations in (7.6), (7.7) draw out some analogies between

(7.6)

(7.7)

'transpectral' scatter and 'transdirectional' scatter on comparing the A',A

behavior of the normalized functions ~(Y;A',A) and the £',£ behavior of

p(y;£';£;A). Also S(y,A') and S(y,A',A) are corresponding total-type losses

in (7.6), (7.7). Finally, it is clear that the transpectral efficiency

n(y,A') is the phenomenological link between absorption and heterochromatic

scattering, as brought out in (6.11). In summary, in (7.1), via (7.6) and

(7.7), sand s carry the locational scattering behavior (in units m- i ); p and

p carry the directional behavior (in units sr- i ); and 5(A-A') (via (7.1» and

~(Y;A',A) carry the spectral behavior (in units nm- i ) of cr.

The total loss of photons from a beam under steady state conditions can

now be completely accounted for on the phenomenological level. By integrating

(7.1) over B we find

(7.8)

Further, on integrating S(y,A',A) over A we find (on recalling (5.1»:

f S(y,A',A) dA = a(y,A') + S(y,A')
A

On adding ae(y,A') to each side of (7.9) we find
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i(y,A') + a (y,A') + S(y,A')
e

= a(y,A') + S(y,A')

_ a(y,A') (7.10)

where a(y,A') is the volume attenuation function at yand A'. Thus a(y,A')

combines all three possible types of losses when a packet of photons, each of

wavelength A', impinges on R at y, as depicted in Fig. 6.
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8. RADIANCE TRANSFER EQUATION

We may now assemble all the pieces, gathered so far, into the equation

that describes the net spatial rate of gain of radiance along a path 1n an

optical medium. We shall work 1n a plane-parallel medium X(a,b), as depicted

1n Fig. 7. Only portions of the planes are shown. These extend indefinitely

1n all horizontal directions, i.e., directions ~ normal to the upward

direction k. The medium X(a,b) is generally bounded by reflecting-

transmitting media X(a,x), X(z,b) that can either be finite-thickness

scattering-absorbing media, or the infinitesimally thin air-water surface and

the bottom-surface of a natural hydrosol. The medium's optical properties are

assumed constant on all planes parallel to the upper horizontal boundary plane

at level a. Depth y is measured positive downward (in m).

Consider an unpolarized small packet of photons of wavelength A and

radiance N(y,~,A) at depth y streaming along direction ~ in =. As the packet

of photons travels a positive distance 6r (in m) along ~, it changes depth by

an amount -6r ~.~ = 6y. From (5.4) and (7.10) we can reckon the spatial rate

of loss of N(y,~,A) by the processes of absorption and scattering as the

packet moves along ~ at y. Equations (3.5) and (4.3) together give the space

rate of ga1n of N(y,~,A) by monochromatic and heterochromatic scattering of

photons into the direction ~ and into wavelength A. Finally, let 'Ne(y,~,A)'

(in W·m- 3 ·sr- 1 ·nm- 1 ) denote the radiance gained at y per unit length along ~

by photons of wavelength A created from non-radiant energy* (heat-producing

turbulence, phosphorescence, bioluminescence, artificial light sources; or

generally, any emission process, so Ie' stands for emission). Then on

assembling these various rates, we have

* If (8.1) below is to describe monochromatic radiative transfer only, set &
to zero. Then Ne can formally include the possibility of fluorescence.
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Figure 7--Geometry of the plane-parallel medium (top); the notation used for
the upward and downward integration sweeps (bottom).
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-~·k ~ N(y,~,A) = - a(y,A) N(y,_~,A)- - dy -

+ J J N(y,~',A') cr(Y;~';~;A',A) dA'dg(~')
_ A

+ N (y,~,A) (8.1)
e -

where a is given 1n (7.10) and a is given 1n (7.1). This 1S the required

radiance transfer equation for fluorescing media.

A complete mathematical specification of the radiative transfer problem

1n the medium X(a,b) is made by adjoining to (8.1) the following information:

(i) The values of a(y,A), a(y;1';1;A',A), and Ne (y,1,A) for all y 1n

[x,y], l' and ~ in ~, and A' and A in A.

(ii) The four radiance reflectance and transmittance operators for each

of the two boundary media X(a,x) and X(z,b) depicted in Fig. 7.

We now develop these reflectance and transmittance concepts and assemble

them into boundary conditions on X(a,b) for (8.1). Generally, downward rays

of light of radiance N(a,1',A') uniformly incident over the lateral extent of

X(a,x) along the direction l' in ~_, and of wavelength A' in ~A' undergo

transpectral reflection and transmission. Let r(a,x;1';1,A',A) (in sr-1·nm- 1)

be the resultant relative amount of radiance reflected along 1 in ~+ and of

wavelength A in ~A. Then the spectral reflected radiance distribution at each

point of the upper surface of X(a,x) is

N(a,~,A) = J J N(a,~',A') Ha,x;~';~;A',A) dA'dg(~')
A

(8.2)

where 1 is in ~+ (abbreviated as '1 € ~+'). Thus the use of r in (8.2) is

basically similar to that of &in (4.3), except that r pertains not to an
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element of volume but to a finite-thickness plane-parallel layer or a zero-

thickness plane surface. In the present study we will restrict work to the

zero-thickness air-water surface and a simple reflecting bottom surface at

level b. However, to retain the symmetry and generality of the equations we

adopt (as 1n a laboratory setup) a reflecting-transmitting (translucent) lower

boundary. For such upper surfaces or bottom boundary layers, transpectral

scattering 1S chosen (on physical grounds) not to be operative*. Thus we will

restrict r to be the product r(a,x;~';~;A) 6(A-A'), which is zero for

AI * A. A corresponding form holds for the other seven boundary transfer

functions defined below. The units of this monochromatic reflectance

r(a,x;~';~;A) are then sr- 1 • In this way we arrive at the downward boundary

reflectance operator r(a,x).

The radiance N(a,~,A) leaving the infinitesimally thin surface X(a,x) at

level a in an upward direction is generally produced by both reflection (as

shown above) and transmission of radiance from just below the surface.

Therefore it is necessary to introduce also the notion of the monochromatic

upward transmittance t(x,a) operator of X(a,x). The sum of these

contributions is given by

N(a,~,A) = f N(x,~' ,A) t{x,a;~' ;~;A) dn(~' )
-+

+ f N(a,~' ,A) r(a,x;~' ;~,A) dn(~') ~ e; - (B.3a)
+

-

and this constitutes the first of the four boundary conditions for (B.l).

This boundary condition, as those in (B.2b,c,d) below are justified by the

* This constitutes no essential loss of generality of the present theory, as
can be shown by use of the union rule developed in section 17.
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linear interaction principle on which radiative transfer theory in geophysical

applications is based (cf. H.O., vol. II). The units of t(x,a), as those of

r(a,x), are sr- 1 • The second condition for the upper boundary X(a,x) is

N(x,~,X) = f N(a,~',X) da,x;~' ;~;X) dn(~' )
--

+ f N(x,~',X) r(x,a;~' ;~;X) dn(~' ) ~ E: ---+

(8.2b)

The four functions r(a,x), t(x,a), r(x,a) and t(a,x) in (8.2a,b) may be

computed for each wind speed using the procedure in Preisendorfer and Hobley

(1985, 1986).

The remaining two boundary conditions for a translucent lower boundary

are

N(b,~,X) = f N(z,~' ,X) t{z,b;~' ;~;X) dn(~' )
-

+ f N(b,~' ,X) r(b,z;~' ;~,X) dn(~' ) ~ E: - (8.2e)
-+

and

N(z,~,;\) f N(b,~' ,X) t{b,z;~' ;~p) dn(~' )
- +

+ f N(z,f,;',X) r(z,b;~' ;~;X) dn(~' ) ~ E: - (8.2d)+-

It should be noted that the plane surfaces at levels a and x in X(a,x)

are taken to be separated by an infinitesimal distance. However we assign two

'depths' a and x = a+ (say) to the surface because experience working with
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(8.2a-d) has shown that, writing the name of the water surface as 'X(a,x)'

helps maintain in a simple way the directional distinction needed, e.g.,

between t(a,x) (the downward transmittance) and t(x,a) (the upward

transmittance) of the air-water surface. Further, this notation allows us to

distinguish in (8.2a) between N(a,~,A) incident from above and N(X,~,A)

incident from below the surface. That is, the notation reminds us that the

latter radiance is for upward flux (~ E =+), and the former is for downward

flux (~ E =_) incident on their respective sides of the air-water interface.

Similar notational conventions hold for the lower boundary X(z,b). As the

developments proceed, the usefulness of the r,t notation adopted in (8.2) will

become evident. Occasionally we shall write 'r+' and 'r_' as short for r(x,a)

and r(a,x), respectively, etc. Also the set of radiances (N(a,~,A): ~ E =_}

will be abbreviated 'N_(a,A)', etc.

We may now state the direct mathematical problem centered on (8.1) and

(8.2):

Given: A plane-parallel optical medium X(a,b), as in Fig. 7, with

optical properties a, cr, and Ne continuously specified throughout the water

body X(x,z) and constant on planes parallel to that at level a, along with

specifications of the four r± and t± functions on each of the boundaries

X(a,x), X(z,b), and finally, the incident boundary spectral radiance

distributions N_(a,A), N+(b,A).

Required: The internal radiance distribution N(y,A), x $ y $ z,

throughout the water body X(x,z) and the emergent boundary spectral radiance

distributions N+(a,A), N_(b,A).

In the present study we shall formulate and solve the direct problem for

a much simpler setting, that of the spectral irradiance field. This entails a

reduction of (8.1) and (8.2) to the irradiance level of description~ This
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wi 11 be done in sec. 10. We shall al so formulate the inverse mathematical

problem for 8.1 on the irradiance level and indicate a solution. This will be

done in Part IV, below.
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9. FLUX CONSERVATION EQUATION

We need a statement of the conservation of energy principle in the

present transpectral scattering context. This is obtained from (8.1) by

integrating each side over =. We shall do this term by term.

The left side of (8.1) becomes, by application of (2.3) and (2.13) (with

k instead of ~ or i3),

-J ~o~
dN(y,~,A) [dH(y,.,A) dH(y,-,Al] dH(y,+,A)

dn(~) = - = - (9.1)
dy dy dy dy

-
= Vo!!(y,A) (W om- 3o nm- I ) (9.2)

The form (9.2) follows from the stratification assumption, i.e., that the

vector irradiance ~(y,A) is constant over horizontal planes. The minus sign

on the left in (8.1) arises because of our decision to measure y positive

downward, while ~ points upward.

The first term on the right of (8.1) by (2.9b) becomes

J -a(y,A) N(y,~,A) dn(~) = -a(y,A) h(y,A)

= -[a(y,A) + S(y,A)] h(y,A)

(9.3)

The second term on the right of (8.1) by (3.8) and (4.5) becomes

S(y,A) h(y,A) + J h(y,A') S(y,A',A) dA'
A

The final term on the right of (8.1) becomes by definition the true

emission (source density) term

f Ne(y,~,A) dn(~) -
-

h (y,A)
e

40
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Assembling these pleces we obtain the required result, the flux

conservation equation:

_ dH(y,+,A) =
dy

x ~ y S z

A E A

= -[a(y,A) + a (y,A)] h(y,A)
e

+ f h(y,A') S(y,A',A) dA'
A

+ h (y,A)
e

(9.5)

The left side of this equation defines the net outward flow (or loss) of

spectral radiant energy of wavelength A ('A-flux') from a unit volume of the

stratified optical medium at depth y. The right side shows the component

parts of the flow: inward flow (or gain) to the volume by transpectra1

scattering of A-flux and true absorption of A-flux in the first term, outward

flow of A-flux generated by transpectra1 scattering in the second term and

outward A-flux by true emission in the third term.

41



§10

10. IRRADIANCE TRANSFER EQUATIONS

In accordance with our closing remarks in section 8, we will now reduce

the radiance transfer equation (8.1) to the irradiance level. This requires

that (8.1) be integrated twice, once over =+ and once over =_ and reduced by

repeated applications of (2.3) and (2.9a), and the introduction of various new

optical properties. We shall do the reductions of (8.1) term by term.

Integrating the left side of (8.1) over =+ or =_ yields (on setting

.!.3 = k):

dN(y,~,A)

f ~.~ dy dC(~)
-±

= + dH(y,±,A)
dy (10.1)

The a-term in (8.1) becomes (using (2.9a»:

- f a(y,A) N(y,~,A) dC(~) = -a(y,A) h(y,±,A)

=±

= -a(y,X)[h(y,±,A)/H(y,±,X)] H(y,±,X)

= -a(y,±,X) H(y,±,X) (10.2)

Here we have written

'a(y,±,A)' for a(y,A) D(y,±,A) (m-l) (10.3a)

and for later reference we write in a similar vein

'a(y,±,A)' for a(y,A) D(y,±,A) (m-l) (10.3b)

'S(y,±,A)' for S(y,A) D(y,±,A) (m-l) (10.3c)

where we have written

'D(y,±,A)' for h(y,±,A)/H(y,±,A) (10.4)
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We call D(y,±,A) the (dimensionless) distribution function for the upward (+)

or downward (-) flow of photons at depth y and wavelength A. In practice

D(y,±,A) is a mildly varying quantity with depth y for each flow and

wavelength and is therefore given the status of an apparent optical property

(of course not of the medium, but of the light field; although it can be

linked to the optical properties of the medium quite directly). The

dimensionless factor D(y,±,A) in (10.3) is an average distance traveled by

photons through a unit-depth layer of medium at level y, and serves to account

for the directional effects of the light field on the inherent optical

property a(y,A) defined in (7.10).

The integral term in (8.1) consists of the sum N* + Ns of two parts, as

indicated by (3.5), (4.3), and (7.1). Under integration over ~+, the

monochromatic part N* of the sum becomes

f N*(y,i,A) dO(i)

-±

+ f [f N(y,i',A) o(y;i';i;A) dO(i')] dO(i)

-± -

For the outer integration over _+ we find

-+

and likewise for the outer integration over _ we find
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f N*(y,~,A) dC(~) = H(y,-,A) f(y,-,A) + H(y,+,A) b(y,+,A)

(10.7)

where we have defined the forward and backward scattering functions by

writing:

'f(y,±,A)' for 1 f [f N(y,~' ,A) a(y;~' ;~;A) dC(~')] dC(~) (m- 1 )
H(y,±,A)

-± -±
(10.8 )

and

'b(y,±,A)' for 1 f [f N(y,~' ,A) a(y;~' ;~;A) dC(~') dC(~) (m- 1 )
H(y,±,A)

- + -±
(10.9 )

Observe that by (7.10) and the preceding definitions (10.3), (10.4),

a(y,±,A) = a(y,±,A) + S(y,±,A)

= a(y,±,A) + f(y,±,A) + b(y,±,A) (10.10)

The heterochromatic part Ns of N* + Ns ' on integration over ~±' may be

reduced in a similar way. We find

[ NS(y,~,A) dC(~)

-±

=f {H(y,±,A') f(y,±,A',A) + H(y,+,A') b(y,+,A',A)} dA'
II

where we have written
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'b(y,±,X' ,X)' for
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1 J
H(y,±,X')

=±

1 J
H(y,±,X')

-+

(10.12)

(10.13)

Finally, the true emission (source density) term in (8.1) becomes, by

definition (cf. (9.4), (2.9a»

he(y,±,X) - [ Ne(Y'~'X) dC(~)

=±

(W . m- 3 • nm- 1 ) (10.14)

Assembling these results and using (10.10) we find the required irradiance

transfer equations:

+ dH(Yd±,X) = -[a(y,±,X) + b(y,±,X)] H(y,±,X) + b(y,+,X) H(y,+,X)
Y

+ J {f(y,±,X' ,X) H(y,±,X') + b(y,+,X' ,X) H(y,+,X')} dX' (10.15)
It.

+ h (y,±,X)
e

x :5 Y :5 z

X e: It.

where y is depth in meters.

These coupled integrodifferential equations, as descriptions of the

fluorescent light field, are completed by giving their boundary conditions at

the upper and lower surfaces. For these, we draw on the radiance boundary

conditions (8.2a-d) and suitably reduce them to the irradiance level. For

example (8.2a) is reduced by multiplying each side by ~.~, and integrating

over =+. The left side becomes H(a,+,X) and the right side of (8.2a) is
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reduced in a manner analogous to (10.5) and (10.11). The resultant set of

irradiance boundary conditions is

H(a,+,A) = H(X,+,A) t(x,a,A) + H(a,-,A) r(a,x,A)

for X(a,x): (lO.16a)

H(X,-,A) = H(X,+,A) r(x,a,A) + H(a,-,A) t(a,x,A)

and

H(Z,+,A) = H(b,+,A) t(b,z,A) + H(Z,-,A) r(z,b,A)

for X(z,b): (lO.16b)

H(b,-,A) = H(b,+,A) r(b,z,A) + H(Z,-,A) t(z,b,A)

where we have written, for example, in (lO.16a):

(t+ =) 't(x,a,A)' for 1 J [J N(X,~',A) t{x,a;~' ;~;A) dn(~' )] I~·kl dn(~)H(X,+,A)
-+ -+

and (lO.17)

(r =) 'r(a,x,A)' for 1 J U N(a,~' ,A) r(a,x;~' ;~;A) dn(~')] I~·kl dn(~)H(a,-,A)
-+ -

These definitions supply two of the four transfer functions for the upper

surface. The remaining two, t(a,x,A) (= t_) and r(x,a,A) (= r+) for X(a,x),

are obtained from the above formulas by interchanging + and - signs and x and

a in the respective equations. Thus, for example, t(a,x,A) comes from

t(x,a,A) by changing + to - along with changing x to a and a to x 1n the

equation for t(x,a,A). The expressions for t+ and r over the lower boundary

X(z,b) are obtained by making the replacements a + z, x + b in (10.17). Sign

and depth-variable reversals in the resultant lower boundary formulas yield

the remaining pair t_, r+ for the lower boundary. Observe that r±, t± for

both boundaries are dimensionless.
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In practice the r±, t± quartet for each boundary X(a,x) or X(z,b) is

given as a set of four numbers derived from independent theory or

measurement. The air-water surface transfer quartet is found as described in

Preisendorfer and Mobley (1985, 1986). The lower boundary quartet is usually

built either directly or indirectly on a matte surface. By 'indirectly' we

mean that X(z,b) itself could be a composite medium consisting of a water body

X(z,b') and a matte bottom x(b',b).

Conservation of radiant energy requires for each X that r+ + t+ = 1 and

r_ + t = 1 at each translucent non absorbing and non fluorescing boundary.

This IS the case for the air-water surface. On the other hand, in natural

waters, the bottom boundary is usually considered an opaque matte surface.

Then we set t+ = 0, and r+ are arbitrary numbers in the unit interval [0,1].

The forward and backward scattering functions for both the monochromatic

and heterochromatic cases can be split into three useful factors each, as

follows. For the monochromatic f and b functions in (10.8) and (10.9), we

have

f(y,±,X) = D(y,±,X) s(y,X) Ef(y,±,X)

b(y,±,X) = D(y,±,X) s(y,X) Eb(y,±,X)

00.18)

00.19)

where D(y,±,X) are the distribution functions (cf. (10.4», s(y,X) the volume

total scattering function (cf. (3.6», and where we have written

f IJ N(y,~',X) p(y;f,;';f,;;X) df2(f,;')] df2(~)

-± -±

f N(y,i' ,X) df2(i')

-±
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f [fN(y,~',X) p(y;~';~;x) dn(~')] dn(i)

-+ =±

f N(y,i',X) dn(i')

=±

(10.21)

where p(Y;1';1;X) is the monochromatic phase function defined in (7.2).

The factors D(y,±,X), as already observed, are indexes of the shape of

the radiance distributions in the =+ hemispheres, respectively. s(y,X) gives

the total scattering activity of the medium at depth y. Finally, Ef and Eb

are the (dimensionless) eccentricities for the monochromatic forward (f) and

backward (b) scattering functions. Observe that in general

for all depths y in the water body X(x,z) and all X E A. The eccentricities

Ef and Eb are such that, in natural hydrosols where there is marked forward

scattering in the volume scattering function's a-lobe, Ef(y,±,X) tends to be

somewhat larger than Eb(y,±,X). In general we would expect in real media that

(10.23)

The closer a(y;1';1;X) is to spherical shape when plotted as a function of 1

for fixed 1', the closer are Ef and Eb to~, the midpoint of the unit interval

[0,1]. If p(Y;1';1;X) is independent of 1 and equal to (4n)-1, then we find

from (10.20), (10,21) that £f(y,±,X) = Eb(y,±,X) =~. It is expected that in

real media Ef(y,±,X) and £b(y,±,X) vary relatively little with y and ±, and so

may be given the status of apparent optical properties (H.O., vol. V,

p. 106).
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Next, the heterochromatic f and b functions factor into the forms

f(y,±,X',X) = D(y,±,X') §(y,X',X) if(y,±,X',X)

b(y,±,X',X) = D(y,±,X') §(y,X',X) ib(y,±,X',X)

00.24 )

00.25)

where D(y,±,X') are the distribution functions evaluated at the exciting or

incident wavelength X', and §(y,X',X) is the volume total transpectral

scattering function defined in (4.4). The dimensionless numbers if and i b are

defined analogously to cf and cb:

f IJ N(y,E:',X') p(Y;E:';E:;l',X) dO(E:')] dO<,~)

=± =±

f N(y,s.',X') dO(s.')

-±

f IJ N(y,E:',X') p(y;E:';E:;l',X) dO(s.')] dO(s.)

-+ =±

f N(y,s.' ,X') dO(s.')

=±

00.26)

00.27)

where p(Y,1';1;X' ,X) 1S the heterochromatic phase function defined 1n (7.3).

We have in general

00.28)

for all y, X', and X.

In real media p, as a function of 1, 1S relatively spherical. In such a

case cf and i b reduce to

00.29)
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and the expression for f and b in (10.24) and (10.25) simplify accordingly.

In the interests of generality of the irradiance model in section 11, we will

retain the full representations (10.24), (10.25) of f and b until specifically

noted otherwise.
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PART II. IRRADIANCE MODEL

11. IRRADIANCE TRANSFER MODEL, LOCAL INTERACTION PRINCIPLES

We now reduce the exact irradiance transfer equations (10.15) to a

discrete approximate form ready for numerical work. The key step is to

partition A into a finite set of intervals over which H(y,±,A), as functions

of A, are assumed to be constant. To be specific, we will limit the nonzero

values of H(y,±,A) on A = [0,00) to a finite subinterval

Ab = 700 nm. In general suppose we divide Ab-Aa into m parts of arbitrary

nonzero band widths ~l' ••• '~m' such that ~l + .•• + ~m = Ab-A a • Set Al = Aa ,

A2 = AI+~I' and in general set Aj+l = Aj + ~j' j = l, ••• ,m, so that

Am+l = Ab • Next, represent H(y,±,A) for any A in [Aa,A b ) by the formal linear

combination

m
H(y,±,A) = L H(y,±,j) X(A,j)

j=l

where, for J = 1, ••• ,m,

i:
if L $ A and A < L 1J J+

X(A,j) =
if A < L or L 1 $ A

J J+

i.e., X(A,j) is 1 if A E Aj (= [Aj,Aj+l» and 0 if A i Aj • The number

H(y,±,j), (with units W·m- 2·nm- l ) for each y, and stream flow (±) is the

(11.1)

(11.2)

average of H(y,±,A) over Aj and is considered unknown. The H(y,±,j),

j = 1, ••• ,m are to be determined by solving the discrete forms of (10.15) now

under derivation. The discrete forms of (10.15) are obtained by averaging

each side of (10.15) over each Aj , j = 1, ••• ,m. For example, the average of

the left side of (10.15) over Aj becomes, on using the representation (11.1),
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J A.

J

dH(y,±,A) dA = +
dy

§11

dH(y,±,j)
dy

j = l, ••• ,m (11.3)

This averaging operation applied to the first term on the right of (10.15)

yields

- ~"71 f [a(y,±,A) + b(y,±,A)]
J A.

J

m
I H(y,±,j) X(A,j) dA

j=l

= {- ~"71 f [a(y,±,A) + b(y,±,A)] dA} H(y,±,j)
J A.

J

j = l, ••• ,m (11.4)

Now, by the mean value theorem for integration, since D(y,±,A) and a(y,A) are

non-negative valued functions over the ranges of all their arguments, and over

the A-range in particular, we find,

~"71 f a(y,±,A) dA = ~"71 f D(y,±,A) a(y,A) dA
J A. J A.

J J

= D(y,±,j) ~"71 f a(y,A) dA
J A.

J

- D(y,±,j) a(y,j) (11.5)

where we have defined a(y,j) in context.

Thus there is, for fixed y, some value of D(y,±,A), say D(y,±,j), on the sub

interval Aj of the spectrum A that can be drawn out of the integrand, leaving

a(y,A) to be averaged over Aj. In real media we expect the A behavior of

D(y,±,A) to be relatively mild over Aj' compared to that of a(y,A); hence our

choice of drawing D(y,±,j) out of the integral.
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In a similar way we reduce the b-term 1n (11.4). On recalling (10.19),

we can write

Then

'b(y,j)' for Eb(y,±,j) ~jl J s(y,X) dX
h.

J

~~l J b(y,±,X) dX _ D(y,±,j) b(y,j)
J h.

J

(11.6a)

(11.6b)

It is easy to show that D(y,±,j) found in this way can be common to both the a

and b terms in (11.4). Let us write, for j = l, ••• ,m,

'T(y,±lj,j)' for -D(y,±,j) [a(y,j) + b(y,j)] (m- 1 ) (11.7>

This is the local transmittance function for the monochromatic case,

x :$ Y :$ z.

We may next treat the monochromatic backscatter term in (10.15) 1n a

similar manner. Thus for j = 1, ••• ,m, we have, as in (11.6)

~~l J b(y,+,X) dX _ D(y,+,j) b(y,j)
J h.

J

(11.8)

- p(y,±\j,j) J = 1, ••• ,m.

where D and b are as defined above, and where we write

'p(y,±lj,j)' for D(y,±,j) b(y,j)

as the local reflectance function for the monochromatic case, x :$ y :$ z. We

give T(y,±lj,j) in (11.7) and p(y,±lj,j) in (11.8) the transmittance and
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reflectance connotations for reasons that will become clear when the

irradiance model takes its final form below.

We come next to the integrals on the right In (10.15). We reduce the

forward-scatter integral averaged over Aj , using (11.1) and (10.24) as

follows:

6~1 f [f f(y,±,A',A)
J A. A

J

m
I H(y,±,i) X(A',i) dA'] dA

i=l
i,j = 1, •••m, 1 "* j

f [f f(y,±,A',A) dA'] dA H(y,±,i)
A. A.

J 1

m
= I D(y,±,i) £f(y,±,i) 6jl f [f S(y,A',A) dA'] dA H(y,±,i)

i=l A. A.
J J

m
I D(y,±,i) £f(y,±,i) s(y,i,j) H(y,±,i)

i=l

where we have written, for i "* j:

(11.10)

's(y,i,j)' for [f S(y,A',A) dA'] dA
A.

J

(11.11)

By our convention on & In (4.3) we set

s(y,i,i) _ 0 for all y and 1 = 1, ••• ,m. (11.11a)

Moreover, we have used the mean value of D(y,±,i) defined above (hence the

sign ,~, in the next to last line in (11.10» and then have used the mean

value theorem for integration to draw out the mean value £f(y,±,i) from the A'

integration, leaving S(y,A' ,A) to be averaged as shown. s(y,i,j) is defined

as the result of the averaging, as shown in (11.11).
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In an exactly similar way we treat the average over Aj of the backscatter

integral term in (10.15) to find the following backscatter counterpart to

(Il.10):

=

6~1 f [f b(y,±,A',A) H(y,±,A') dA'] dA
J A. A

J

m
I D(y,±,i) £b(y,±,i) s(y,i,j) H(y,±,i) •

i=l

i,j = l, ••• ,m, i * j.

(Il.12)

Further, let us write, for i,j = 1, ••• ,m, i * j,

"dY,±li,j)' for D(y,±,i) £f(y,±,i) s(y,i,j) (m-l)

(Il.l3)

, ( + I· .)' for D(y,±,i) £b(y,±,i) s(y,i,j) (m- 1 )p y,_ 1,]

These are the local transpectral transmittance and reflectance functions

x ~ y ~ z. It is very likely that in fluorescent light, D(y,±,i) ~ 2, and

hence that £f ~ £b ~ ~; however, for now we retain £f and £b in their general

forms.

Finally, the true emission (source density) term in (10.15) becomes, by

definition

h (y,±,j) _
e

h (y,±,A) dA
e

, J = 1, ••• ,m

Assembling and summarizing all these results, we obtain the desired

discrete form of the irradiance model (10.15) for fluorescent light fields:
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m
I H(y,±,i) T(y,±li,j) +

i=l

m

I
i=l

H(y,+,i) p(y,+li,j) + h (y,±,j)
e

x ~ y ~ Z, J = 1, ••• ,m.

where y is depth (in m).

(11.15)

This may be placed into matrix form. First define the irradiance vectors

'~(y,±)' for [H(y,±,l), ••• ,H(y,±,m)] (11.16)

'h (y,±)' for [h (y,±,l), ••• ,h (y,±,m)] (Wom- 3 onm- 1 )
~ e e

and then the local transmittance and local reflectance matrices over the depth

range x ~ y ~ z:

T(y,±11,1) T(y,±11,2) T(y,±11,m)

T(y,±12,1) T(y,±12,2) T(y,±12,m)

'.!.(y,±), for (m-q (11. 17 )

T(y,±lm,1) T(y,±lm,2) T(y,±lm,m)

p(y,±11,1) p(y,±11,2) p(y,±ll,m)

p(y,±12,1) p(y,±12,2) p(y,±12,m)

"£.(y,±)' for (m-q (11. 18 )

p(y,± 1m, 1) p(y,±lm,2) p(y,±lm,m)

The matrix form of (11.15) is then (with depth y 1n meters)

d~(y,±)

dy
(11.19)
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or more compactly

where we have written

'h (y)' for [-h (y,+), h (y,-)]-e -e-e

(l1.19a)

.e.(y'+)J

.!.(y,-)

Equations (11.19) express the local interaction principles. From these

spring the global interaction principles to be developed in section 14. When

fluorescence is absent, then (11.19) reduces to a set of independent

equations, one for each wavelength interval. The associated boundary

conditions to (11.19) follow at once from the A-averaged versions of the

boundary conditions (10.16). Under our present assumptions we have a

nonf1uorescing infinitesimally thin air-water boundary X[a,x]. See the

derivation and discussion of (8.2). Moreover, the lower boundary X(z,b) will

be considered nonf1uorescing and either of a matte-surface form or a water

slab of finite thickness with a matte reflecting bottom. The matrix verSions

of (10.16) are then
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!!(a,+) = !!(x,+) ,£(x,a) + !!(a,-) !.(a,x) (II.20a)

for X(a,x):

!!(x,-) = !!(x,+) !.(x,a) + !!(a,-) ,£(a,x) (II.20b)

and

!!(z,+) = !!(b,+) ,£(b,z) + !!(z,-) !.(z,b) (II.20c)

for X(z,b):

!!(b,-) = !!(b,+) !.(b,z) + !!(z,-) ,£(z,b) (II. 20d)

where we write

(£+ =) ',£(x,a)' for diag[t(x,a,l), ••• ,t(x,a,m)]

(II.2l)

(r =) '!.(a,x)' for diag[r(a,x,l), ••• ,r(a,x,m)]

The remaining pair r,t of diagonal matrices for X(a,x) are found following
-+ --

the (a,x)-interchange change rule (see discussion of (10.17). The quartet of

diagonal matrices !±,£± for X(z,b) are structured similarly.

The basic problem of the fluorescent irradiance model may now be stated

as follows:

Given: A plane-parallel optical medium X(a,b) as in Fig. 7, with

heterochromatic optical properties £(y,±), ~(y,±) and ~e(Y'±) as in (11.19),

continuously varying over the water body X(x,z) of X(a,b), x $ y $ z, with

given !±'~± for the upper boundary X(a,x) as in (10.20), and lower boundary

X(z,b) of X(a,b), and also given incident irradiances !!(a,-), !!(b,+).

Required: The heterochromatic internal irradiance vectors !!(y,±),

x $ Y $ z throughout X(x,z) and the emergent boundary irradiance vectors

!!(a,+), !!(b,-).

The solutions of (11.19) subject to (11.20) provide the direct solution

of this problem. These solutions will be considered in Part III. See in
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particular sections 19, 20 and 21. The inverse solution is considered in

Part IV, below.

For the remainder of Part II we shall look at the subject of directly

observable properties of the fluorescent light field. These are traditionally

useful properties that, by definition, can be obtained without numerically

solving the system (11.19), (11.20).
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12. DIRECTLY OBSERVABLE RELATIONS

The local interaction principles (11.19) contain useful information about

fluorescent light fields in natural hydrosols that may be elicited without

having to first numerically solve that system of equations. We shall now

exhibit some of this information and point out where it may be of use. In

doing so we will be extending to the fluorescent level various results in the

theory of directly observable relations originally developed in the

monochromatic setting for arbitrarily stratified media (cf. Preisendorfer,

1961), and which now may be found in H.O., vol. V, sec. 9.2.

A. Observable Reflectance Matrix

Of some interest in the study of fluorescent light fields in stratified

lakes and seas is the search, by aerial surveys, for the presence and extent

of chlorophyll activity. The presence of fluorescent chlorophyll activity in

source-free media, i.e., those in which the emission term he(y,±,j) of (11.15)

is zero, can be monitored by its fluorescing in the red end of the visible

spectrum. Natural waters free of such fluorescence activity would exhibit

upward irradiances H(y,+,A) at depths y below the surface that are related to

the downward radiance H(y,-,A) at level y of the same wavelength A by the

simple relation

H(y,+,A) = H(y,-,A) R(y,-,A) (12.1)

where R(y,-,A) is the (dimensionless) irradiance ratio of the monochromatic

theory (H.O., Vol. V, p. 116). In source-free media, but in the presence of

fluorescing materials, downward irradiance H(y,-,A') for wavelengths A' mainly

shorter than A will by transpectral scattering enhance the upward irradiance
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H(y,+,X) beyond the value given by (12.1). To handle this possibility one

introduces the transpectral irradiance ratio R(y,-,X',X) (in units of nm- 1 ) at

depth y, and defines it via the relation

H(y,+,X) = S H(y,-,X') R(y,-,X',x) dX'
r..

for all y in [x,z] and X in r.. = [O,ro) or [xa,X b], as the case may be. The

ontological basis for R(y,-,X',X) in source-free stratified media rests in the

interaction principle of Hydrologic Optics (H.O., vol. II, p. 205 and

p. 279). In the context of the source-free irradiance model (11.19) this

relation takes the discretized form

m
H(y,+,j) = I H(y,-,i) R(y,-,i,j)

i=l

for x ~ y ~ z and j = l, ••• ,m, where we have used (11.1) in the averaged

equation (12.2) and have written

(12.3)

'R(y,-li,j)' for [S R(y,-,X',x) dX'] dX
A.

1

(12.4)

for i,j = l, ••• ,m. Observe that R(y,-,i,j) is dimensionless. When there is

no transpectral scatter, then R(y,-,i,j) = 0 for i ~ j, as we shall see

rigorously below in Eq. (12.11). In this case R(y,-,i,i) becomes the R(y,-,X)

of the monochromatic theory in H.O., Vol. V., for some specified wavelength X

in Aj , j = l, ••• ,m. The problem of determining the enhanced reflectance in

the red part of the spectrum, and hence the problem of detecting chlorophyll

activity, can be solved exactly if we can model the flow of radiant energy

across the spectrum via the irradiances H(y,±,j), j = l, ••• ,m.
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Towards this end, the relation (12.3) in source-free media can be placed

into the compact matrix form

~(y,+) = ~(y,-) ~(y,-)

where ~(y,±) are defined in (11.16) and where we have written

(12.5)

R(Y,-Il,l) R(Y,-ll,2) R(Y,-Il,m)

R(Y,-12,l) R(Y,-12,2) R(Y,-12,m)

'~(y,-)' for (12.6)

R(Y,-Im,l) R(y,-lm,2) R(Y,-Im,m)

for all Y such that x ~ Y ~ z. Henceforth in this section we will assume

X(a,b) is finitely deep and source-free,* i.e., he = 0 in (11.15).

Whenever the mxm matrix ~(y,-) is assumed or demonstrated to be

invertible, we will write

(12. n

and then (12.5) has the reciprocal companion

* This does not constitute any loss of generality in the present theory. It
will be shown in section 15 how the presence of true sources in the
heterochromatic model can be handled whenever they are present in X(a,b).
Observe also that the source-free equations (11.15) can be rearranged so as
to take on the appearance of the two-flow irradiance equations for
monochromatic flux. The resultant equations for H(y,±,j) will have a
source term, namely the term into which all the remaining transpectral
terms (for i * j) have been swept. Hence in the presence of fluorescence
the source-free heterochromatic irradiance model corresponds to a
monochromatic model with source term.
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(12.8)

We now make some preliminary observations about !(y,±), and some of its

special cases.

If we set y equal to z, In !(y,-), where z is the depth of the lower non

fluorescing boundary, and set g(b,+) = Q, then !(z,-) is diagonal and we can

set it equal to !(z,b) in (11.20c). (Recall the discussion of the boundary

reflectances In (8.2c,d) in which the special nonfluorescing form of X(z,b) is

adopted.) Similarly, !(x,+) reduces to !(x,a) when we set ~(a,-) = 0 in

(11.20b). In natural media the condition g(b,+) = Q is normally satisfied,

while g(a,-) = Q is not, since light enters from above but not from below.

When g(b,+) = Q, then !(y,-), and more generally R(y,-,A',A) in (12.2), can be

made to rest on the interaction principle and behaves like a global optical

property (this will be shown in (12.12), below). Hence in what follows we

will work more with !(y,-) (rather than !(y,+» and draw out the directly

observable relations based on !(y,-). It should be noted, however, that

!(y,+) in general and by definition formally exists whenever !-l(y,-) does,

for any y in [x,z], regardless of boundary conditions. It is simply that

whenever g(a,-) ~ Q, !(y,+) does not (nor does its monochromatic counterpart

R(y,+) in H.D., vol. V, sec. 9.2) take on the meaning of an irradiance

reflectance (i.e.~ in the sense of an interaction-principle operator, i.e., an

operator that occurs In the global interaction principles; cf. sec. 15) at

depth y below the air-water surface X(a,x). Thus, whenever g(a,-) ~ 0 or

g(b,+) ~ 0 hold, and we wish to determine the light field in X(a,b), we will

set aside !(y,+) or !(y,-), respectively, and use the global reflectance

operators !(y,x) or !(y,z), respectively, as defined in section 15. With

these observations in mind, we now proceed to extend the classical theory of
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monochromatic observable optical properties of R(y,-), and other two-flow

irradiance concepts to the heterochromatic case.

B. Differential Equation for ~(y,-)

The basic relation (12.5) connecting the upwelling irradiance ~(y,+) with

the downwelling irradiance ~(y,-) at depth y (in meters) allows in particular

the computation of ~(y,+) when ~(y,-) is known along with ~(y,-). In practice

we would know or estimate ~(y,-). We therefore require a way to determine

~(y,-). It will now be shown that ~(y,-) obeys a matrix Riccati differential

equation that, on using the initial condition ~(z,-) = E(z,b), may be

integrated from level z to any level y, x ~ Y ~ z, knowing the depth

dependences of the local matrices £(y,±) and !(y,±) along the way.

Thus, on differentiating each side of (12.5) we find

dg(y,-)
= dy ~(y,-) + g(y,-) (12.9)

Replacing the ~-derivatives by their algebraic expressions given in the

source-free form of (11.19), we find

(12.10)+ g(y,-)

{g(y,-) !(y,-) + g(y,+) ~(y,+)} ~(y,-)

d~(y,-)

dy

{-g(y,+) !(y,+) - g(y,-) ~(y,-)} =

Using (12.5) to replace ~(y,+) by ~(y,-)~(y,-), and rearranging terms, we

have, since ~(y,-) is generally arbitrary,
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d~(y,-)

------- = [p(y,-) + R(y,-) ,(y,+)] + [,(y,-) + R(y,-) p(y,+)] R(y,-)
dy - - - - - - -

= R(y,-) [,(y,+) + p(y,+) R(y,-)] + [p(y,-) + t(y,-) R(y,-)]
- - - - - - -

with initial condition

~(z,-) = !.(z,b)

This 1S the required Riccati differential equation for ~(y,-).

(12.11)

(12.11a)

When fluorescence is absent, the mxm local reflectance and transmittance

matrices £(y,±), l(y,±) of (11.17), (11.18) become diagonal, and then so also

does ~(y,-); hence (12.5) reduces to separate scalar equations of the form

(12.1). See H.O., vol. V, Eq. (1), p. 148 for the monochromatic case to which

(12.11) returns when the medium is fluorescence-free.

Integrating (12.11) from depth z to depth y < z, starting with (12.11a)

yields the desired matrix ~(y,-), x ~ Y $ z, knowing the Q(y,±), l(y,±) along

the way.

For completeness, we write down the differential equation for ~(y,+), the

companion to (12.11). That this, and even (12.11), is at all possible (in

view of our comments about ~(y,±) above) stems from the connections between

either ~(y,+) or ~(y,-) and its more fundamental counterpart ~(y,x) or ~(y,z),

respectively. These latter reflectances, which are associated with well-

defined slabs X[x,y], X[y,z], respectively, will be introduced and studied in

sections 15 and 16. The derivation of (12.12) below proceeds with all details

the same as that of (12.11); the result is
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x ~ y ~ z

=!(y,+) [!(y,-) + £(y,-) !(y,+)] + [£(y,+) + !(y,+) !(y,+)]

(12.12)

with initial condition

!(x,+) = r(x,a)

c. The !-functions for ~(y,±)

We next return to the monochromatic theory and generalize to the

heterochromatic case the logarithmic derivatives of H(y,±):

(12.12a)

K(y,±) -1
- H(y,±)

dH(y,±)
dy

(12.13)

These K-functions allow us to visualize the depth dependence of H(y,±) as a

generalized form of exponential decay:

Y
JH(y,±) = H(x,±) exp{- K(u,±)du}
x

(12.14)

In the monochromatic case we have for K(y,±) the expressions (cf. H.O.,

vol. V, p. 117):

K(y,-) = [a(y,-) + b(y,-)] - b(y,+) R(y,-)

-K(y,+) = [a(y,+) + b(y,+)] - b(y,-) R(y,+)
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over the y-depth range [x,y]. In infinitely deep homogeneous media a(y,±),

b(y,±) and hence R(y,-) are independent of yand so then is K(y,-) = k_ (cf.

H.O., vol. V, p. 81). Eq. (12.14) then becomes

H(y,±) = H(x,±) exp{-k_(y-x)} (12.17)

To find the K-function, say ~(y,-), in the fluorescent setting, we write

out the downward member of the source-free version of (11.19):

= H(y,-) ~(y,-) + ~(y,+) £(y,+)

and use the definition (12.5) for ~(y,-). After rearrangement we have

On this basis we write

(m- 1 )

(12.18)

(12.19)

From the upward member of the source-free verSlon of (11.19) along with

(12.8) we are led to write

(12.20)

which yields the differential equation for ~(y,+):

(12.21)
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In practice, if we have determined ~(y,-) over the y-range [x,z], then from

(12.18), with initial value H(x,-), we can integrate (12.18) for ~(y,-) to any

depth y in the slab X(x,z). Thus, by (12.14) and (12.19) we can formally

evaluate H(y,-) in

Y
J~(y,-) = ~(x,-) exp{ [~(u,-) + !(u,-) £(u,+)] du}
x

(12.22)

In practice we can use (12.18) directly to find ~(y,-), with some numerical

matrix differential equation subroutine. One way to accomplish this would be

to first integrate (12.11) from z to x starting with !(z,b) and ending with

~(x,-). Then integrate (12.18) downward from x to a general level y starting

with H(x,-), and the 'initial' value of ~(y,-), namely ~(x,-). As the

integration of (12.18) proceeds, 'deintegrate' (12.11) (in the obvious sense)

simultaneously, so that ~(y,-) is available at each y for use in (12.11).

This eliminates the need to store all the ~(y,-) values obtained in the upward

sweep. This idea will be systematically explored in section 19.* Finally, at

each depth y, we find ~(y,+) by evaluating ~(y,-) ~(y,-).

D. Alternative Differential Equation for ~(y,-)

The monochromatic two-flow theory of the light field (H.O., vol. V,

p. 123) shows that the depth rate of change of R(y,-) can be characterized by

dR(y,-) = R(y,-)[K(y,-) - K(y,+)]
dy

(12.23)

* An obvious alternative to (12.18) is (11.19). After integrating (12.11)
from z to x, we have R(x,-) and hence H(x,+) = H(x,-)R(x,-). The pair of
values H(x,±) then are the initial values to start integrating (11.19),
with h (y,±) = O. This procedure, however, is numerically unstable. See-e -
Preisendorfer, 1976a.

68



§12

This shows in particular that R(y,-) is independent of y on some depth

interval if and only if K(y,-) = K(y,+) over that depth interval. The

heterochromatic generalization of (12.23) is

d~(y,-)

dy
= !(y,-) ~(y,-) - ~(y,-) !(y,+) (12.24)

which follows at once from (12.11) and the pair of definitions (12.19),

(12.20).

E. The R-K Connections

In the monochromatic theory (cf. 8.0., vol. V, p. 117), we can represent

R(y,-) in terms of p(y,±), T(y,±), and K(y,±) at each depth y by

R( Y, -) = -::--.,------,::P--,(-,,-Y-<...,--.:,...)-~
[K(y,+) - T(y,+)]

= _ [K(y,-) + T(y,-)]
p(y,+) (12.25)

The heterochromatic counterparts to these follow from (12.19), (12.20) and the

definition (12.7):

(12.26)

The usefulness of either of these sets of representations occurs in

homogeneous infinitely deep layers wherein the quantities on the right sides
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are independent of depth y. Then ~(y,-) is also independent of y and is

characterized by the local properties p, T, K (resp. ~, ~, !) of the medium

(cf. (15.69) and (15.70».

F. Divergence Rela~ion

In the monochromatic theory (cf. H.O., vol. I, p. 62) the divergence

relation with source term is

dH(y,+) =
dy

= -a(y)h(y) + h (y)
e

(12.27)

In the heterochromatic theory, this is generalized to (9.5). The matrix

version of (9.5) is obtained by observing that we can write h(y,A) as

D(y,+,A)H(y,+,A) + D(y,-,A)H(y,-,A). Use (11.1) and average each side of

(9.5) over Aj • Use (11.5) and (11.11), and write 'h(y,±,j)' for

D(y,±,i)H(y,±,i). Then we obtain

where we have written

s(y,l,m)

s(y,2,m)

(12.28)

(12.29)

o

and (m- 1 ) (12.30)

Further, write
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'!!(y,+)' for [H(y,+,l), ••• ,H(y,+,m)] (W-m- 2 - nm- 1 )

'!!.(y) , for [h(y,l), ••• ,h(y,m)] (W -m- 2 - nm- 1 )

(12.31)

'h (y)' for [h (y,l), ••• ,h (y,m)] (W-m- 3 -nm- 1 )
-e e e

Here H(y,+,j), h(y,j) and he(y,j) are, respectively, the discrete forms

of H(y,+,A), h(y,A) and he(y,A) in (9.5). Observe that if there is no

transpectral scattering, then !(y) = Q, and (12.28) splits into m copies of

(12.27).

G. The Basic Reflectance Relation

In the monochromatic two-flow theory of the light field in stratified

media, the reflectance function is representable (cf. H.O., vol. V, p. 118) in

terms of a and K as

R(y,-) = K(y,-) - a(y,-)
K(y,+) + a(y,+) (12.32)

The present heterochromatic verSlon of this is

(12.33)

where ~(y,±) are as given In (12.19), (12.20), and where we have written
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'~(y,±)' for Q(y,±) ~(y) (m- 1 )

'Q(y,±)' for diag[D(y,±,l), ••• ,D(y,±,m)]

and

'~(y)' for ~(y) - !(y) (m- 1 )

The derivation proceeds basically as in 8.0., vol. V, p. 118, and now

uses (12.28) as the required version of the divergence relation.

8. Characteristic Equation for K

In the monochromatic theory a defining equation for the pair K(y,±) in

terms of a(y,±) and b(y,±) is given by (cf. 8.0., vol. V, p. 123)

b(y,-)
K(y,-) - a(y,-)

b(y,+)
K(y,+) + a(y,+) = 1 (12.34)

Clearing of fractions, we obtain a quadratic equation in K that yields

K(y,±) as roots. When a,b are independent of depth, these roots coincide with

the classical functions k± of the monochromatic two-flow model for the light

field (cf. 8.0., vol. V, eq. (12), p. 31). In the present heterochromatic

version of the two-flow theory, (12.34) generalizes to

(12.35)

which follows by eliminating ~(y,-) from (12.26). Replacing ~(y,±) in (12.35)

by a single unknown mxm matrix ~ yields a quadratic matrix equation in K whose

2m roots (the characteristic roots) are the present generalizations of k± in

the monochromatic theory (the case for m = 1).
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PART III. DIRECT SOLUTION OF IRRADIANCE MODEL

13. EIGENMATRIX SOLUTION OF THE FLUORESCENT LIGHT FIELD MODEL

We now begin our constructions of the direct solution procedure of the

fluorescent irradiance model. The characteristic equation (12.35) suggests an

interesting path to the solution. This path is by way of a generalization of

the classical monochromatic two-flow model k-functions, namely k+ and k_, to

the fluorescent case (i.e., m > 1). With such a generalization there is the

possibility of representing the A-averaged irradiances H(y,~,j) in (11.16) as

linear combinations of simple exponential functions. This may be compared to

the corresponding situation in H.O., vol. V, Eq. (9), p. 31, for the

monochromatic case. If this approach is followed, it leads to a matrix

theoretic solution formalism (the fundamental-solution procedure) for

(11.19). We shall now explore this idea just far enough to see that the

generalization of k± to the heterochromatic case is possible and potentially

thoroughgoing. In this way we can cap the list of analogies between the

monochromatic and heterochromatic models developed in section 12 by presenting

a very useful matrix formulation of the solution of the heterochromatic

case. This formulation will be called the eigenmatrix solution.

The special eigen-representation we discuss here can only exist in a

homogeneous medium or within homogeneous layers comprising a stratified

medium. Therefore, for the remainder of this section we assume that the local

transmittance and reflectance matrices g(y,±), ~(y,±) are independent of y,

x ~ y ~ z; and we also set ~e(Y'±) = a for all y, x ~ y ~ z in an optical

medium X(x,z) until further notice. A generalization of the present theory to

continuously stratified media with sources will be made in section 14.

We begin by writing the coupled pair of equations (11.19) as a single

system. Thus write
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(l x 2m)
(l3.1)

and

[

-2.(+)

'K' for

-£.(-)

£.(+ )J
.r( -)

(2m x 2m) (l3.2)

Then (11.19) becomes

(l3.3)

We wish to find an 'upward' and a 'downward' pa1r of 1xm irradiance

vectors ~(y,+) and ~(y,-) (W·m- 2 ·nm- 1 ) analogous to ~(y,+) and ~(y,-), but

with the unique property that

where we write

(m- 1 )

(l3.4)

(l3.S)

In other words, if we define the m components of ~(y,±) 1n context by

~(y,±) _ [H(y,±,l), ••• ,H(y,±,m)]

then (13.4) states that for J = 1, ••• ,m,

(W·m- 2 ·nm- 1 ) (l3.6)

d H-( + ') =dy y,-,J (13.7)
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over the depth range y, x $ Y $ z, in the homogeneous medium X(a,b).

Therefore in the search for ~(y,±) we must also find the 2m parameters k±(j),

j = l, ••• ,m. The beauty of (13.7) lies in its complete decoupling of the two

irradiances H(y,±,i) and H(y,±,j) when i * J. The connection between

~(y,±) and ~(y,±) is assumed to be a linear connection, summarized by some as

yet unknown 2m x 2m dimensionless matrix ~, such that for all y £ [x,z],

where we have written

(1 x 2m)

(13.8)

(13.9)

We call ~(y) and its subvectors g(y,±) the eigen irradiances, to keep

them conceptually distinct from the physical irradiances ~(y) =

[~(y,+),~(y,-)]. From (13.7) we see that in homogeneous media the eigen

irradiances decay in precisely an exponential manner.

The conditions (13.4) and (13.8) are sufficient to fix the forms of the

structures E and ~±. For, on writing (13.4) as

where we have set

'k' for diag[k ,k ]
-+ --
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and using (13.8), we see that (13.l0) becomes

:y ~(y) E = ~(y) E k

By (13.3) this reduces to:

~(y) K E = ~(y) E k

(13.l2)

(13.l3)

This relation must hold for a light field ~(y) whose components H{y,±,j), j =

l, ••• ,m at each depth y can take on arbitrary values. These arbitrary values

are taken while holding fixed the distribution factors D{y,±,j), j = l, ••• ,m,

at y, and also the inherent optical properties throughout the present

homogeneous optical medium X{x,z) {cf. (11.17), (11.18». Hence on these

plausible physical grounds, (13.l3) holds if and only if

] ! ~ = B k [ (2m x 2m) (13.l4)

This represents a standard eigenvector/eigenvalue problem wherein the 2m

columns of E are the required eigenvectors of ~ and the 2m numbers along the

2m x 2m diagonal matrix k are the associated eigenvalues of~. The entries of

E are dimensionless and are fixed to within a common factor.

Generally in real media we expect (and therefore will assume here that)

the eigenvalues of ~ are real and distinct.* Moreover, we expect (and assume)

* This expectation arises from the fact that real media at each wavelength A
exhibit absorption. This simple fact produces distinct k+ and k_ in the
monochromatic case. See H.O., vol. V, p. 32.
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that half of the eigenvalues are positive and half are negative.* In this way

the eigenvalues can be paired positive to negative, just as k+ and k_ were

paired in the monochromatic theory. It can be shown, for example, that if

1(+) = 1(-) and £(+) = £(-), then the 2m eigenvalues k+(j), j = 1, ••• ,m form m

matched pairs where k_(j) = -k+(j), j = 1, ••• ,m. On the principle of

continuity of the eigenvalues of K with respect to continuous variation of the

elements of ~, we see that it is plausible to expect that in real media we can

pair a negative eigenvalue k_(j) to each positive eigenvalue k+(j),

j = 1, ••• ,m. We can therefore arrange the distinct 2m values k+(j) in

ascending order and relable them in the following manner:

k (m) < ••• < k (1) < 0 < k (1) < •.• < k (m)
+ +

(13.15)

Once this is done, the associated eigenvectors of ~ are uniquely fixed to

within a scalar factor. Of course, in various theoretical examples, in order

to push the theory to its limits of physicality, we should be prepared to

examine pathological departures from the above expected properties of the

k+(j), j = 1, ••• ,m. We will not explore such matters in the present

introductory study of the Eigenmatrix method.

Let us define the 2m eigenvectors of ~ in context by writing

(2m x 2m) (13.16)

and in turn the components of and two mxl subvectors of e+(j) are also defined--
in context

* This fact depends on our partition of the light field into upward and
downward streams, resulting in the factors -1 in the left column of
(13.2). These factors give rise to positive-negative eigenvalue pairs.
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e++O,j) e+_0, j)

~+(j)

e++(m,j) [~++(j] ~-(j)

e+_(m,j) [~+-(j] 03.17)- e_+0, j) -
~-+(j)

, - e__O,j) -
~--(j)

e_+(m,j) e__ (m,j)

With this notation we may rewrite (13.14) as

![~+(1) ~+(m) (e (1) ~_(m)]

= [e 0) ... e (m) : eO) ... e (m)] ~k+ QJ
-+ -+. -- -- 0 k- --

From this we read off, for j = 1, ••• ,m,

03.18)

We conclude that ~+(j) is the eigenvector associated to k+(j), for each

j = 1, ••• ,m, and where the k±(j) are ordered as in (13.15). This association

can be used to uniquely name the eigenvectors in the solution subroutine for

(13.14) and pair them to their respective eigenvalues k±(j). It should be

noted that the eigenvectors generated by a subroutine are generally fixed in

value except for a sign (±). We can agree on removing this ambiguity in the

vectors ~±(j) by making their first components e+±(I,j) positive,

j = 1, ••• ,me
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Finally, it will be useful to partition the 2m x 2m matrix E into four

mxm submatrices which we define in context by

(2m x 2m) (13.19)

Thus the element in the ith row and jth column of E , for example, is-++

e++(i,j), for i,j = 1, ••• ,m, as defined in (13.17). The inverse E-1 of E is

presumed to exist and we shall write

I F' for
[

F-++
!-1:: F

--+

(13.20)

where the four mxm submatrices F , etc. are defined in context. The mxm-++

block submatrices F , ••• ,F of F can be evaluated directly in terms of the
-++ ---

block submatrices ~++, ••• ,~__ of E using a straight-forward technique. [See,

e.g., (15.11)-(15.14), below.] Analogously to (13.16), (13.17), we define f's

2m column vectors in context by writing

(2m x 2m)

and for j = 1, ••• ,m:

f++ (1, j) f+_ (1, j)

f++(m,j) [f++U] f (m,j) e+_U]f (") , L(j)
+- (13.21 )_+ J - f_+ (1, j) - L+(j) - f __(1, j) - f (")___ J

f_+(m,j) f __ (m,j)

79



§13

Let us now assume that ~ and k have been numerically determined, and that

~ (: ~-1) exists and has also been evaluated. Then we have from an

integration of (13.7) that

H(y,±,j) = H(u,±,j) exp{k±(j)(y-u)} (13.22)

for u, y £ [x,z] and j = l, ••• ,m. Hence knowing H(u',±,j) at any level u,

x $ u $ z, allows us vla (13.22) to find H(y,±,j) at all other levels y,

x $ Y $ z. From (13.8) and the notation of (13.19) we have in particular

ft(y,±) = ~(y,+) ~+± + ~(y,-) ~_±

or in more detail, for each J = l, ••• ,m,

m
H(y,±,j) = 2 H(y,+,i) e+±(i,j)

i=l

m
+ 2 H(y,-,i) e_±(i,j)

i=l

(13.23)

(13.24)

Thus knowing H(y,±,i) at level y, we can find H(y,±,j) at the same level y.

Further, from (13.8) and knowledge of ~ (cf. (13.20» we can find the physical

irradiances ~(y) by

~(y) = ft(y) F

From this, by (13.20),
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~(y,±) = R(y,+) ~+± + R(y,-) ~_±

In more detail, with (13.21), for each J = 1, ••• ,m

(13.26)

m
H(y,±,j) = I

i=l

m
+ I H(y,-,i) f_±(i,j)

j=l

Using (13.22) 1n this with u now chosen to be, say, x, we have

(13.27)

H(y,±,j) =
m

I
i=l

H(x,+,i) exp{k (i)(y-x)} f +(i,j)
+ +-

(13.28)
m

+ I H(x,-,i) exp{k_(i)(y-x)} f_±(i,j)
i=l

x 5 Y 5 z

J = 1, ••• ,m

This is a representation of H(y,±,j) as a linear superposition of simple

exponentials that grow (+) or decay (-) with depth y increasing. We can write

this solution completely in terms of physical irradiances ~(x,±,i) by

replacing the eigen irradiances H(x,±,i) in (13.28) using (13.24) with y set

to x. The resultant representation takes the form

m
+ I H(x,-,i) m_±(x,yli,j)

i=l

H(y,±,j) =
m

I
i=l

(13.29)

where we have written for all y € [x,z] and 1,J = 1, ••• ,m,
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m
'm+±(x,Yli,j)' for I [e++(i,t) exp{k+(t)(y-x)} f+±(t,j)

t=l

+ e+_(i,t) exp{k_(t)(y-x)} f_±(t,j)]

(13.30a)

for
m

I
t=l

[e (i,t) exp{k (t)(y-x)} f +(t,j)
-+ + +-

+ e__(i,t) exp{k_(t)(y-x)} f_±(t,j)]

(13.30b)

Clearly the m+± and m_± quantities are dimensionless.

This form of the solution of (11.19) is readily evaluated numerically. To

prepare for such solution procedures and their further applications, we

elevate (13.29) to the matrix level. For this we need only write (13.22) as

where we have used (13.5) and (13.6). Moreover, on recalling (13.9) and

(13.11), this may be written even more compactly, as

Then by (13.8) applied twice this becomes

~(y) E = H(x) E exp{~(y-x)}

(13.32)

whence, on using (13.20), we find the basic mapping property of ~(x,y):
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~(y) = H{x) E exp{~{y-x)} F

(13.33)

_ H{x) !:!{x,y)

which holds for all y E [x,z]. We have defined in context the 2m x 2m matrix

~(x,y). Equation (13.33) is therefore the desired matri~ version of (13.29),

as may be verified by performing the indicated operations on ~, ~, and ~.

Observe in particular that the matrix ~(x,y) has the form

(2m x 2m) (13.33a)

and where the (i,j) element of the mxm matrix ~+±{x,y) is m+±{x,yli,j) in

(13.30a) and the (i,j) element of the mxm matrix ~_+{x,y) is m_±{x,yli,j) in

(13.30b); i,j = l, ••• ,m. Moreover, since k is a 2m x 2m diagonal matrix,

exp{~{y-x)} is also a 2m x 2m diagonal matrix of the form:

exp{~{y-x)} =
o

k (m)(y-x)
e + k (1 )(y-x)

e -

o

k (m)(y-x)
e -

(13.34)

That (13.33) is actually a solution of the homogeneous verSion of

(11.19a) may be verified as follows. Using (13.3), we differentiate each side

of (13.33) and make some rearrangements:
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d H(x) dd H(y) = d M(x,y)y- y-

H(x) d= ~ dy exp{~(y-x)} F

= H(x) ~ ~ exp {~(y-x)} F

= H(x) E exp{~(y-x)} k F

(a)

(c)

= H(x) E exp{~(y-x)}(~ ~) ~ ~

= !!(y) K

(e)

(f)

(13.35)

This agrees with (13.3). Hence g(y), as represented in (13.33), is a solution

of the basic differential equations for the source-free fluorescent irradiance

model, in the case of an homogeneous medium X(a,b).

It is of interest, particularly for theorists coming on this set of ideas

for the first time, to discern the reason for the validity of each step in

(13.35). For example, in going from (a) to (b) we use the reproducibility of

the exponential function under differentiation; 1n going from (b) to (c) we

use the diagonal structures of k and exp{~(y-x)} and hence their

commutativity; in going from (e) to (f) we use the mapping property (13.33)

and the eigenvector equation (13.14).

The preceding proof may be summarized 1n terms of the 2m x 2m M-matrix as

follows:

d
dy ~(x,y) = ~(x,y) K
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where

!i(x,y)

This matrix and its four mxm submatrices defined in context, with entries as

in (13.30), are of fundamental importance to the present theory, as we shall

see when we study it further, below. For now we observe the following

additional properties of ~ that are immediately verified using the

representation

] ~(u,v) _ E exp(~(v-u») F

Thus, we have the

u,v < [x,y] [ (13.37)

closure (or propagation or group) property:

for all u,v,w € [x,z],

identity property:

~(u,v) ~(v,w) = ~(u,w) (13.38)

for all u € [x,z],

inverse property:

for all u,v € [x,z],

~(u,u) = I

~-l(U,V) = ~(v,u)

(13.39)

(13 .40)

where I In (13.39) is the 2m x 2m identity matrix.

In other words, the set {~(u,v): u,v € [x,z]} of 2m x 2m matrices under

matrix multiplication forms a group which IS isomorphic to the group of real

numbers on the interval [O,z-x] under the operation of addition, modulo
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(z-x). From (13.33) and (13.38)-(13.40) we see how tightly knit the light

field is, 1n the sense that knowing H(u) at anyone level in X(x,z), we can

find H(v) at any other level: H(v) = ~(u) ~(u,v), u,v E [x,z].

We conclude this discussion of the fundamental matrix ~(x,y) by giving a

representation of its four submatrices in terms of the eigenstructures ~ and ~

of K. Using (13.19) and (13.20) in (13.37) we find

[
~++(x ,y)

M (x,y)
--+

(13.41)

where 0 1S an mxm zero matrix. From this, for a ~ x ~ y ~ b,-m

M (x,y) = E e~+(Y-x) F + E e~-(y-x)F (13.42a)-++ -++ -++ -+- --+

~+_(x,y) = E e~+(Y-x) F + E e~-(y-x)F (13.42b)-++ -+- -+-

M (x,y) = E e~+(Y-x) F + E e~-(y-x)F (13.42c)--+ --+ -++ --+

~__ (x,y) = E e~+(Y-x) F + E
k (y-x)

(13.42d)--+ -+- e-- F

Interchanging 'y' and 'x' in (13.42a-d) yields the representation for ~(y,x),

and hence, by (13.40), the representation for H-l(x,y).
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14. FUNDAMENTAL-SOLUTION PROCEDURE

In this section we use the fundamental-solution procedure (as defined

below) to develop the complete solution of the basic differential equation

system (11.19), (11.20) for the upward and downward irradiance vectors ~(y,±)

in X(a,b). The integration problem for (11.19) is defined in detail in the

discussion following the boundary conditions (11.20). Thus in X(a,b) it will

be assumed that the incident irradiances ~(a,-) and ~(b,+) along with the true

emission terms h (y,±), and also the local reflectances n(y,±) and local-e ~

transmittances !(y,±) are known and continuous at all depths y in the depth

interval [x,z] between the horizontal boundaries X(a,x), X(z,b) of the

medium. The boundaries themselves each have a distinct quartet r±,t± of

reflectances and transmittances specified such that the incident and response

irradiances on each side of these boundaries are governed by (11.20). Our

object here is to find useful algorithms that lead to numerical determinations

of the internal irradiances ~(y,±) for all y, x S y S z, and to ~(a,+) and

~(b,-), the response irradiances emerging from the boundaries. The internal

response irradiances ~(y,±) are physically generated by the incident boundary

irradiances ~(a,-) and ~(b,+) along with the true emission sources ~e(Y'±)

within X(x,z).

The motivation for the present solution procedure is given in

section 13: the reader may wish to consult that discussion before proceeding;

we will initially draw freely from it in what follows.

A. Fundamental Solution

We begin by writing the source-free form of (11.19) in the matrix form

(13.3), but now with full depth variation possible in £(y,±), !(y,±) and

~e(Y'±). Thus we now have
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where we write

[

-L(y,+)

'!(y)' for
-p(y,-)

(14.1)

(14.2)

for all depths y € [x,y] (in meters). We wish to generalize the construction

of the fundamental matrix ~(u,v) of (13.37) with the result to hold also in

arbitrarily stratified media X(a,b). Thus on the basis of our preliminary

work with (13.36), we postulate the existence of a 2m x 2m (dimensionless)

matrix ~(x,y):

[
~++(x,y)

~(x,y) _
M (x,y)
--+

(2m x 2m) (14.3)

with its four indicated mxm submatrices such that ~(x,y) satisfies the

differential equation*

subject to the initial condition

(14.4)

* Our introduction to ~(x,y) has been through the intuitively and physically
motivated eigen irradiance solutions (13.22) of the basic irradiance
equations (13.3). Another way of looking at (14.1) is geometrically, via
vector space theory. It can be shown that the vector solutions H(y) of
(14.1) generate a 2m-dimensional vector space for each y, x $ Y $ z. The
interesting and useful fact is that the 2m rows of ~(x,y) for each y form a
basis of that vector space. See Coddington and Levinson (1955, p. 68).
Hence the general solution of (14.1) can be given as linear combinations of
the rows of M(x,y) at each y, x $ Y $ z. This will be the algebraic way to
view our goal (14.18), below.
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(2m x 2m) (14.5)

In view of (13.39), we require that the four submatrices of ~(x,x) satisfy

~++(x,x) = I ~+_(x,x) = 0
-m -m

(14.6)
M (x,x) = 0 M (x,x) = I--+ -rn -rn

where !m and 2m are mxm identity and zero matrices, respectively. On the

numerical level this means that for i,j = l, ••• ,m,

where 0ij is Kronecker's delta (0 if i * j; 1 if i = j).

Equation (14.4) harbors four matrix differential equations which may be

defined by first writing (14.4) as

~ [~++(x,y)

ay M (x,y)
--+

whence

= [~++(x,y)

M (x, y)
--+

e(y,+ )J
!(y,-)

a
~+±(x,y) .!.(y,±) + M (x,y) e(y,+)+ ay ~+±(x,y) = -++

(14.8 )

a
~_±(x,y) !(y,±) + M (x,y) £.(y,+)+ ay ~_±(x,y) =

--+

Let m++(x,Yli,j) be the ith row, jth column element of ~++(x,y), etc. Then

for a numerical march of these equations from x to a variable location y in

[x,z], these are programmed in the following form, for i,j = l, ••• ,m:
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t- m++(x,yli,j)
m

+ = I m +(x,yli,~) T(y,±I~,j)
y -

~=1
+-

m
+ I m (x,yli,~) p(y,+I~,j)

~=1
++

(14.9)
m

+ ~y m_±(x,yli,j) = I m_±(x,yli,~) T(y,±I~,j)
~=1

m
+ I m _(x,yli,~) p(y,+I~,j)

~=1
-+

with initial conditions given by (14.7). The matrix ~(x,y) so found is the

fundamental (solution) matrix of the system (14.1). The mathematical

existence of such a solution is guaranteed by the assumed continuity of g(y,±)

and !(y,±) with y. By integrating (14.9) also from y to z using ~(y,y) = !m'

as an initial value, we arrive at the matrix M(y,z). Multiplying ~(x,y) and

~(y,z) we find a matrix that would be obtained by integrating (14.9) from x to

z with initial matrix ~(x,x) = !m. In this way we can numerically establish

the general closure property (13.38). By integrating (14.9) backward from z

to y, starting with ~(z,z) = !m' we find ~(z,x), with the property

~(x,z)~(z,x) = !m' thus establishing the general forms (13.39) and (13.40).

Hence the group structure of the fundamental matrix ~(x,y) found in the

homogeneous setting (13.38)-(13.40) extends to generally stratified media

X(a,b). The group structure is a compact mathematical statement of the

uniqueness of ~(v) given any initial value ~(u) where u,v are 1n X[x,z].

Summarizing these findings, the fundamental matrix ~(x,z) has the following

properties. Let X[x,z] be a general layer of the hydrosol with continuous

local properties g(y,±),!(y,±). Let u,v,w be arbitrary depths in X[x,z].

Then we have the
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for all u,v,w, ~(u,v) ~(v,w) = ~(u,w) (14.10)

identity property for all u, ~(u,u) = !2m (14.11)

inverse property for all u,v, ~-l(u,v) = ~(v,u) (14.12)

Knowing ~(s) at any depth s, s € [x,z] we can construct the desired

physical irradiance field at each depth y € [x,z] by writing

'~(y)' for H(s) ~(s,y) (14.13)

This ~(y) satisfies (14.1), which may be checked by directly differentiating

it and using (14.4). Equation (14.13) is the mapping property of the

fundamental matrix and is a direct generalization of (13.33).

B. Source Solution

We consider next the solution of (11.19) with emlSSlve source term

present:

where we have written (cf. (ll.l9a»:

'h (y)' for [-h (y,+), h (y,-)]
-e -e-e

(14.14)

(14.14a)

We will find the light field ~e(u,y) generated by the emissive source

density terms ~e(s,±) distributed over all levels s in an arbitrary depth
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interval [u,y]. Thus imagine there are no irradiances incident on X(a,b) at

levels a and b, i.e., ~(a,-) = Q and ~(b,+) = Q. The only sources in X(x,z)

are the ~e(s,±) representing true emission type irradiances generated per unit

depth at each depth s. Hence over an infinitesimally shallow depth interval

6s, we have generated at depth s an initial spectral irradiance pair ~e(s,±)6s

in the upward (+) and downward (-) directions. These irradiances at level s

initiate a contribution to the light field throughout X(x,z). In other words,

this pair acts like the initial irradiance H(s) in (14.13), and it follows

that the resultant irradiance field 6H (s,y) where we have written-e

'6H (s y)' for h (s) _M(S,y) 6s
~ , ~

(1 x 2m)

(14.15)

satisfies (14.1) at all y * s. Adding up all these contributions for all

depths s in the depth interval [u,y] we write, for arbitrary fixed u and

variable y in [x,z],

'H (u y)' for
-e '

y
J h (s) ~(s,y) ds-e
u

(1 x 2m)

(14.16)

It is easy to verify that ~e(u,y), as a function of y, satisfies (14.14),

i.e., that

(14.l6a)

This may be done by using Leibniz' rule for differentiating an integral with a

variable integration range [u,y]. At a point in the derivation one will use
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(14.11). Therefore we conclude that ~e(u,y) is a particular solution of

(14.14), namely the source solution based at u E [x,z]. This source solution

consists of upward and downward emission-induced irradiances defined in

context as

H (u,y) _ [H (u,y,+), H (u,y,-)]
-e -e -e

.(l x 2m)

(l4.17a)

where we define the components of ~e(u,y,±) in context:

H (u,y,±) = [H (u,y,±,l), ••• ,H (u,y,±,m)]
-e e e

c. The Complete Solution

(1 x m) (14.17b)

A general solution of (14.14) based at u E [x,z] is therefore

!f(y)
y

_ H(u) ~(u,y) + J h (s) ~(s,y) ds
-e

u

=!f(u) ~(u,y) + H (u,y)-e

(l x 2m)
(l4.l8)

u,y E [x,z].

This solution of (14.14) describes a light field in X(x,y) for all y,

x $ Y $ z. This light field is generated by the externally incident

irradiances ~(a,-) and ~(b,+) on the two boundaries and the emiSSive source

density ~e(s) distributed throughout X(x,z), x $ s $ z. In order to

numerically evaluate ~(y) we must therefore find how ~(u) depends on ~(a,-),

~(b,+) and ~e(s), x S s $ z. To find ~(u) we must also explicitly use the

information in the boundary conditions (11.20). Towards this end we write

(14.18) in two-flow component form:
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[
~++(u,y)

M (u,y)
--+

[H (u,y,+),H (u,y,-)]
-e -e

(14.19)

~(y,+) = ~(u,+) ~++(u,y) + g(u,-) ~_+(u,y) + ~(u,y,+)

~(y,-) = ~(u,+) ~+_(u,y) + g(u,-) ~__(u,y) + ~(u,y,-)

(14.20)

(14.21)

In order to use the boundary conditions we must set u in (14.20) and (14.21)

first equal to x and y equal to z. Then we begin again and set u equal to z

and y to x. This results in the four equations

* (x,z) + H (x,z,-)
-e

(14.22)

(14.23)

,'1: _H(x,+) = _H(z,+) M (z,x) = _H(z,-) M (z,x) + H (z,x,+)-++ --+-e

g(x,-) = ~(z,+) ~+_(z,x) = ~(z,-) ~__ (z,x) + ge(z,x,-)

(14.24)

(14.25)

For conven1ence we repeat the four boundary conditions (11.20) here:

g(a,+) = ~(x,+) !(x,a) + ~(a,-) ~(a,x)

g(x,-) = ~(x,+) ~(x,a) + g(a,-) !(a,x)

g(z,+) = g(b,+) !(b,z) + ~(z,-) ~(z,b)

g(b,-) = ~(b,+) ~(b,z) + ~(z,-) !(z,b)
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The four basic unknowns in this set of equations are ~(x,±) and ~(z,±). These

may be found by solving simultaneously the four starred equations indicated

above. Using (14.27) in (14.23) we eliminate H(x,-) and using (14.28) in

(14.24) we eliminate H(z,+). The results are

~(z,-) = ~(x,+) ~ + c

~(x,+) = ~(z,-) B + d

where ~, ~, are known matrices and ~, d are known vectors:

A _ M (x,z) + r(x,a) M (x,z)
-+- - ---

c _ ~(a,-) ~(a,x) ~__ (x,z) + ~e(x,z,-)

B _ M_+(Z,x) + ~(z,b) ~++(z,x)

d _ ~(b,+) ~(b,z) M (z,x) + H (z,x,+)-++ -e

From (14.30), (14.31) we find

and

(m x m)

(1 x m)

(m x m)

(1 x m)

(14.30)

(14.31)

(14.32)

(14.33)

(14.34)

(14.35)

(14.36)

(14.37)

Returning to (14.27) we determine ~(x,-) using ~(x,+) just found and the given

incident irradiance ~(a,-). Returning to (14.28) we determine ~(z,+) uSing

~(z,-) just found and the incident irradiance ~(b,+). In this way we may

determine ~(x,±) and ~(z,±).

It remains only to find the emergent irradiances ~(a,+) and ~(b,-) at the

upper and lower boundaries. These are obtained via (14.26) and (14.29); these
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are the remaining two as yet unused boundary conditions. This completes the

solution. We may now use either ~(x) = [~(x,+), ~(x,-)] in (14.18) (on

setting u = x), or we may use ~(z) = [~(z,+), ~(z,-)] in (14.18) (on setting

u = z). In either case we can then find all other irradiance pairs

~(y) = [~(y,+), ~(y,-)] at any level y in [x,z].

D. Prelude to the Global Interaction Principles

The reader may have observed in the preceding solution procedure that

(14.22) and (14.25) were never used. This is because they are not independent

of (14.23) and (14.24). We see here further evidence (recall the discussion

of (13.38)-(13.40» of the strong internal bond between the light fields at

all pairs of levels in [x,z] including the end levels x and z themselves 1n

X(x,z). A particular form in which this bond appears may be seen from (14.18)

on first setting u = x and y = z to obtain

H(z) = H(x) ~(x,z) + H (x,z)
-e (14.38)

and then setting u = z and y = x in (14.18) to obtain

(14.39)

Substituting (14.39) into (14.38) and using (14.12), we find the first bond:

H (z,x) = -H (x,z) ~(z,x)-e -e

or equivalently

H (x,z) = -H (z,x) ~(x,z)-e -e

(14.40a)

(14.40b)
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Using this in (14.39) we find the second bond:

or equivalently

H(x)

H(z)

= [~(z) - H (x,z)] ~(z,x)-e

= [~(x) - H (z,x)] ~(x,z)
-e

(14.41a)

(14.41b)

One may verify that the complete solution of (11.19), (11.20) can be

obtained once again by repeating the preceding analysis beginning now with the

unstarred equations in the octet (14.22)-(14.29). Therefore the octet

(14.22)-(14.29) has two distinct but redundant basic quartets of equations

from which the solution of (11.19), (11.20) may be deduced. This is

attributable, as just seen, to the strong inner bond of the light field's

parts in X(x,z).

As another example of the inner bond on the light field we consider the

source-generated part H (x,z) of the field. By three applications of (14.18),-e

we can write, for arbitrary u,v,w in [x,z]

H(w) = H(v) ~(v,w) + H (v,w) (14.42a)
-e

H(v) = H(u) ~(u,v) + H (u,v) (14.42b)
-e

and also

H(w) = H(u) M(u,w) + H (u,w) (14.42c)
-e

Using (14.42b) in (14.42a), comparing the result with (14.42c), and letting

H(u) and internal sources ~e(Y'±)' x $ y $ z be arbitrary, we find (14.10)

again

~(u,w) = ~(u,v) ~(v,w)
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as expected, and also something new:

(14.43)

This relation is a form of addition law that shows how to construct ~e(u,w)

over the interval [u,w] from knowledge of ~e(u,v) and ~e(v,w) over the

subintervals [u,v] and [v,w] of [u,w]. Its transport version will be

encountered in the union rules (18.7) and (18.10).

In sum, then, the strong inner bond between the light levels at two

different depths in X(x,z), as used above to determine the complete solution

of the local interaction principles (11.19) and their boundary conditions

(11.20), is manifested for example in (14.40), (14.41), and (14.43). These ~n

turn rest on the group properties (14.10)-(14.12) of the fundamental matrix

M(u,v). The fundamental matrix, which embodies these group properties, is

designed to map the two flows ~(u) = [~(u,+), ~(u,-)] of the light field at

level u into the two flows H(v) = [~(v,+), ~(v,-)] at level v. In other words

~(u,v) is the appropriate tool to solve the one-level or one-point boundary

value problem, as it is called ~n modern differential equation theory.

Now recall that both sets of boundary conditions, namely (14.26), (14.27)

over boundary X(a,x), and conditions (14.28), (14.29) over boundary X(z,b) had

to be used to attain the complete solution of (11.19), (11.20) in the starred

equation procedure on the octet (14.22)-(14.29); or alternatively, both sets

of boundary conditions were used in the unstarred equation procedure on the

octet (14.22)-(14.29). On reflection, this suggests the possibility that

there may be a more natural solution procedure of the two-boundary radiative

transfer problem (11.19), (11.20) on X(a,b), one that eliminates the observed
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redundancy between the starred and unstarred quartets of equations in (14.22)-

. (14.29). If one pursues this suggestion, one eventually arrives at the notion

of the global interaction principles, which stand at the base of modern

radiative transfer applications. These principles are the global counterparts

to the local interaction principles (11.19) (for infinitesimal layers) and

also on global counterparts to the boundary conditions (11.20) (for zero

thickness surfaces). We turn next to the derivation of these global

interaction principles. They will provide not only a more natural (i.e., a

more physically intuitive) solution of (11.19), (11.20) than that provided by

~(u,v), but they will also lead to numerical integration procedures of

(11.19), (11.20) that are inherently more stable than those provided by

(14.4), (14.5).
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15. GLOBAL INTERACTION PRINCIPLES

The global interaction principles, to be developed below, represent the

two-boundary radiative transfer problem (11.19), (11.20) in a direct and

intuitive manner. They also lead, as we will see in section 16, to

numerically stable integration procedures for (11.19). The numerical

distinction between the fundamental-solution procedure of section 14 and the

transport-solution procedure of section 16 is between a one-point and a two-

point boundary value procedure, and also between an unstable and a stable

numerical integration procedure for (11.19), respectively. Both procedures of

course are mathematically equivalent and, for moderately deep media lead to

the same numerical values of the light field ~(y,±) in X(a,b), given (11.19),

(11.20). However, as we shall try to show, the transport procedure's

equations are interpretable in terms of the reflection and transmission of

radiant flux through and between the various contiguous sublayers of a

stratified optical medium. Such high physical interpretability endows the

transport solution procedure with heuristic advantages particularly in

checking the validity of newly derived relations of the light field, and in

suggesting further new ones. In our view, the fundamental solution of

sections 13 and 14 serves two main purposes in radiative transfer theory of

lakes and seas: (1) it provides us, as we have seen in section 13, with the

beautiful algebraic structures of the eigenmatrix solution, and (2) it

provides a rigorous mathematical foundation for the global interaction

principles.* We now briefly outline this latter feature of the fundamental

solution.

* At one time in the history of radiative transfer theory, the global
interaction principles, in their early form, known as the principles of
invariance, were invoked on a purely intuitive basis. This was perfectly
acceptable, as they produced useful and correct solution procedures.
Later, they were derived from a linear interaction principle
(Preisendorfer, 1965); and still later, they were shown to come from the
fundamental solution (H.O., vol. IV, sec. 7.4). See also (Preisendorfer,
1977, p. 33).
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Throughout this section the setting 1S a plane parallel stratified lake

or sea X(a,b) with upper surface at level a and lower surface at b, and

various level surfaces at depths X,y,z, etc., a ~ x ~ y ~ z ~ b. The upper

boundary X(a,x) and lower boundary X(z,b) may be zero thickness surfaces (as

in the case of the air-water surface or bottom surface of a lake or sea) or

slabs of finite thickness with internal sources. In either case, as in

sections 13 and 14, these boundary media will be postulated to have known

reflectance and transmittance quartets r+,t+ and known source-generated-- --

irradiances ge±. Moreover, the internal (water body) region X(x,z) of X(a,b)

has specified continuously varying local reflectance and transmittance

functions £(y,±), !(y,±) and continuously varying emission density functions

A. Fundamental to Transport solution. Downward Case

We consider first a submedium X(a,y) of X(a,b). We direct attention to

the variable depth y below the upper boundary layer X(a,x) (see the ideograph,

below, for Eq. 15.1). It is assumed that g(a) along with ~(a,x) are known

(g(a) follows, as shown, from the complete solution in section l4C. A method

for calculating the matrix ~(a,x) explicitly from the hypothesized known

quartet !(a,x), !(x,a), !(a,x), !(x,a) will automatically evolve from the

present discussion; cf. par. B). Since we know g(a) and ~(a,x), we then know

g(x) = g(a) ~(a,x) in order to start the integration. Then we can integrate

(11.19) in the form

a
x

d
[~(y,+), ~(y,-)] =

dy

y

[~(y,+), ~(y,-)] !(y) + [-~e(Y'+)' he(y,-)]

(15.1)
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from x to a lower, variable depth y in X[x,z]. By (14.18), we can write the

general solution of (15.1) as

[!!(y,+), !!(y,-)] = [~(x,+), ~(x,-)] ~(x,y) + [H (x,y,+), H (x,y,-)]
-e -e

(15.2)

Now, the transport solution procedure of (15.1) views the submedium X(x,y) as

being irradiated by the downward irradiance !!(x,-) at level x and by the

upward irradiance !!(y,+) at level y. These incident irradiances, along with

the two internal source flows ~e(s,±), produce response irradiances !!(x,+) and

!!(y,-) leaving X(x,y) at levels x and y. The primary feature of the transport

solution of (15.1) is to supply a linear transformation between these incident

and response irradiances at levels x and y. Towards this end we reassemble

the irradiances in (15.2) into the equivalent form:

[!!(y,+), !!(y,-), !!(x,+), !!(x,-)]

I
fundamental

output

I
fundamental

input

[H (x,y,+), H (x,y,-)]
-e -e

I
source-generated

05.3)

where 12 is a 2m x 2m matrix along with ~(x,y). Hence the matrix in the- m

square brackets is a 4m x 2m matrix that maps on the 1 x 4m output-input

vector on the left to yield the 1 x 2m source-generated vector on the right of

(15.3). This formulation, and particularly that of (15.2), views [H(x,+),

H(x,-)] as input irradiances while [H(y,+), H(y,-)] are output irradiances in

the fundamental-solution context.
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Now, we wish to rearrange the irradiances in the 1 x 4m output-input

vector of (15.3) so that the response irradiances ~(x,+), ~(y,-) of X(x,y) are

together and the incident irradiances ~(x,-), ~(y,+) are together; these are

the output and input irradiances, respectively, of the transport formulation

of the radiative transport process on the submedium X[x,y] of X[a,b]. We can

schematically link these two kinds of input and output vectors in the

fundamental and the transport procedures as follows:

c C
-+

vectors

I
transport
output

I
transport

input
vectorsc C-+

o 0 I I 0
-m -m -m-m
o I I a a
-;n -;n I -;n-;n

- - - -,- - - -
I a 100
-m -m -m-m
a a 1 01
-;n -;n I -;n-;n

I
fundamental

input

I
fundamental

output

(fundamental solution) (transport solution)

(15.4)

Here !m and Qm are mxm identity and zero matrices. Thus the 4m x 4m

matrix g_ maps the fundamental input-output vectors into their transport

input-output arrangement. The 2m x 2m matrices of g_ are defined in context

in (15.4). It is readily checked that

(15.5)

We now insert g: (= !4m) between the two factors on the left side of (15.3) to

obtain

[
!2m ] =

-M(x,y)
[H (x,y,+),H (x,y,-)] (15.6)
-e -e
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Then using the action of g_ 1n (15.4) on each of the factors flanking g~, this

becomes

I
transport

output

I
transport

input

[
f_- f/!(X,y)] = [H (x,y,+),H (x,y,-)]

f+- f_~(x,y) _-e --r-e ___

I
source generated

(I5.7)

Then on further reduction this may be written

[H(y,+),H(x,-)] [C M(X,y) - C ] [C -C M(x,y)]-l
- - --- -+ -- -+-

+ [H (x,y,+),H (x,y,-)][C -C M(x,y)]-l
-e -e -- -+-

(I5.8)

This is the desired reformulation of (15.2). Working out the indicated matrix

operations on ~(x,y) we find

[
~++ (x, y) ~+_(x, y)] _ 1

M (x,y) M (x,y)
--+ ---

(I5. 9)

(I5.l0)

Now, to invert a 2m x 2m block matrix of the form

(2m x 2m)
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where ~, ~, f, 0 are given mxm matrices, there 1S a 2m x 2m block matrix

(2m x 2m) (15.12)

with mxm submatrices ~, ~, ~, Z such that

where

(15.13)

w = [~ - B 0- 1 £]-1 X = [£ - 0 B-1 ~]-1

= -C- 1 0 Y = -A-1 B Z

(15.14)

Y = U! - A C-1 Q] -1 Z = [Q - C A-1 !!] -1

= -0- 1 C W = -B-1 A X

The alternate expressions for ~, ~, ~, ~ may generally be used if various

inverses of ~, ~, f, Q do not exist. For example in the expression for ~, if

~ = Q, then the first form is inapplicable and the alternate gives ~ = Q. In

transport theory, the actual counterparts to A and 0 are transmittance-type

matrices and therefore tend to have 1nverses A-1 and 0- 1• Hence we usually

can employ the first forms of ~ and ~, and the second forms of ~ and Y.

Applying (15.14) to (15.10), we set ~ = -~++(x,y), ~ = -~+_(x,y), f = Qm'

[

-M-1 (x y)
-++ '

o
-iII

-M-1(X,y)M (x,y)]-++ -+-

I
-iII

(15.15)
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Hence we arrive at

[

T(y,X)

~(x,y) ::
!(x,y)

!(y,X)] _

!(x,y)
[C M(X,y) - C ][C - C M(x,y)]-I
--- -+ -- -+-

(15.16)

[~;:(~.~). ~;~(X,y) ~+_(X,y)

!!._;x:y ;]

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (15.17)

-~_+(x,y) ~;~(x,y) ~__ (x,y) -~_+(x,y) M-I(x y)
-++ '

In this way we define in context the four (dimensionless) transfer functions

T(x,y), R(x,y), R(y,x), and T(x,y) shown in (15.16). ~(x,y) is called the

transport matrix. Further, evaluating the source-generated term in (15.8) we

write in context

'[H (y,x), H (x,y)]' for (Wom-Lnm- I )
-n -n

[-tle(x,y,+) ~;~(x,y), ~(x,y,-) - ~(x,y,+) ~;~(x,y) ~+_(x,y)] (15.18)

Observe that ~n(x,x) = O.

Equation (15.8) then takes the desired transport form:

= [_H(y,+),_H(x,-)] _M(x,y) + [8 (y,x),H (x,y)]
-n -n

(15.19)

x ~ y

Equations (15.19) are the downward global interaction principles for the

medium X(x,y). Written out, they are
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a
!!(x,+) = !!(y,+) !(y,x) + !!(x,-) ~(x,y) + H (y,x) x-n y OS .20)
!!(y,-) = !!(y,+) ~(y,x) + !!(x,-) !(x,y) + H (x,y) z-n b
x :$ v

The term 'downward' In the name of these principles is a mnemonic for the fact

that x is fixed while y increases downward. This view will be useful when

later we are deriving the differential equations for the quartet ~(y,x),

I(x,y), I(y,x), ~(x,y) of matrices, and also the differential equations for

The physical interpretation of the equation for the response irradiance

!!(x,+) in (15.20) is readily made. !!(x,+) is the sum of the downward incident

!!(x,-) being reflected upward from X(x,y) at level x and the upward incident

!!(y,+) being transmitted from y to x and, finally, the irradiance H (y,x)-n
emerging upward at x generated by emission sources within X(x,y). A similar

interpretation of !!(y,-) can be made. Observe that as y approaches x, so that

in the limit the depth of X(x,y) vanishes, then

lim ~(x,y) = lim ~(y,x) = 0
--m

y·x y·x (m x m) (15.21)

lim !(x,y) = lim !(y,x) = I
--m

y·x y·x

and also

lim H (y,x) =-ny·x
lim H (x,y) = 0-ny·x

(1 x m) (15.22)

These properties follow at once from their various definitions in (15.17) and

(15.18) and the assumed continuity of £(y,±), !(y,±), and ~e(Y'±) In X(x,z),

as used in the local interaction principles (11.19). If the £ and T are not
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continuous, say at some depth u in (x,y], physically this means there can be a

reflecting surface of zero thickness at u. Such a surface generally will have

a nontrivial !+'!+ quartet (i.e., !± ~ Q, !± ~ !m) of reflectance and

transmittance matrices, analogous to the air-water surface. This possibility

1S readily handled, in solving for the light field throughout X(x,y), by means

of the union rule, developed 1n section l8C, D, below. It is only when we are

integrating the differential equations for g(y,±) or ~(x,u) over X(x,y) that

we must have continuity of £(u,±) and ~(u,±) throughout X(x,y). This

continuity in particular insures that (15.21) holds, and continuity of ~e(u,±)

allows (15.22) to hold.

B. Transport to Fundamental Solution. Downward Case

In the opening remarks of par. A it was observed that we needed the

boundary matrix ~(a,x) in order to begin our analysis. It was observed that

~(a,x) could be derived from the !±,!± quartet of the air-water surface. This

quartet forms a special case of the M-matrix in (15.17). We now show how a

fundamental matrix ~(x,y) generally can be obtained from a transport matrix

~(x,y). Rewrite (15.19) in the form

(g(x,+),g(y,-), H(y,+), g(x,-)]

I
transport
output

I
transport

input

(H (y,x), H (x,y)]-n -n

I
source-generated

(15.23)

On comparing this with (15.3), we see that the derivation of par. A can be

carried out once again by generally following the steps from (15.4) to

(15.17), but now starting with (15.23), and making appropriate notation

changes. The details are left to the reader (cf. H.O., vol. IV, pp. 41,42).

The end result is
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[!!++ (x,y) !!+_(x,y']
M(X,y) =

M (X,y) ~__ (X,y)
--+

= [~_~(X,y) - C ][C -C M(X,y)]-l
-+ -- -+-

(15.24)

(15.25)

(15.26)

This solves in particular the problem of how to find ~(a,x) from knowledge of

[

t{x,a)

~(a,x) ::
E(a,x)

E(X,a)]

!(a,x)
(15.27)

i.e., from knowledge of the reflectance and transmittance matrices of the air-

water surface. Thus we have from (15.26) and (15.27):

~(a,x)

(15.28)

The inverses occurring in (15.28) exist in the present case Since !(a,x) and

!(~,a) are diagonal matrices of nonzero elements. (There is no transpectral

scatter inside the air-water surface.)

The transformation from H to H is also possible. The reverse of-n -e

(15.18) is
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= [-H (y,x) T-l(y,X), H (x,y) - H (y,x) T-l(y,X) R(y,x)]
-11 - -11 -11 - -

c. Fundamental to Transport solution. Upward Case

(l5.29)

We consider next a submedium X(y,b) of X(a,b). The depth y is variable

above the bottom boundary layer X(z,b). It is assumed that the incident

irradiance vector ~(b) along with ~(b,z) are known (H(b) follows, as shown,

from the complete solution in section 14C. A method for finding ~(b,z) from

the bottom boundary layer transfer matrices will be given below; cf.

par. D). Then we can integrate (11.19) in the form

y -----
z
b

d
dy [~(y,+), ~(y,-)] = [~(y,+), ~(y,-)] !(y) + [-~(y,+), ~e(Y'-)] (15.30)

from z to a higher variable depth y in X[x,z]. Since we know H(b) and ~(b,z),

we then know ~(z) = ~(b) ~(b,z) in order to start the integration. By (14.18)

we can write the general solution of (15.30) as

[~(y,+), ~(y,-)] = [~(z,+), ~(z,-)] ~(z,y) + [~e(z,y,+), ~e(z,y,-)] (15.31)

The reader will observe that the present discussion is building in a

parallel way to that in par. A, above. Our next step is to write the present

counterpart to (15.3):
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I
fundamental

output
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I
fundamental

input

[H (z,y,+), H (z,y,-)
-e -e

I
source-generated

(15.32)

The present counterpart to (15.4) lS

C-+

I 0
4II 4II

o 0
-;II -;II

c

o 0
4II 4II

. 0 I
-;II -;II

o 0 I 0
4II 4II • 4II 4II

o I . 0 0
-;II -;II -;II-;II

I
fundamental

output

I
fundamental

input
c c-+

I
transport
output

I
transport

input

(15.33)

Notice the change in the placement of C and C in the new version of n_+ .:1

relative to that in (15.4). This change is necessary to accommodate the new

mapping between the present fundamental and transport input-output vectors.

Observe that once again we have the important property

(15.34)

Using g~ in (15.32) and reducing the result in exactly the manner shown

ln par. A, we find the upward global interaction principles:

[~(y,+), H(z,-)] = [~(z,+), ~(y,-)] ~(y,z) + [~n(z,y), ~n(Y'z)] (15.35)

y =:; z
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i . e. ,

!!(y,+) = !!(z,+) !(z,y) + !!(y,-) ~(y,z) + H (z,y) a-n x
!!(z,-) = !!(z,+) ~(z,y) + !!(y,-) !(y,z) + H (y,z) y (l5.36)

-n z
y ~ z b

where

_
[

!(z,y)

~(y,z)

~(y,z)

~(Z'Y)J ::
!(y,z)

H (z,y)
--+

[C H(Z,y) - C ][C -C H(z,y)]-l
-+ - -- -+ ---

(l5.37)

(l5.38)

The physical interpretation of (15.36) is similar to that of (15.20). The

same clarity of meaning of each term holds here, too. Moreover, the source

generated terms are related by writing

'[H (z,y), H (y,z)]' for-n -n

(= [H (z,y,+), H (z,y,-)][C -C H(z,y)]-l)
-e -e -+ -- -

Observe that Hn(z,z) = O.

112



§15

D. Transport to Fundamental Solution. Upward Case

The development here is parallel to that in par. B. We may therefore

simply list the results. They are

(15.40)

~(y,z)

The source-generated terms for the upward case are related by

[H (z,y,+), H (z,y,-)] = [H (z,y), H (y,z)][C -C M(y,z)]-l
-e -e -n -n -+ ---

(15.41)

(15.42)

(15.43)

One can use (15.42), e.g., in the manner that (15.26) was used to find

(15.28), i.e., to find the fundamental matrix of a surface in order, in this

case, to propagate an irradiance pair (~(b,+), ~(b,-» through X(b,x) from

below. Thus, in (15.42), set z+b, y+z, and use to get (~(z,+), ~(z,-) from
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E. Symmetries of the ~-matrix

The two-flow decomposition (~(y,+), ~(y,-» of the light field has

several symmetries which, if specifically noted, can simplify various

practical calculations of the field. One important source of simplifying

formulas is the following symmetry property of ~(x,z) on X(x,z) (cf.

(13.40» :

The first of these in block matrix form is

(15.44a)

(l5.44b)

[
~++(x,Z)

M (x,z)
--+

[
~++(z,x)

M (z,x)
--+

~+-(Z'X)J = [-mQ...I ~IJ
~__ (z,x) ......

(15.45 )

This yields four statements:

M (x,z) M (z,x) + M (x,z) M (z,x) = I (15.46a)-++ -++ -+- --+ 411

M (x,z) M (z,x) + M (x,z) M (z,x) = 0 (15.46b)-++ -+- -+- 411

M (x,z) !i++(z,x) + M (x,z) M (z,x) = 0 (15.46c)--+ --+ 411

M (x,z) M (z,x) + M (x,z) M (z,x) = I (15.46d)--+ -+- 411

From (15.44b) we see that we can interchange 'x' and 'z' ~n (15.46) to obtain

another valid set of statements.
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F. Symmetries of the ~-matrix

Equation (15.l7) for ~(x,y) and equation (15.38) for ~(y,z) give us

useful formulas for the four transfer functions ~±'!± of layers X{x,y) and

X{y,z) in terms of the block submatrices of the fundamental matrices ~(x,y)

and ~(z,y) respectively. If we set y+z in ~(x,y) in (15.l7) and y+x in ~(y,z)

in (15.38), we obtain two apparently distinct versions of ~(x,z) from (15.l7)

and (15.38). For example, !(z,x) from (15.l7) has a simple representation

while !(z,x) from (15.38) appears complex. Our purpose here is to show that

these apparently distinct representations are identical. The net result of

the demonstration is the following compact representations of the four

transfer functions of a layer X{x,z):

!(z,x) = M-l{x z) (15.47a)
-++ '

!(x,z) = M-l{z x) (15.47b)--- ,

~(z,x) = ~;;{x,z) ~+_{x,z) (15.47c)

= -M (z,x) ~=~{z,x)-+-

~(x,z) = M-l{z,x) M (z,x) (15.47d)--- --+
= -~_+{x,z) ~;;{x,z)

Observe how the two T matrices can be obtained by interchanging 'x' and 'z' on

the left and on the right, along with an interchange of '+' and I_I A

similar observation holds for the reflectance matrices.

We shall now demonstrate two of the equalities in (15.47). Equation

(15.47c) comes first of all from a formal rearrangement of (15.46b):
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(15.48)

and then comparison of ~(y,x) and ~(z,y) in (15.17) and (15.38) in which have

been made the substitutions y+z and y+x, respectively. The additional

representation of R(z,x) is added for later reference.

To establish (15.47a), we rewrite (15.48) as

-M (z,x) M-l(z,x) M-l(x,z)
-+- --- -+-

(15.49)

Moreover, from (15.46a),

(15.50)

Next, use the representation of M~~(X,z) in (15.49) to replace ~~~(x,z) on the

right side of (15.50). The result is

(15.51)

Then use (15.51) to compare !(y,x) and !(z,y) 1n (15.17) and (15.38) in which

have been made the substitutions y+z and y+X, respectively. This establishes

(15.47a).

The remaining two representations (15.47b) and (15.47d) can be obtained

by the 'x' and 'z' interchange rule, in corresponding representations (e.g.

the first representations in (15.47c), (15.47d», or by using the remaining

pair (15.46c), (15.46d) of symmetries analogously to the way just shown for

the pair (15.46a), (15.46b).
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We finally observe that the following simple representations of the

source generated irradiances H (x,z) and H (z,x) are valid:
-11 -11

H (z,x) = H (x,z,+) M-l(x,z)
-11 -e -++

H (x,z) = -H (z x -) M_-__l(z,x)
-11 -e "

These are checked by comparison of (15.18) and (15.39) on making the

(15.52a)

(15.52b)

substitutions y+z and y+x, respectively. Recall that H (u,v) was defined in-e

(14.16) in terms of the source density h (s), and has the basic symmetry-e

(14.40) •

G. Symmetries of the ~-matrix

The ~ matrix introduced in (13.8), defined in (13.14), and partitioned in

(13.19), shares the following symmetry with the inverse F:

E F = F E = !2m

In particular from

[:++ :+-J [:++ :+-J = [~ ~J
--+ --- --+ --- -m-m

we have the four statements
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F E + F E = I (15.55a)
-++ -++ -+- --+ .,-n

F E + F E = 0 (15.55b)
-++ -+- -+- .,-n

F E + F E = 0 (15.55e)
--+ -++ --+ .,-n

F E + F E = I (15.55d)
--+ -+- .,-n

From (15.53) we see that we can interchange 'F' and 'E' ~n (15.55) to obtain

another set of statements.

H. Eigenmatrix Representations of the Transfer Matrices ~ and!

Let X(x,z) be a layer of lake or sea in which the optical properties

~(y,±), !(y,±) are independent of depth. By combining (15.47) and (13.42) (in

which we have set y+z) we find the following representations of the four

transfer matrices for X(x,z):

I(z,x) [E ~+(z-x) F + E k (z-x) F ]-1 (15.56a)= _++e e---++ -+- --+

I(x,z) [E
k+(x-z)

F
k (x-z)

F ]-1 (15.56b)= e- + E e----+ -+-

~(z,x)
[E ~+(z-x) F + E k (z-x) F ]-1 [E e~+(z-x) F + E k (z-x)

F= _++e e-- e---++ -+- --+ -++ -+- -+-
(15.56e)

~(x, z) [ k (x-z) k (x-z) ]-1 [ k (x-z) k (x-z)
~-+]= E e-+ F + E e-- F E e-+ F + E e----+ -+- --+ -++

(15.56d)

It is useful to have the expression for ~(x,oo), the reflectance for an

infinitely deep homogeneous water layer whose upper surface is at level x.

This is obtained from (15.56d) on letting z increase without bound and

recalling the ordering (13.15) of the eigenvalues of K. The result is, for

all real media (i.e., with k_(I) < 0 < k+(I) in (13.15»,
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which is independent of x.
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F-l F
--+

= -E E-l
--+-++

(15.57)

The second version involving the E matrix comes from (15.55c). Observe ln a

similar way, now from (15.56c), that

F-l F
-++ -+-

= -E E-l-+---- (15.58)

Also, ln all real homogeneous media we have from (15.56a,b) that

= lim !(z,x) =
z-+a>

o
-m

(15.59)

I. Small-Depth Representations of Rand T.

The forms of (15.56) for small depth differences z-x can be determined if

we first note the connections between the elements of K and E in (13.14).

Write (13.14) in the form

K = E k F

which, on expanding the right side, yields

(15.60)

[:C<+) e<+] [~~+ ~~ !:++ + E k F §++ ~+ !:+- + E

L ~--J-+- -- --+ -+-
= Jt . . . . . . . . . . . .

-E.(-) T(-) E k F + E k F E k F + E k F-+ -+ -++ --+ --+ -+ -+- -- ---

(15.61)
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In this way we can represent the local optical properties (~,!) in terms of

the eigenstructures (~,~) of the matrix ~.

Now, in (15.56) for small z-x, we use the first order approximation

I
-m

+ k (z-x)
-±

(15.62)

Then (15.56), on making use of (15.55), reduces with the help of (15.61), to

the following first order approximations in (z-x):

!(z,x) = I + .r( +)(z-x) (15.63a)
-m

!(x,z) + I + .!.( - )(z-x) (15.63b)
-m

!(z,x) = .e.( +)( z-x) (15.63C>

!(x,z) =.e.(-)(z-x) (15.63d)

This shows the connection between the local (~,!) and global (~,!)

transfer functions for thin layers of hydrosol. Although these connections

have been made for homogeneous media, they are generally valid for depths y in

X(x,z), z-x small, in stratified media. The same connection can be viewed in

the fundamental matrix setting by writing (13.37) as

H(z) = H(x) ~(x,z)

= H(x) ~ exp[~(z-x)]!:

'" H(x) ~[!2m + ~(z-x)]!:

= ~(x)[~ !: + ~ ~ !:(z-x)]

= H(x) [!2m + !(z-x)] (15.64)
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The final reduction was made uSing (13.14).

Hence to the first order in (z-x),

__ [~++ (x , z )
!!(x,z)

M (x,z)
--+ [

I - T(+)(Z-x)
-m -

= • • • • • • • • •
-.e.(-)(z-x)

(15.65)

This is consistent, to within first order in (z-x), with (15.47) and

(15.63).

J. Large-Depth Representations of R

We close this discussion of the eigenmatrix theory of the global transfer

functions by remarking that the theory of directly observable relations in

sec. 12 (which was developed for arbitrarily stratified media) can be given a

parallel development in homogeneous media. Because the eigenstructures E and

k and ~ are available in homogeneous media, the various generalizations from

the monochromatic to the heterochromatic level discussed in section 12, can be

cast into particularly detailed form using eigenstructure concepts. We shall

not enter here into a detailed development of the reductions of the results in

section 12 to homogeneous media; but an illustration of the preceding remark

wi 11 be made.

Reconsider the R-K connection (12.26). It was observed below (12.26)

that such a connection is particularly useful in deep homogeneous media. Thus

we may ask: what is the form of (12.26) in such media when the eigenmatrix

formulation is available? Now, from (15.61) we may write

E k F + E
-++ -+ -+- -+- k F
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Keeping (15.57) in mind we multiply (15.66) on the left by -~_+ ~~~ to

find

R( ) (+) - E k F - E E-1 E k F_ x,oo £ - - __+ _+ _+_ __+ _++ _+_ (15.67)

Adding and subtracting E

(15.61), we have

k F on the right side of (15.67), and recalling

(15.68)

Applying (15.55) to the matrix combination in the square brackets of (15.68),

we recognize that combination as being F-1. Hence we arrive at the result

] ~(x,.) = lr:: k F (15.69)

which is the eigenmatrix version of the second form in (12.26).

Here F-1 k F plays the role of -!(y,-). The result (15.69) 1S useful in

that it represents the global property R(x,oo) by the local concepts e(+), ~(-)

and k. Using (15.69) in (12.19) when we have an infinitely deep homogeneous

hydrosol, we find that

= -[~(-) + F-1 k F

Hence, on dropping y from !(y,-), we have
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05.70)

For reference we add the upward companions to (15.69), (15.70):

K(+) =

-[F-l k F + _T(+)] _p-l(_)
-++ -+ -++

-F-l k F
-++ -+ -++

05.7l)

05.72)

Here ~(m,x) is interpretable as the observed upward reflectance for an

infinitely deep homogeneous medium when x is very deep. Then compare the

inverse of (15.71):

with the first form of (12.26).
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16. DIFFERENTIAL EQUATIONS FOR ~, I, ~n (RICCATI SWEEPS) AND ~.

We will next show how the light field in a natural hydrosol may be

determined using the global interaction principles of section 15.

The discussion will take place in two main stages. First in par. A, we

consider the downward sweep procedure for generating the ~, I, and ~n

functions of a lake or sea. Then in par. B the upward sweep procedure will be

developed. By means of these two approaches to ~, I, and ~n the light field

in X(a,b) may generally be determined.

A. Downward (Riccati) Sweep

The setting for the present discussion is the optical medium X(a,b) shown

in the lower left sketch of Fig. 7. The light field existing in X(a,b) is

initiated and sustained by arbitrary but fixed incident boundary irradiances

~(a,~), ~(b,+) and arbitrary but fixed internal emission source densities

~e(Y'±)' x ~ Y ~ z. We imagine an irradiance probe in the internal part

X(x,z) of X(a,b) measuring ~(y,±) at all levels y, x ~ y ~ z without

disturbing the light field. The probe moves downward, say, through X(x,z),

starting at level x, just below the upper boundary. As we continuously

increase the depth y, the monitored light field values ~(y,±), ~n(Y'x),

~n(x,y) and the four transfer matrices ~(y,x), I(x,y), ~(x,y), I(y,x) change

value so as always to have (15.20) hold. Therefore the y-derivatives of each

equation in (15.20) hold:

o = H'(y,+) T(y,x) + H(y,+) T'(y,x) + H(x,-) R'(x,y) + H'(y,x)- - - - --n (16.1)

~'(y,-) = ~'(y,+) !(y,x) + ~(y,+) !'(y,x) + ~(x,-) !'(x,y) + ~~(x,y) (16.2)
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where pr1mes denote differentiation with respect to y. These equations may be

simplified by using (11.19) to replace the derivatives of ~(y,±). For

example, (16.2) becomes

[H(y,-) ,(y,-) + H(y,+) p(y,+) + h (y,-)]
- - - - -e

= -[~(y,+) ~(y,+) + ~(y,-) £(y,-) + h (y,+)] ~(y,x)
--e

+ ~(y,+) ~'(y,x) + ~(x,-) !'(x,y) + ~~(x,y) (16.3)

Next, in (16.3) we replace the response irradiance ~(y,-) of X(x,y) by means

of (15.20), and then collect together the coefficients of the incident

irradiances ~(x,-), ~(y,+) of X(x,y), and also collect together the emission-

source related terms. The result is that the transformed (16.2) may be

regrouped into three main parts whose sum is the zero vector:

~(y,+) [-~'(y,x) + £(y,+) + ~(y,+) ~(y,x) + ~(y,x) ~(y,-) + ~(y,x) £(y,-) ~(y,x)]

+ ~(x,-) [-!'(x,y) + !(x,y) ~(y,-) + !(x,y) £(y,-) ~(y,x)]

+ [-H'(x,y) + H (x,y) ,(y,-) + H (x,y) _p(y,-) _R(y,x) + h (y,-) + h (y,+) _R(y,x)] = 0
-n -n - -n --e--e

(16.4)

Returning now to (16.1) we replace the derivative ~'(y,+) by means of (11.19)

and the newly appear1ng response irradiance ~(y,-) by means of (15.20). Then

collecting together the coefficients of the incident irradiances ~(x,-),

~(y,+) of X(x,y) and also collecting together the emission-source related

terms, we find that the transformed (16.1) becomes
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+ [H'(y,x) - h (y,+) _T(y,x) - H (x,y) _p(y,-) _T(y,x)] = 0
-n -e -n

(16.5)

We next note that the incident irradiances H(x,-) and H(y,+) on X(x,y)

may be arbitrarily varied in size with the two sets of equations (16.4),

(16.5) remaining valid. Moreover, the s-dependence of the internal emission

source densities ~e(s,±) throughout X(x,y) may be varied independently of

these incident irradiances. (Think of X(x,y) as an isolated medium

illuminated by three independent light sources: ~(x,-), ~(y,+) and ~e(s,±),

x ~ s ~ y.) Hence the coefficients of H(y,+), ~(x,-) in (16.4) and in (16.5)

must vanish along with the source-related term. We therefore arrive at the

desired downward (Riccati) sweep sextet of differential equations:

a~(y,x)

ay (16.6)

(16.7)

a
x ----
y--
z
b---
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(16.9)

(16.10)

aH (y,x)-n
ay

(16.11)

Observe that the first trio of equations is autonomous (self-contained)

while the second trio uses the Rand T functions of the first trio in order to

propagate along the sweep downward. We call the first three equations the

major trio while the remaining ones make up the minor trio.

Observe also that of all six differential equations the one for ~(y,x) is

autonomous, and has the classical form of a Riccati differential equation, but

now on the matrix level. In this sense ~(y,x) is the most powerful transfer

matrix of the quartet appearing in the downward global interaction equations

(15.20). The entire sextet (16.6)-(16.11) can be integrated essentially

simultaneously provided the integration of ~(y,x)'s equation takes place one

integration step ahead of the other two in the major trio and that these two

laggards of the major trio stay one step ahead of each member of the minor

trio. In this sense ~(y,x)'s equation pulls all five other equations along

with it. Hence the name 'Riccati Sweep' applied to the integration of the

sextet (16.6)-(16.11) or its major trio (16.6)-(16.8).

The matter of the initial values of the ~' I, ~n equations will be taken

up next. Suppose first that we wish to integrate the sextet (16.6)-(16.11)

downward through the bare slab X(x,z), i.e., X(x,z) consists only of water

from which its optically active air-water surface and reflecting bottom have

been (conceptually) peeled off. Then the initial values are
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~(x,x) = Qm (mxm)

:!(x,x) = !.m (mxm)

H (x,x) = 0 (lxm)-n -

(16.12)

If subsequently we wish to find the transfer functions for

X(a,y) = X(a,x) U X(x,y), where a $ x < y, then we can use the union rule of

section 18 to combine the given transfer functions of the boundary X(a,x) and

those of the bare slab X(x,y) just found.

The transfer functions for X(a,y) = X(a,x) U X(x,y), for the case of the

air-water surface plus a variable water layer, can be found also by using the

initial conditions

~(x,a) = E(x,a)

~(a,x) = E(a,x)

!(a,x) = !.(a,x)

:!(x,a) = !.(x,a) (16.13)

H (a,x) = 0-n
H (x,a) = 0-n

and then integrating (16.6)-(16.11) downward from level x to level y in

X(x,z). For example, in (16.6) we make the substitution x+a, and the initial

value for R(y,a) is E(x,a). In (16.7), once again we set x+a, and the initial

value of :!(a,y) is !.(a,x); and so on for the remaining four equations. In the

case of X(a,x) being the air-water surface, H (a,x) and H (x,a) are zero-n -n
vectors; in general when X(a,x) contains the sources, these values must be

specified to start the downward integrations of (16.8) and (16.11) at level x •

.;
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B. Upward (Riccatij Sweep

The setting for the present discussion 1S the optical medium X(a,b) shown

1n the lower right sketch of Fig. 7. As in par. A, the light field existing

1n X(a,b) is initiated and sustained by incident boundary irradiances ~(a,-),

_H(b,+) along with the emission source densities h (y,±), x ~ y ~ z. The-e

remainder of the present derivation proceeds as in par. A. Here 1S its

outline: We imagine an irradiance probe in X(x,z) measuring ~(y,±) as it

moves upward from z to y in X(x,z), x ~ y ~ z. Equations (15.36) describe the

light field and ~, ! values at each y. Hence we can differentiate with

respect to y each side of the equations in (15.36), and replace occurrences of

dH(y,±)/dy by means of (11.19), and go on to replace occurrences of the

response irradiance ~(y,+) by means of (15.36), and then group each resultant

transformed equation of (15.36) into three parts, namely the coefficients of

the incident irradiances ~(y,-), ~(z,+) and the source-related terms to find

two sets of linear combinations, like (16.4) and (16.5), set to the zero

vector. By an analogous argument to that below (16.5) we arrive at the upward

(Riccati) sweep sextet of differential equations:
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(16.14)

a.:!.(z,y)

ay
(16.15)

aH (z,y)-n
ay

= H (z,y)[,(y,+) + p(y,+)R(y,z)] + [h (y,+) + h (y,-)R(y,z)] (16.16)-n - - - -e -e-

a
x
y
z
b

(16.17)

(16.18)

aH (y,z)-n
ay

(16.19)

The first trio is autonomous relative to the second trio and is the major

trio of the upward sweep sextet of differential equations; the second set of

equations is the minor trio. The equation for ~(y,z) is the autonomous

relative to the remaining five equations and is precisely the equation

governing ~(y,-) in (12.11). Therefore ~(y,z) and ~(y,-) will be the same

function of y in X(x,z) if they have the same initial value, say !(z,b), the

reflectance of the lower boundary X(z,b) of the medium

X(a,b) = X(a,x) U X(x,z) U X(z,b).

The general case of integrating the sextet (16.14)-(16.19) upward from

level z to variable levels y in the composite medium X(x,b) = X(x,z) U X(z,b)

proceeds as in the downward case in par. A, above. Now one generally starts

the upward sweep by setting z+b and using the initial values

130



§16

~(z,b) = !(z,b)

~(b,z) = !(b,z)

!(b,z) = !(b,z)

!(z,b) = !(z,b) 06.20)

H (b,z) = 0-n

!!n(z,b) = 0

If the medium X(a,b) is a laboratory hydrosol in a tank with a translucent

glass plate for a bottom X(z,b) then the full quartet !±'!± in (16.20) may be

needed and with !!n(b,z) = !!n(z,b) = Q over X(z,b). If we have a natural,

silty lake or ocean bottom at finite optical depth, then only !_ = !(z,b) will

be needed while the two initial values of the source irradiances !!n(b,z) and

H (z,b) will be zero since no light 1S generated in the silty opaque layer.-n
In this case we can also set !(z,b) = !(b,z) = Qm. The matrix !(b,z), while

definable, will not be needed in this case since upward incident flux at level

b will not generally get through the opaque boundary to generate its share of

the light field in X(x,z). If X(z,b) is simply another fluorescing layer of

X(a,b) below X(x,z), then its four ~,! matrices must be given, as in (16.20),

along with the appropriate (nonzero) values of H (b,z) and H (z,b), before the-n -n
upward sweep begins at level z.

C. The Differential Equations for Global Absorption in Source-Free non
Fluorescing Media

The set of global reflectance and transmittance functions of arbitrary

source-free non-fluorescing slabs X[x,y) and X[y,z] growing either downward or

upward at level y is completed by including the diagonal matrices ~(x,y) and

~(y,x) which are needed for a full statement of conservation of radiant energy

absorbed, reflected and transmitted by these media. Thus we define A(x,y) and

A(y,x) implicitly in terms of the ~ and T matrices by writing
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~(y,x) + ~(y,x) + !(y,x) _ I

~(y,z) + ~(y,z) + !(y,z) _ I

(16.21)

(16.22)

where I is the mxm identity matrix. It is to be emphasized that ~, ~, and T

are now diagonal matrices, by hypothesis. Each diagonal element of ~(y,x) is

the amount of radiant flux absorbed by X[x,y] for incident flux at level

y > x.

The differential equation of ~(y,x) for the downward sweep through X[x,y]

at level y is obtained from (16.21) by differentiating each side of (16.21)

with respect to y·and then reducing and rearranging the ~ and! terms by means

of their differential equations. The result, along with the associated

equations for Rand !, is

a!(y,x)
= [~(y,+) + ~(y,x) ~(y,-)] + [.!.(y,+) + ~(y,x) .e.(y,-)] !(y,x)ay

(16.23)
a~(y,x)

= ~(y,x) [.!.(y,-) + .e.(y,-) ~(y,x)] + [.e.(y,+) + .!.(y,+) ~(y,x) ]ay
downward (16.6)

sweep a!(y,x)
= [.!.(y,+) + ~(y,x) .e.(y,-)] !(y,x) (16.9)

ay

!(x,x) = 0 (16.24)

These equations each split into scalar equations, one for each diagonal

element of the indicated matrices.

The interpretation of the terms on the right in (16.23) is interesting.

The coefficient of ~(y,x) is generally a negative term in absorbing media so

that ~(y,x) decays as y descends, with x fixed. What ~(y,x) loses this way is
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similar to !(y,x)'s type of loss, as may be seen by inspecting (16.9). The

first term on the right in (16.23) is even more interesting. It represents

absorbed flux gained by X[x,y] at level y when X[x,y] engulfs the next

incremental layer as y descends. Hence such flux is added to the accumulated

total ~(y,x) of absorbed flux within X[x,y], and thereby represents a growth

term for A(y,x).

The upward sweep generating A(y,z) is obtained from (16.22) in a similar

way. The result, along with its two companions, is

a~(y,z)

dy

(16.25)

upward
sweep

a~(y,z)

dy

~(z,z) = 0

(16.14)

(16.17)

(16.26)

When generating A(y,z) one needs only (16.14), and so (16.25) belongs to the

sextet (16.11)-(16.19); while the differential equation for ~(y,x) belongs to

the sextet (16.6)-(16.11).

The preceding equations can form the basis for a full energy conservation

statement in fluorescing media with true sources. We shall not need to go

beyond this point in the present study. The preceding equations, however, as

they stand, are of interest in the classic two-flow theory of non-fluorescing,

source-free media, where they are immediately applicable in scalar form (i.e.,

single wavelength form).
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17. IMBED RULE

The imbed rule, to be developed below, leads to the determination of the

upward and downward irradiances ~(y,±) at any interior level y of a water

layer X(x,z), x ~ y ~ z (cf. Fig. 7) when we know the incident irradiances

~(x,-) and ~(z,+) on the layer and the distribution of the emission sources ~n

the layer. More generally, suppose we have a medium

X(a,b) = X(a,x) U X(x,z) U X(z,b) where X(a,x) and X(a,b) are boundary media

and X(x,z) is the interior medium of X(a,b). In the context of hydrologic

optics, X(a,x) and X(z,b), e.g., are the air-water surface and lake or sea

bottom, respectively. The imbed rule in such a setting finds ~(y,±) at any

level y of the interior medium X(x,z). For didactic reasons we will consider

separately the imbed rule applied first to the interior medium X(x,z) and then

to the composite medium X(a,b). Throughout this section (and section 18,

below) we assume that the optical properties p(y,±), T(y,±) and h (y,±) are
- - -e

continuous functions of y over X(x,z). We call such an X(x,z) a bare slab,

since it has no optically active zero-thickness planes within it or bounding

it. We develop two approaches to the imbed rule. The first approach is

algebraic and is based on the global interaction principles; the second is

analytic and is based on the local interaction principles. We shall consider

these approaches in turn, as we ascend through a series of ever more general

formulations.

A. Algebraic Imbedding in X(x,z) = X(x,y) U (y,z)

We start with the global principles representing ~(y,±). At the

interface level y of two contiguous bare slabs X(x,y) and X(y,z) we have
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~(y,+) = ~(z,+) I(z,y) + ~(y,-) R(y,z) + ~n(z,y)

~(y,-) = ~(y,+) ~(y,x) + ~(x,-) I(x,y) + ~n(x,y)

(17.1)

(17.2)

Substituting ~(y,-) as given by (17.2), into (17.1) and solving for ~(y,+),

and similarly solving for ~(y,-) by the reverse substitution of (17.1) into

(17.2), we find the desired imbed rule (or invariant imbedding relation):

~(y,+) = ~(z,+) !(z,y,x) + ~(x,-) ~(x,y,z) + ~n(z,y,x)

~(y,-) = ~(z,+) ~(z,y,x) + ~(x,-) !(x,y,z) + ~n(x,y,z)

x ~ y ~ z

(17.3)

(17.4)

We define the complete upward and downward transmittance and reflectance

operators as

!(z,y,x) - T(z,y)[I - R(y,x) ~(y,z)]-l (17.5)
- -m-

~(z,y,x) - !(z,y,x) ~(y,x) (17.6)

!(x,y,z) - T(x,y)[I - R(y,z) ~(y,x)]-l (17.7)
- -m-

~(x,y,z) - !(x,y,z) ~(y,z) (17.8)

The complete upward and downward source-generated irradiances at level yare

defined as

(17.10 )
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The reader should take note of the special magnitudes of ~, !, and ~n

when y takes on the end values x or z in its range x $ y $ z. For example,

!(z,z,x) =!m' !(z,x,x) =!(z,x); moreover, ~(z,z,x) =~(z,x), ~(z,x,x) =2m;

and finally, H (z,z,x) = 0, H (z,x,x) = H (z,x). These values follow from the-n -n -n

assumption that X(x,z) 1S a bare slab.

The physical interpretations of the imbed rule are readily made. For

example, H(y,+) in (17.3) is the linear combination of three terms: that due

to the two incident irradiances ~(z,+) and ~(x,-), and a contribution from the

internal source-generated irradiances 1n the layers just above and below level

y. In particular, !(z,y,x) in (17.3) 1S the complete transmittance operator

(an mxm matrix) which, on reading (17.5), is seen to be made up of an initial

transmittance T(z,y) from level z to level y followed by an infinite

interreflection upward between layers X(x,y) and X(y,z):

[!m - ~(y,x)~(y,z)]-l =!m + ~(y,x)~(y,z) + [~(y,x)~(y,z)]2 + ... (17.11)

~(x,y,z) 1n (17.3) is the complete reflectance operator and is the result of a

complete downward transmittance to level y (cf. (17.8» which is followed by a

reflection in X(y,z) at level y. The complete upward source-generated

irradiance ~n(z,y,x) 1n (17.3) and (17.9) at level y is the sum of two

terms: ~n(z,y) generated in X(y,z) which 1S infinitely interreflected upward

at level y and ~n(x,y) generated in X(x,y) which 1S first reflected in X(y,z)

and then infinitely interreflected upward, again 1n the manner of (17.11).
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B. Analytic Imbedding in X(x,z)

The analytic approach to the imbed rule rests on the fact that the four

~, ! matrices in (17.5)-(17.8) and the pair of source-generated functions ~n

in (17.9), (17.10), as functions of y, obey the local interaction principles

(11.19). Hence all six functions may be generated by numerical integration

sweeps over X(x,z) starting from appropriate initial values.

To see that the ~, ! and ~n functions satisfy (11.19), write (17.3) and

(17.4) together as

where

~(y) = (~(z,+), ~(x,-» ~(x,y,z) + ~n(Y) (17.12)

and

_
[

!(z,y'X)

~(x,y,z)

~(x,y,z)

~(Z,y'X)J

!(x,y,z)
(17.13)

H (y) _ [H (z,y,x), H (x,y,z)]
-n -n -n (17.14)

Now we assume that ~(y) in (17.12) is a solution of (11.19). Then from

(11.19), which we repeat here,

d--d H(y) = H(y) K(y) + h (y)
y - - -e

we have, by hypothesis (17.12)

(17.15a)

d
dy ~(y) = [(H(z,+), H(x,-» ~(x,y,z) + ~n(Y)] !(y) + ~e(Y) (17.15b)
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Differentiating (17.12) with respect to y, and holding x,z fixed, we

obtain

d
-d H(y)y-

d d
= [H(z,+), H(x,-)] --d M(X,y,z) + --d H (y)

Y - Y -n
(17.16)

By construction, ~(z,+), ~(y,-) and the emission sources generating ~n(Y) are

pairwise independent and arbitrary. Therefore we find, on comparing (17.15b)

and (17.16), that necessarily

d
dy ~(x,y,z) = ~(x,y,z) !(y)

d-d H (y) = H (y) K(y) + h (y)
y -n -n - -e

which are the local interaction forms for ~(x,y,z) and ~n(Y).

We can retrace our steps to (17.15a) by starting with (17.17) and

(17.17)

(17.18 )

(17.18), which define ~(x,y,z) and ~n(Y). In this way we see that (17.17) and

(17.18) provide an equivalent solution procedure for (11.19). Some details

for this reverse procedure follow: Construct ~(y) via (17.12). Differentiate

(17.12) to obtain (17.16). Simplify (17.16) via (17.17), (17.18) to obtain

(17.l5b) and then, once again by (17.12), we arrive at (17.15a).

What are the initial values for (17.17) and (17.18)? Consider, for

example, the case of a bare slab X(x,z) (no interactive boundaries within

it). The required initial values for ~(x,y,z) and ~n(Y) are then given by

(17.5)-(17.10):

= [!(Z ,x,x)
~(x,x,z)

~(x,x,z)

~(z ,X,X)] =

!(x,x,z)
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!!(x,z,z)

and finally

= [!( z , z , x )

~(x,z,z)

~(Z'Z'X)J
!(x,z,z)

(17.20)

H (x) = [H (z,x,x), H (x,x,z)] = [H (z,x), 0]-n -n -n -n-

H (z) = [H (z,z,x), H (x,z,z)] = [_0, H (x,z)]-n -n -n -n

(17.21)

(17.22 )

These initial values suggest that we can integrate the system (17.17),

(17.18) in either of two separate sweeps, one sweep upward from z to x or one

downward from x to z. Now, writing out (17.17) in more detail,

d
dy [

!(Z ,y ,x)

~(x,y,z)

~(Z,y'X)J

!(x,y,z)

= [!( z , y ,x)

~(x,y,z)

(17.23)

and reading off components of this matrix equation, we find

and
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d T(z,y,X) = !(z,y,x) !.(y,+) + ~(z,y,X) .e.(y,-)
dy

d
~(z,y,x) !.(y,-) + !(z,y,x) .e.(y,+)dy R(z,y,x) =

(17.25)

Further, (17.18) yields

d- --d H (z,y,X) = H (z,y,X) _l(y,+) + H (X,y,z) _p(y,-) + h (y,+)
Y4 4 4 ~

(17.26)
d--d H (X,y,z) = H (x,y,z) l(y,-) + H (z,y,X) p(y,+) + h (y,-)
Y4 4 - 4 - ~

To continue our illustration of the use of these equations to analytically

realize the imbed rule, suppose we integrate the system (17.24)-(17.26) upward

from z to x over the bare slab X(x,z). By (17.20) and (17.22) the initial

values of the ~, r and ~n are

~(x,z,z) = 2m

r(x,z,z) = r(x,z)

r(z,z,x)
initial ~, r, ~n values

(17.27)= !.m for upward sweep of system
(17.24)-(17.26) over bare

~(z,z,x) = ~(z,x) layer X(x,z)
x :S y :S z

H (z,z,x) = 0-n (17.28)
~n(x,z,z) = H (x,z)

-n

The three non-trivial starting values ~(z,x), r(x,z), and H (x,z) are obtained-n
by a preliminary downward sweep of the major Riccati trio (16.6)-(16.8) with

bare-slab initial values (16.12). The upward integration of (17.24)-(17.26)

may be stopped for inspection at any level y. At that level we would have the

four ~, r matrices and the two vectors ~ needed to calculate (H(y,+), H(y,-»n --

via (17.3)-(17.4). The integration may then continue upward or downward from
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level y to obtain ~, r matrices and the H vectors for further calculations of-n
~(y) via (17.3)-(17.4).

C. Algebraic Imbedding in X(a,b) = X(a,y) U X(y,b)

We now consider the algebraic verSion of a very general (the inductive)

form of the imbed rule (17.3), (17.4). We establish the imbed rule for the

light field at level y between two general media X(a,y) and X(y,b) for each of

which the ~' ! and ~n quantities are assumed known and for each of which

statements of the global interaction principles of sec. 15 are assumed to

hold. From these assumptions, the present form of the imbed rule will be

derived. The present procedure is therefore fundamentally different,

logically speaking, from that in par. A. The derivation of the imbed rule in

par. A serves to show that there is at least one non-empty case of application

of the rule. This follows because the R, T and H used there, along with the- - -n
global interaction principles exist as mathematical entities and are

determined from the local interaction principle (11.19) using an existence

theorem for solutions of the differential equation system (11.19) or its

equivalent form in (17.17), (17.18). The existence theorem can be applied, by

construction, to bare slabs such as X(x,z) in par. A. Put in more practical

terms, the constructions of par. A can actually be realized numerically using

the steps described in par. B.

The derivation of the imbed rule now to be undertaken serves as an

inductive step toward the general imbed rule. We shall show that if the

global interaction principles hold on X(a,y) and X(y,b), then the imbed rule

can be formulated for ~(y,±). For this purpose, the natures of X(a,y) and

X(y,b) are deliberately left unspecified; this is where the power of the

present inductive step lies. For example, X(a,y) could be a zero-thickness
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air-water surface and X(y,b) the water below X(a,y) which includes the

hydrosol bottom. Then g(y,±) given by (17.33) and (17.34), below will be the

light field just under the air water surface. When the present general form

of the imbed rule is used together with the general inductive form of the

union rule of section l8C, we can build, in successive stages, transfer

functions and their global interaction principles that apply to arbitrarily

stratified media with any internal arrangement of bare slabs and plane

surfaces.

Having made these preliminary observations, the remainder of the

development of the inductive form of the imbed rule now proceeds quite simply,

as follows. We start with the assumed global interaction principles

representing the response irradiance fields on X(a,y) and X(y,b) in terms of

the incident irradiances on them:

on X(a,y):

on X(y,b):

~(a,+) = g(y,+) !(y,a) + ~(a,-) ~(a,y)

~(y,-) = ~(y,+) ~(y,a) + ~(a,-) !(a,y)

~(y,+) = ~(b,+) !(b,y) + ~(y,-) ~(y,b)

~(b,-) = ~(b,+) ~(b,y) + ~(y,-) !(y,b)

+ H (y,a)-n
+ H (a,y)-n

+ H (b,y)-n
+ H (y,b)-n

(17.29)

(17.30)

(17.31)

(17.32)

Using (17.30) and (17.31) we may solve for g(y,±) in terms of the

incident irradiances g(a,-) and g(b,+) to find the general algebraic form of

the imbed rule:

~(y,+) = g(b,+) !(b,y,a) + ~(a,-) ~(a,y,b) + ~n(b,y,a)

g(y,-) = ~(b,+) ~(b,y,a) + ~(a,-) !(a,y,b) + ~n(a,y,b)
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where the complete reflectance and complete transmittance mxm matrices are

!(b,y,a) - T(b,y)[I - R(y,a) ~(y,b)]-l a (17.35)
- -m-

~(b,y,a) - !(b,y,a) ~(y,a) y -- (17.36 )

!(a,y,b) - T(a,y)[I - R(y,b) ~(y,a)]-l b (17.37)
- -m-

~(a,y,b) - !(a,y,b) ~(y,b) (17.38)

And where the complete upward and downward source-generated irradiances at

level yare defined as

H (b,y,a) _ [H (b,y) + H (a,y) R(y,b)][I - R(y,a) R(y,b)]-l
-n -n -n - -m - -

(17. 39)

(17.40)

The matrices ~(a,a), ~(b,b), by convention, are 2m; while !(a,a), !(b,b) are

D. Analytic Imbedding in X(a,b) = X(a,x) U X(x,z) U X(z,b)

We may extend the discussion in par. B to its general inductive form.

Write (17.33) and (17.34) as

(17.41)

where L(b,Y,a' !'.(b,Y,a] a
x

!!(a,y,b) - y (17.42)
~(a,y,b) !(a,y,b) z

b

H (y) - [H (b,y,a), H (a,y,b)] (17.43)-n -n --n
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and where y ranges over the interval [x,z], a ~ x ~ y ~ z ~ b, in which it is

assumed that £(y,±), ~(y,±) and ~e(Y'±) are continuous functions of y. We may

then use the argument of par. B to derive the present versions of (17.17) and

(17.18) (replace 'x' and 'z' by 'a' and 'b', respectively):

d
dy ~(a,y,b) ~ ~(a,y,b) ~(y)

d--d H (y) ~ H (y) K(y) + h (y)
y -n -n - -e

Since y ranges over only the internal layer X(x,z), x ~ y ~ z, we must

(17.44)

(17.45 )

consider the boundary values of ~(a,y,b) and ~n(Y) for y at x and at z.

However, first, for later reference, (17.44) and (17.45) are written out in

the form of the imbedding sextet:

d
~(a,y,b) .!.(y,+) + !(a,y,b) £.(y,-)- d R(a,y,b) ~

y-
(17 .44a, b)

d !(a,y,b) .!.(y,-) + ~(a,y,b) £.(y,+)d T(a,y,b) ~

y-

and

and finally
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d--d H (b,y,a) = H (b,y,a) _,(y,+) + H (a,y,b) p(y,-) + h (y,+)
Y -n -n -n - -e

(17.45a,b)
d--d H (a,y,b) + H (a,y,b) ,(y,-) + H (b,y,a) _p(y,+) + h (y,-)

y -n -n - -n -e

The boundary values for ~(a,y,b) and ~n(Y) are

[.e(b,X,.> !!(b,x,.l]
!!(a,x,b) = (17.46)

~(a,x,b) !(a,x,b)

[.e(b,Z,.> !!(b,z,.l]
!!(a,z,b) = (17.47)

~(a,z,b) !(a,z,b)

and finally

H (x) = [H (b,x,a), H (a,x,b)]
-n -n -n

H (z) = [H (b,z,a), H (a,z,b)]
-n -n -n

(17.48)

(17.49)

in which the components are given by the pair (17.39), (17.40) (with the

substitutions y+x and y+z, respectively, in each pair). The explicit

expressions for these boundary values, r(b,x,a)""'~n(a,z,b), in terms of the

transfer functions of the boundaries X(a,x), X(z,b), and the media X(x,b),

X(a,z) are given by (17.35)-(17.40) with the appropriate substitutions y+x or

y+z. Observe that, while X(a,x) is by hypothesis a boundary medium, X(x,b) is

generally a composite medium of the form X(x,z) U X(z,b), as used in the

formulations of the initial values in (17.46). Similar remarks hold for the

boundary X(z,b) and the generally composite medium X(a,z) involved in

(17.47). In practice the transfer functions and source-generated irradiances
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for all these media must be known before the present analytic form of the

imbed rule can be used. This prior information is of course simply part of

the inductive hypothesis of the general analytic and algebraic imbed rules now

under construction.

We can now create the analytical counterpart to (17.33) and (17.34) by

integrating (17.44) and (17.45) in an upward sweep, say from z to an arbitrary

level y in [x,z]. The argument given in par. B, which started with (17.17)

and (17.18) and led back to (17.l5a), may be repeated in all its essential

steps, now for (17.44) and (17.45). Hence ~(y), constructed as in (17.33) and

(17.34), satisfies (17.l5a) over the range x ~ y ~ z, i.e., ~(y) satisfies the

basic local interaction principle (11.19).

It remains to show that the ~(y,±), as given 1n (17.33) and (17.34),

satisfy the following hypothesized boundary conditions on the boundaries

X(a,x) and X(z,b) of X(a,b):

.!!(a,+) = .!!(x,+) .!(x,a) + .!!(a,-) ~(a,x) + H (x,a)
-n

for X(a,x):

.!!(x,-) = .!!(x,+) ~(x,a) + .!!(a,-) .!(a,x) + H (a,x)
-n

(17.50)

(17.51)

for X(z,b):

.!!(z,+) = .!!(b,+) .!(b,z) + .!!(z,-) ~(z,b) + .!!n(b,z)

.!!(b,-) = .!!(b,+) ~(b,z) + .!!(z,-) .!(z,b) + .!!n(z,b)

(17.52)

(17.53)

Here the trio ~, ! and ~n for each direction are assumed given. The boundary

value check on (17.33), (17.34) for the case of the upper boundary X(a,x) will

now be made. Set y = x in (17.33) and (17.34) to find
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~(x,+) = ~(b,+) !(b,x,a) + ~(a,-) R(a,x,b) + ~n(b,x,a)

~(x,-) = ~(b,+) ~(b,x,a) + ~(a,-) T(a,x,b) + ~n(a,x,b)

(17.54)

(17.55)

We now introduce the expression for ~(x,+), given in (17.54), into the right

side of (17.51), and reduce the result. The boundary value check on (17.33),

(17.34) is successful if the reduced expression is precisely the right side of

(17.55). Here are the details:

A _

right side
of (17.51)
via right
side of
(17.54)

_ [~(b,+) !(b,x,a) + ~(a,-) ~(a,x,b) + ~n(b,x,a)] !(x,a)

+ ~(a,-) !(a,x) + ~n(a,x)

+ ~(a,-)[!(a,x) + ~(a,x,b) !(x,a)]

+ H (a,x) + H (b,x,a) _R(x,a)
-n -n

Now observe from (17.36) that

!(b,x,a) ~(x,a) = ~(b,x,a)

Moreover, from (17.38) and (17.37) observe that
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!(a,x) + ~(a,x,b) ~(x,a)

=!(a,x)[!m + (!m-~(x,b) ~(x,a»-l ~(x,b) ~(x,a)]

= T(a,x)[I - ~(x,b) ~(x,a)]-l
- -m

=!(a,x,b)

Finally, from (17.39) and (17.40) observe that

H (a,x) + H (b,x,a) R(x,a)
-n -n -

(l7.57b)

= ~n(a,x) [!m + ~(x,b) ~(x,a)(!m - ~(x,b) ~(x,a»-l]

+ H (b,x) R(x,a)[I - R(x,b) R(x,a)]-l-n - -m - -

= [H (a,x) + H (b,x) R(x,a)][I - R(x,b) _R(x,a)]-ln -n - -m-

= H (a,x,b)-n

Using (17.57a,b,c) In (17.56a,b,c), respectively, we see that

A = ~(b,+) ~(b,x,a) + ~(a,-) !(a,x,b) + ~n(a,x,b)

(l7.57c)

(17.58)

which is the right side of (17.55), as was to be shown. The remaining check

at the lower boundary X(z,b) is left to the reader: set y = z in (17.33) and

(17.34). Take the resultant expression for ~(z,-) and insert it into (17.52)

and reduce the algebra in the manner illustrated In (17.57). The reduced

result should be the expression for H(z,+) given by (17.33).
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In summary, what we have shown is that the light field ~(y), given by

(17.33) and (17.34) (the algebraic imbedding rule), under the inductlve

hypothesis, satisfies (11.19) and the required boundary conditions (17.50)-

(17.53). Moreover, we have shown that we can construct ~(y) on X[x,y] in

X[a,b] by integration sweeps of (17.44), (17.45) (the analytic imbed rule)

using the hypothesized boundary values (17.46)-(17.49).

E. Some Connections Among the Complete Operators

We next summarize some connections among the complete operators g, rand

the complete irradiance H that hold in a general medium X(a,b). Two of these-n

connections were encountered as a matter of course in the form of (15.57b),

(15.57c), while checking boundary conditions on (17.33) and (17.34). We now

collect these relations together into their natural families as they occur in

(17.33), (17.34). First, we have

~(a,y,b) = !(a,y,b) ~(y,b) (17.59)
a
y

!(b,y,a) = !(b,y) + ~(b,y,a) ~(y,b) b (17.60)

H (b,y,a) = H (b,y) + H (a,y,b) R(y,b) (17.61)-n -n -n -

Similarly, on interchanging a and b In the preceding relations,

~(b,y,a) = !(b,y,a) ~(y,a) (17.62)
a
y

!(a,y,b) = !(a,y) + ~(a,y,b) ~(y,a) b (17.63)

H (a,y,b) = H (a,y) + H (b,y,a) ~(y,a) (17.64)-n -n -n

149



§17

The dual set to these connections will be derived in the section on the union

rule (cf. (18.25)-(18.30».

F. Transport Trios for the Complete Operators r!, ~n form)

The final stage of preparation for solving the local interaction

principles (11.19) will now be taken. What we shall do here is to transform

the imbedding sextet (17.44), (17.45) into a pair of trios that specifically

exhibit the stable character of a transport solution procedure of the local

interaction principles. We first saw this stable character in (12.18)-(12.21)

by virtue of the presence of the ~(y,±) matrix function, where ~(y,±) are in

effect negative matrices at each level y that serve to decrease ~(y,±) in the

± directions of photon flow. It is this decay of ~(y,±) in the ± direction

that is the root of the stability of the transport solution of (11.19).

However the irradiances ~(y,±) decrease along the ± directions only under

suitable boundary conditions on them. Accordingly, the matter of suitable

boundary conditions on the ~(y,±) must finally be settled, and we shall do it

here. It turns out that we can work on this matter most efficiently through

the complete ~ and! operators and the complete irradiances ~n of the sextet

(17.44)-(17.45), rather than on H(y,±) themselves.

Recall that we obtained the stable transport forms (12.18) and (12.21) of

(11.19) through the introduction of the ~(y,±) matrices, defined in (12.5) and

(12.7). However the ~(y,±) do not fully account for the boundary conditions

on H(y,±); and some preliminary comments below (12.8) and below (12.11) on

this point were made. The concept needed to handle this matter is the

complete ~ operator of the imbed rule (17.33), (17.34): on the one hand it

behaves like an irradiance with suitable boundary values; on the other, it has
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the character of a reflectance. Accordingly, what we will do below is to use

~(a,y,b) instead of ~(y,-) to effect the transformation of (17.44)-(17.45) to

their transport form. The details will now be considered.

Using (17.62) in (17.44b) and (17.64) in (17.45b), and rearranging the

results, we obtain the downward transport trio for !, ~n and ~

(17.65)

~(a,y,b) =!(a,y,b) ~(y,b)

a S x S y S z s b

a
x
y---
z
b----

(17.66)

(17.67)

For reference convenience we have repeated (17.62) in (17.67) to complete the

present trio. Observe how the combination 1(y,-) + ~(y,b) £(y,+) occurs in

both differential equations (17.65), (17.66) and compare it with ~(y,-) in

(12.19). We therefore have in 1(y,-) + ~(y,b) £(y,+) a decay function, now in

matrix rather than numerical form (as it first occurred in the monochromatic

irradiance theory). Hence !(a,y,b) tends to decay exponentially as y

increases. So does ~n(a,y,b) tend to decay; but ~n(a,y,b) also has two

sources of growth: the true source density ~e(Y'-) for the downward flux, and

the locally reflected upward source-generated irradiance ~n(b,y). The

presences of 'a' and 'b' in ~n(a,y,b) and R(a,y,b) serve to remind us of the

boundary conditions that ~n and ~ must satisfy. To start the downward

integration of (17.65) and (17.66) just below the upper boundary X(a,x) of the

medium X(a,b), we need the initial values !(a,x,b) and ~n(a,x,b) of T and

H. These are given by-n
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T(a,x,b) = T(a,x)[I - ~(x,b) ~(x,a)]-l
- --m

(17.68)

(17.69 )

The matrices !(a,x), ~(x,a) and the vector ~n(a,x) are known from the given

boundary conditions (17.50)-(17.53). Hence (17.65) and (17.66) can be

integrated from x to z in the bare interior X(x,z) of X(a,b), providing we

have ~(y,-), £(y,+), ~e(Y'-) and ~(y,b) at each level y, x $ Y $ z. These

generally will be available in the integration procedures to be assembled and

discussed in section 19.

The upward counterpart to (17.65)-(17.67) may be derived and discussed in

a similar manner. Thus, use (17.59) in (17.44c), and (17.61) in (17.45a).

Rearranging the results, we obtain the upward transport trio for T, H- -n
and R:

d- --d H (b,y,a) = H (b,y,a)[T(y,+) + _R(y,a) _p(y,-)]
y -n -n -

+ [H (a,y) p(y,-) + h (y,+)]-n - -e

(17. 70)

(17.71)

~(b,y,a) = !(b,y,a) ~(y,a)

a $ x $ Y $ z $ b

The associated boundary conditions are
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T(b,z,a) = T(b,z)[I - !(z,a) !(z,b)]-l
- - 4II

(l7.73)

(l7.74)

G. Transport Trios for the Complete Operators (R,H form)- -n

The transport trios of the !, ~n form derived in par. F have dual

counterparts in the form of the (~'~n) pairs, and we shall summarize these

dual trios here. We start again with the imbedding sextet (17.44)-(17.45).

Using (17.60) in (17.44a) and (17.61) in (17.45a) we find, after

rearrangements, the downward transport trio for R, Hand T:- -n -

d- --d H (b,y,a) = H (b,y,a)[T(y,+) + _R(y,a) _p(y,-)]y-n -n -

+ [H (a,y) p(y,-) + h (y,+)]-n - -e

a $ x $ Y $ z $ b

The initial values are

R(a,x,b) = T(a,x) R(x,b)[I - R(x,a) R(x,b)]-l
- - - 4II - -

a -----
x ------
y -----
z
b---

(l7.76)

(l7.77)

(l7.78)

(l7. 79)

Observe how both equations (17.75) and (17.76) show the same decay matrix

~(y,+) + g(y,a) £(y,-) for upward-flowing photons (compare with (12.20». Yet
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the direction of integration for this pair 1S downward (-) into X(a,b), i.e.,

in the direction of increasing y. This actually assures, under the given

boundary conditions, the decay of ~(a,y,b) and ~(b,y,a) in the (-)

direction: This 1S corroborated by the presence of !(a,y,b) in (17.77) which,

as we saw in the !, ~n trio (17.65)-(17.67), decays in the downward direction,

i.e., as y increases. Also notice in (17.76) that the two source terms are

being deintegrated, i.e., their natural additions to the growth of ~n(b,y,a)

(which is normally growing in the upward direction) are being continuously

subtracted in the downward march from x to z. We have here, therefore, some

interesting scattering dynamics; could (17.75) and (17.76) (or (17.77), for

that matter) ever have been written down on purely intuitive grounds?

Finally, the upward transport trio for ~, ~n and! may be written down at

once from (17.75) on interchanging 'a' and 'b' along with '+' and '_I:

(l7 .80)

(l7.8l)

!(b,y,a) = !(b,y) + ~(b,y,a) ~(y,b)

The initial values are

a
x----
y----
z
b----

(17.82)

(l7.83)
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The integration of the two trios 1n their respective directions can proceed

once the initial conditions are at hand and the local reflectances and

transmittances p(y,±), _,(y,±) are known along with local source terms h (y,±)-e

within X(x,z), and also the global structures R(y,a), R(y,b), ~n(a,y),

~n(b,y). The latter are supplied by ancillary integrations of the Riccati

trios of section 16. These matters will be discussed further in the solution

procedure assembled in section 19.

H. The Link Between ~(a,y,b), ~(a,x,b) and ~(x,y)

The 2m x 2m matrix operator ~(a,y,b) may be linked to ~(a,x,b) by means

of the fundamental matrix ~(x,y), as follows. This link will show us how the

complete operators R, T change with depth via the fundamental matrix M. By

(17.41), on the one hand we have for arbitrary incident irradiances

[H(b,+),H(a,-)] and sources within X(a,b), the field at depth y given by

[~(y,+), ~(y,-)] = [~(b,+), ~(a,-)] ~(a,y,b) + ~n(Y)

and 1n particular

[~(x,+), ~(x,-)] = [~(b,+), ~(a,-)] ~(a,x,b) + ~n(x)

On the other hand, by (14.18), we have

[~(y,+), ~(y,-)] = [~(x,+), ~(x,-)] ~(x,y) + ~e(x,y)

This suggests applying ~(x,y) to each side of (17.86) to obtain
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[!!(b,+), !!(a,-)] ~(a,x,b) ~(x,y) + H (x) ~(x,y) (l7.88a)
-n

= [!!(x,+), !!(x,-)] ~(x,y) (l7.88b)

= [!!(y,+), !!(y,-)] - H (x,y) (l7.88c)
-e

= [!!(b,+), !!(a,-)] ~(a,y,b) + H (y) - H (x,y) (l7.88d)-n -e

The step from (17.88b) to (17.88c) used (17.87); the transition from (17.88c)

to (17.88d) used (17.85). Since !!(b,+), !!(a,-) and ~e(Y'±)' x ~ Y ~ y, are

arbitrary, we find

~(a,y,b) = ~(a,x,b) ~(x,y)

H (y) = H (x) _M(X,y) + _He(x,y)-n -n

x ~ y ~ z

(l7.89a)

(l7.89b)

which are the desired connections. Observe the similarity of (17.89b) to

(14.43). Moreover, we see that the link between ~(a,x,b) and ~(a,y,b) is the

fundamental matrix ~(x,y). It is instructive to open up (17.89a) into its

component equations:

[

!(b,y,a)

!!.(a,y,b)

That is,

!!.(b, y ,a)]

!(a,y,b)

= [!(b,x,a)

!!.(a,x,b)
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T(a,y,b) = R(a,x,b) M (x,y) + T(a,x,b) M (x,y)
- - -+- - ---

(17.90a)

(17.90b)

(17.90c)

(17.90d)

A useful special case of (17.90) occurs in bare homogeneous medium.

X(x,z), i.e., where X(x,z) has no reflecting boundaries and £±'!± are

independent of depth. Then (17.90) become

!(x,y,z) = ~(x,z) ~+_(x,y) + ~__ (x,y) (17.91b)

For computations using these forms, by homogeneity we may replace

~++(x,y),••• ,~_(x,y) by their eigenmatrix representations in (13.42). Observe

that the end values of ~(x,y,z),••• ,~(z,y,x) in (17.92) at y = x or y = z,

have the correct form. For example, in (17.91a), let y+x, then

= ~(x,z)
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which follows from (14.6), and checks with the extreme value of the

representation derivable from (17.8). The representations (17.91) are

particularly helpful in seeing the form of the y-dependence of the complete

operators (via the eigenmatrix expressions (13.42a-d) for M++(X,y), etc.) and

also the boundary values of these operators (via the presence of the ~(x,z)

and !(z,x) matrices). This interpretation also holds more generally for

(17.90) when X(a,b) = X(a,x) U X(x,z) U X(z,b) and when X(x,z) is bare and

homogeneous. Expressions (13.42a-d) can be inserted into (17.90a-d) to obtain

very useful analytical representations of the complete ~ and T operators.

I. ~(a,y,b) in Terms of ~(y,a) and ~(y,b)

It is possible to represent the complete operators of ~(a,y,b), along

with the source-induced irradiances, solely in terms of the fundamental

matrices ~(y,a) and ~(y,b). This may be done as follows. On the one hand the

light field at level y in X(a,b) = X(a,x) U X(x,z) U X(z,b), x $ y $ z, is

given via (17.41) by

[~(y,+), ~(y,-)] = [~(b,+), ~(a,-)] ~(a,y,b) + ~n(Y) (l7.92a)

On the other hand the light fields on levels a and b are related to that on

level y by means of (14.18):

[~(b,+),Q] = [~(y,+), ~(y,-)] ~(y,b) ~+ + ~e(y,b) ~+ (17.92b)

[0, ~(a,-)] = [~(y,+), ~(y,-)] ~(y,a) C + H (y,a) C
-e (17.92c)

where f+ are the contraction operators introduced in (15.4). Here we have

used the general properties of C+:--
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(17.93)

where ~,~ are both either mxm matrices or 1xm vectors. Adding (17.92b,c) and

using (17.92a), we obtain

[~(b,+), ~(a,-)] = {[~(b,+), ~(a,-)] ~(a,y,b) + ~n(y)}[~(y,b) ~+ + ~(y,a) ~_]

+ [H (y,b) C + H (y,a) C__ ]
-e -+-e

On rearranging this we have

[H(b,+), H(a,-)]{I - M(a,y,b)[M(y,b) C + M(y,a) C ]}
- - -m - - -+ - --

= H (y)[M(y,b) C + M(y,a) C ] + [H (y,b) C + H (y,a) C ]-n - -+ - -- -e -+ -e --

Since the incident irradiances ~(b,+), ~(a,-) are arbitrary and independent of

internal sources, we find

(17. 94a)

(17.94b)

Equation (17.94a) is the desired connection between ~(a,y,b) and the

fundamental matrices ~(y,b), ~(y,a). We also obtained the link between the

complete source-generated irradiance ~n(Y) and the fundamental source-
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generated irradiances ~e(y,b), ~e(y,a). This representation of H (y) should-n
be compared with (17.9). One should also recall the origin of the transport

version of the source irradiances ~n in (15.18).

It is instructive to open up (17.94a):

[

!(b,y,a)

~(a,y,b)

whence, via (15.14),

~(b,y,a)J

!(a,y,b)
(17.95)

(17. 96a)

(17.96b)

(17.96c)

(17. 96d)

Here we have written the formulas so that only M (y,b) and M (y,a) need
-++ ---

be inverted. By using the other formulas in (15.14), other forms of

representation are possible.

These formulas reduce correctly to all their known special cases. For

instance, setting y = a in (17.96a), we have

!(b,a,a) =

= !(b,a)
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Here we used the fact that ~++(a,a) = !m and ~+_(a,a) = 2m (cf. (14.6» and we

also used the form for T(b,a) in terms of M-l(a,b) (cf. (15.17». That- ++

r(b,a,a) should reduce to !(b,a) follows from the definition (17.35).

The forms (17.96) are particularly useful in homogeneous media X(x,z) in

which ~(x,y) has its eigenmatrix representation (13.42). Then they may be

written out in terms of elementary functions (exponentials). When there is no

fluorescence, the present theory reduces to M uncoupled equations of the form

(14.1), and (17.96) reduce to the case of m = 1, the scalar case. It is

particularly instructive to study this simple case to see the stability

feature of transport theory (i.e., that in X(a,m), r(a,y,m) decreases

exponentially and that ~(a,y,m) goes to a finite limit as y+m). For a

discussion of this stability feature in a simple setting, see Preisendorfer

(1977a, p. 40).
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18. UNION RULE

The unlon rule leads to the determination of the global transfer

functions _R, T and the source-generated irradiances H of the union of two
-D

water layers when one knows the optical properties of the two parts of the

unlon. The general setting of the present constructions is that defined at

the outset of section 17. Thus we consider, once again for didactive reasons,

both the union X(x,z) of bare slabs X(x,y) and X(y,z) and the union X(a,b) of

possibly composite slabs X(a,y), X(y,b). Our main goal is the inductive rule

in par. C, below. We shall develop both the algebraic and the analytic forms

of the union rule.

A. Algebraic Union of X(x,z) = X(x,y) U X(y,z)

Assume we have a bare slab X(x,z) partitioned into a unlon of two

contiguous bare slabs X(x,y) and X(y,z). Thus each part X(x,y) and X(y,z) has

a quartet of ~ and I transfer matrices and a pair of source generated

irradiances H that are known. The arbitrary pair of incident irradiances on
-D

each slab X(x,y) and X(y,z) combines under a global interaction principle to

yield the associated pair of response irradiances, as demonstrated in (17.1)

and (17.2).

Hence, by the imbed rule (17.3), (17.4), the irradiances g(y,±) at level

yare known. We now use g(y,+), so found, in the first of the global

interaction statements (15.20), and reformulate the latter as
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~(x,+) = H(y,+) T(y,x) + ~(x,-) ~(x,y) + ~n(Y'x)

= [H(z,+) !(z,y,x) + ~(x,-) ~(x,y,z) + ~n(z,y,x)] !(y,x)

+ H(x,-) _R(x,y) + H (y,x)-n
(18.1)

Collecting coefficients of the incident irradiances ~(x,-) and ~(z,+) on

X(x,y) as in (18.1), and collecting also the source-generated terms, we find

+ ~(x,-)[~(x,y) + ~(x,y,z) !(y,x)]

+ H (y,x) + H (z,y,x) T(y,x)-n -n - (18.2)

Now Since X(x,z) is a bare slab, the theory of section 15 assigns a unique

quartet of transfer matrices !(z,x), ~(x,z), !(x,z), ~(z,x) to X(x,z) along

with a unique pair Hn(z,x), H (x,z) of source-generated irradiances such that- -n

~(x,+) = ~(z,+) !(z,x) + ~(x,-) ~(x,z) + ~n(z,x)

~(z,-) = ~(z,+) ~(z,x) + ~(x,-) !(x,z) + ~n(x,z)

(18.3)

(18.4)

On comparing (18.2) and (18.3) and noting the arbitrary magnitudes of the

incident irradiances ~(z,+), ~(x,-) and of the emission vectors ~e(s,±),

x $ s $ z, we conclude that
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!(z,x) = !(z,y,x) !(y,x) x (18.5)
y
z

~(x,z) = ~(x,y) + ~(x,y,z) !(y,x) (18.6)

H (z,x) = H (y,x) + H (z,y,x) !(y,x) (18.7)
-n -n -n

Repeating the above argument, now with the known ~(y,-) from (15.20) used in

the second of the global interaction statements (15.36), and on comparison of

the rearranged result (analogous to (18.2» with (18.4), we arrive at

!(x,z) = !(x,y,z) !(y,x) x (18.8)
y
z

~(z,x) = ~(z,y) + ~(z,y,x) !(y,z) (18.9 )

H (x,z) = H (y,z) + H (x,y,z) !(y,z) (18.10)
-n -n -n

Definitions of the complete operators ~, !, and complete source-generated

irradiances H are given in (17.35)-(17.40). The set of statements (18.5)-n

(18.10) constitute the union rule for contiguous bare slabs X(x,y)

u X(y,z) = X(x,z).

B. Analytic Union of X(x,z) = X(x,y) u X(y,z)

The present analytic version of the union rule stems from the observation

that a bare slab X(x,z) can be visualized as having been grown from a thinner

bare slab X(y,z), x < y < z, by successively adding infinitesimal layers

X(u,y) on top of X(y,z) so as eventually to arrive at X(x,z). At every

intermediate stage of such a growth, we have a bare slab of the form

X(u,z) = X(u,y) U X(y,z) where x ~ u ~ y. At this stage, the transfer

functions of the union X(u,z) are given by (18.5)-(18.10) (with x replaced by

u). For example, the trio (18.5)-(18.7) becomes

164



§18

~(u,z) = ~(u,y) + ~(u,y,z) !(y,u)

H (z,u) = H (y,u) + H (z,y,u) T(y,u)
-n -n -n -

(18.11)

(18.12)

(18.13)

Now it is intuitively clear that !(z,u), ~(u,z), and ~n(z,u), as given by

(18.11)-(18.13), approach !(z,y), ~(y,z), ~n(z,y) as u approaches y. Call the

operators in (18.11)-(18.13) the initial values !(z,u), ~(u,z), and ~n(z,u).

It is less intuitively clear, but still possible to rigorously show, that

!(z,u), ~(u,z), and ~n(z,u), as the indicated algebraic combinations (18.11)

(18.13), x ~ u ~ y, satisfy the major Riccati trio (16.14)-(16.16) with

substitution y~u. Then, on integrating this Riccati trio upward from y to x

with the above initial values (of y starting at u), we must recover the same

!(z,x), ~(x,z) and ~n(z,x) of X(x,z) as given by the union rule (18.5)

(18.7). Symbolically realizing these simple insights produces the desired

analytic form of the union rule.

We will now verify that !(z,u), ~(u,z), and ~n(z,u), as given by (18.11)

(18.13), satisfy the major Riccati trio (16.14)-(16.16). Consider, for

example, !(z,u). Differentiating each side of (18.11) with respect to u we

have

(18.14)

By direct computation from the definition (17.35) of !(z,y,u) and the Riccati

sextets in section 16, we have*
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a!(z,y,u)
---a-u---- = !(z,u) £(u,+) ~(u,y,z)

and also, by (16.15),

(18.15)

a!(y,u)

au
(18.16)

Then with these observations, (18.14) becomes

(18.17)

Observe from (18.5) that

With this, (18.17) can be written,

a!(z,u)
--a-u--- = !(z,u)[£(u,+)(~(u,y) + ~(u,y,z) !(y,u» + ~(u,+)]

which by (18.6) becomes

(18.18)

(18.19)

(18.20)

Thus !(z,u), as given in (18.11), obeys (16.15) of the Riccati trio, as was to

* Alternately one can consult a list of such derivatives of Rand T; see
Preisendorfer (1976, vol. IV, p. 75).
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be shown. Therefore T(z,x) for the union X(x,z) = X(x,y) U X(y,z) can be

obtained by either the algebraic or analytic form of the union rule.

That _R(u,z) and H (z,u), as given by (18.12) and (18.13), satisfy (16.14)-n
and (16.16), can be demonstrated in a similar way. This and the similar task

for (18.8)-(18.10) are left to the reader.

C. Algebraic Union of X(a,b) = X(a,y) U X(y,b)

The present version of the union rule is its general inductive form, and

therefore may be used with the inductive form of the Algebraic Imbedding rule

of section 17C to form a powerful pair of construction procedures to solve

(11.19) under a great variety of boundary value problems of both the usual

external kind (as in (11.20» and the less usual internal kind (to be defined

in (v), (vi), of par. D, below).

Let us assume that an arbitrary layer of hydrosol X(a,b) is the union of

two contiguous layers X(a,y) and X(y,b) for each of which the ~, !' and ~n

quantities are known and for each of which the global interaction principles

(17.29)-(17.32) are assumed to hold. Therefore (17.33) and (17.34) yield up

the imbedded light field ~(y,±). Using (17.33) in (17.29) we obtain, on

rearranging terms,

H(a,+) = [~(b,+) !(b,y,a) + ~(a,-) ~(a,y,b) + ~n(b,y,a)] !(y,a)

+ ~(a,-) ~(a,y) + ~n(y,a)

+ ~(a,-)[~(a,y) + ~(a,y,b) !(y,a)]

+ H (y,a) + H (b,y,a) T(y,a)-n -n -
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Now, from the general interaction principle that underlies all of classical

radiative transfer theory*, to the optical medium X(a,b) with its external

incident irradiances ~(a,-), ~(b,+), its internal incident irradiances

~e(s,±), a ~ s ~ b and its two response irradiances ~(a,+), ~(b,-), we may

assign four matrices !(b,a), ~(b,a), !(a,b), ~(a,b) and two source-generated

fields H (a,+), H (b,-) such that-n -n

~(a,+) = ~(b,+) !(b,a) + ~(a,-) ~(a,b) + ~n(b,a)

~(b,-) = ~(b,+) ~(b,a) + ~(a,-) !(a,b) + ~n(a,b)

On comparing coefficients 1n (18.22) and (18.23), we find

(18.23)

(18.24)

(18.25)

(union rule, upward case)

~(a,b) = ~(a,y) + ~(a,y,b) !(y,a)

H (b,a) = H (y,a) + H (b,y,a) T(y,a)
-n -n -n -

a ---
y
b---

(18.26)

(18.27)

Similarly, using (17.34) 1n (17.32), rearranging, and comparing with (18.24),

we find

!(a,b) =!(a,y,b) !(y,b) (18.28)

(union rule, downward case)

~(b,a) = ~(b,y) + ~(b,y,a) !(y,b)
a
y-
b--

(18.29)

(18.30)

* Preisendorfer (1965, p. 114) or H.O. vol. II, p. 205.
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The definitions of the complete operators and irradiances ~, ! and ~n are

given in (17.35)-(17.40). Observe the rather interesting dual equation-

structures between the above relations and those encountered in the imbedding

section; cf. in particular (17.59)-(17.64).

D. Building-Up Principle

The building-up principle 1S a general procedure whereby the ~, ! quartet

and the source-generated irradiances H of a composite medium X(a,b) can be-n
found by a sequence of applications of the union rule to the component parts

of X(a,b). We consider some examples.

(i) Air-water surface X(a,x) and bare slab X(x,z) combined to form X(a,z) =

X(a,x) U X(a,z).

(ii) Composite slab X(a,z) of (i) and bottom boundary surface X(z,b) combined

to form X(a,b) = X(a,z) U X(z,b).

The result of the building-up principle applied to steps (i) and (ii) is the

quartet of matrices !(b,a), ~(b,a), !(a,b), ~(a,b) and pair of source-

generated irradiances ~n(a,b), ~n(b,a) for the composite medium X(a,b).

Observe that at the end of stage (i) and just prior to performing (ii) we have

the R, T, H sextets for X(a,z) and X(z,b) available. At this point, before- - -n
performing any further constructions, one may use the imbed rule to find

~(z,±). We will use this (union rule + imbed rule) tactic to solve the

general boundary value problem for (11.19) in section 19.

Another useful pair of applications of the union rule 1S to build up

X(a,b) as follows:
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(iii) Bare water slab X(x,z) and bottom boundary surface X(z,b) combined to

form X(x,b) = X(x,z) U X(z,b)

(iv) Air-water surface X(a,x) and composite slab X(x,b) of (i) combined to

form X(a,b) = X(a,x) U X(x,b).

The resultant R, T, H sextet of step (iii) followed by (iv) should be- - -n
identical to that produced by step (i) followed by (ii) for the medium

X(a,b). Observe that, at the end of step (iii) and just before step (iv), one

may use the imbed rule to find ~(x,±). The net results of the steps (i)-(iv)

combined with the imbed rule are that we are able to determine the response

irradiance ~(a,+), at the upper boundary of X(a,b), the response irradiance

~(b,-), at the lower boundary of X(a,b) and the imbedded irradiances ~(x,±)

and ~(z,±) at levels x,z just inside the boundaries of X(a,b).

A final pair of examples of the building up principle will be given which

will illustrate the notion of an internal 'boundary' and the procedure to

handle it in radiative transfer calculations. Suppose that there is a lake or

sea with a sharp temperature discontinuity somewhere below the surface. At

this surface interreflections may occur and it is of interest to estimate

their general radiometric effect. (See, e.g., H.O., vol. I, p. 37.) Thus

suppose the media X(x,y_), X(y+,z), y_ $ Y+' are bare media just above and

just below the temperature discontinuity at depth y. We can estimate, using

Fresnel reflectance theory, the quartet !(y_,y+), !(y_,y+), !(y+,y_), !(y+,y_)

of the interface X(y_,y+) between X(x,y_) and X(y+,z). Now consider

(v) Bare water slab X(x,y_) and interface X(y_,y+) combined to form
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(vi) Composite slab X(x,y+) and bare slab X(y+,z) combined to form

Application of the union rule in (v) yields the quartet R(x,y+), !(x,y+),

~(y+,x), !(y+,x) and the palr ~n(x,y+), ~n(Y+'x) in which we assume that

H (y y) - H (y y) = 0 (no sources in the essentially zero thickness-n -, + - -n +'-

interface X(y_,y+». Hence ~n(x,y+) and ~n(Y+'x) are nonzero only if either

~n(x,y-) or ~n(Y-'x), or both, are not zero. Just after stage (v) and before

stage (vi) one can use the imbed rule to find ~(y+,±) just below the

interface. The net result of (v) and (vi) is the ~' !, ~n sextet for the

composite layer X(x,z) with internal interface X(y_,y+) at depth y,

x < y < z.

E. Fundamental Matrix Products and Transport Star Products

The building-up principle using the union rule can be summarized

algebraically in terms of a kind of matrix product operation. We now explain

this possibility, as it will lead to some rather useful facts about the

interconnections between the fundamental and transport formulations of

radiative transfer theory.

We return to (18.25)-(18.30) and recall how the four transfer matrices of

X(a,y) and of X(y,b) have been combined to form the four transfer matrices of

X(a,b). Thus, for example, from
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~(Y") '-"(Y"]
~(a,y) =

~(a,y) !(a,y)

and

[!(b'Y) '-"(b'Y]
~(y,b) =

~(y,b) !(y,b)

we find

(18.31)

(18.32)

~(a,b)

= [!(b,a) ~(b,a)J

~(a,b) !(a,b)

[

T(b,y,a) T(y,a)

= ~(a,y) + ~(a,y,b)

(18.33)

(18.34)

We summarize this binary relation (i.e., this combining, or union rule) by

writing

'~(a,y) * ~(y,b)' for ~(a,b) (18.35)

We call ~(a,y) * ~(y,b) the star product of ~(a,y) and ~(y,b). This ~tar

product is the algebraic essence of the union rule and hence of the bUilding-

up principle. (See H.O., vol. I, p. 46.)

The star product (18.35) has no special algorithmic value beyond

(18.34). It does, however, have a noteworthy conceptual feature: It focuses

attention on the algebraic structure of the union rule, and an important

immediate consequence of the union rule. This is the generalization of the

group properties (14.10)-(14.12) of ~(u,v) to composite media (something which

cannot automatically be done with fundamental matrices because of possible
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discontinuities in p(y,±}, T(y,±} and he(y,±}. We now indicate how this can

be done.

We have seen above how the union rule allows us to construct ~(a,b) from

~(a,y) and ~(y,b) in a way that is analogous (but not identical) to forming a

matrix product ~(a,y) ~(y,b) of two fundamental matrices. We saw in (14.l0)

how the matrix product of ~(u,v) and M(v,w} allows us to propagate a solution

of the local interaction differential equations from one level to another in a

medium, provided that the local optical properties vary continuously with

depth down through those levels. The star product, on the other hand, is an

algebraic construct and so has no such analytic limitations. Indeed, the star

product allows us to combine layers X(a,y} and X(y,b} of a medium X(a,b} with

arbitrary internal structure (recall the illustrations of the building-up

principle in par. D). We can in a similar manner endow the matrix product

~(a,y) ~(y,b) of ~(a,y) and ~(y,b) with correct physical properties, and

particularly with the property that the product is indeed ~(a,b), by using

this general discontinuity-bypassing feature of the star product

~(a,y) * ~(y,b).

For this purpose we use the transformations introduced in section 15

between the fundamental (~) and transport (~) matrices. For example, (15.17)

defines a mapping (i.e., a rule of transformation) from ~(x,y) to ~(x,y). Let

us summarize this mapping by the function ~ such that

~(x,y) = ~[~(x,y}]

This mapping has a well-defined inverse ~-l given by (15.26):

~(x,y) = ~-l[~(x,y}]
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Suppose next that X(a,b) = X(a,y) U X(y,b) is a composite medium

consisting possibly of bare media bounded and separated by infinitesimally

thin reflecting boundaries and reflecting interfaces across which the local

transfer functions ~,! have discontinuities. Then ~(a,b) cannot be generated

from (14.4) in an uninterrupted integration sweep. For, if we numerically

integrate across the discontinuity, its reflection activity on the surrounding

light field can be missed. We now set up an inductive argument, much as in

the building-up principle of par. 0, above, for fundamental matrices that will

allow them to handle such singular flux-reflection activity. Let the transfer

matrices ~(a,y) and ~(y,b) for X(a,y) and X(y,b) be known. Then by (18.37)

construct

and

(18.38a)

(18.38b)

(18.38c)

Now let an arbitrary incident irradiance ~(a,-) generate an irradiance

field throughout X(a,b) = X(a,y) U X(y,b). If ~(a,+), ~(y,±), and H(b,±) are

the resultant fields in X(a,b) we have, by construction of the ~-matrices, and

hence their $-1 images ~, the three statements
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[~(y,+), ~(y,-)] = [~(a,+), ~(a,-)J ~(a,y)

[~(b,+), ~(b,-)] = [~(y,+), ~(y,-)] ~(y,b)

[~(b,+), ~(b,-)J = [~(a,+), ~(a,-)J ~(a,b)

(18.39a)

(18.39b)

(18.39c)

Using (18.39a) in (18.39b), comparing the result with (18.39c), and recalling

that 8(a,-) (and hence 8(a,+» is arbitrary, we find

~(a,b) = ~(a,y) ~(y,b) (18.40)

which establishes that ~(a,b) is an ordinary matrix product of ~(a,y) and

~(y,b). This corresponds exactly to the star product

~(a,b) = ~(a,y) * ~(y,b) (18.41)

by virtue of (18.38c). Moreover, substituting the definitions of the M

matrices in (18.38), we can write (18.40) and (18.41) respectively as

(18.42a)

(18.42b)

In this way we see the star product as the isomorphic correspondent* to

matrix multiplication, and conversely. In this sense the M and M formalisms

* For the notion of an isomorphism in modern algebra, see, e.g., Birkhoff and
Maclane (1953).
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are algebraically equivalent. However, this equivalence is one that holds

only in an average sense, over the whole development of the theory. That is,

our development of the M and M formalisms, starting with section 15, shows

that they are interestingly intertwined and symbiotic: in the present work,

~(x,y) was developed first and then used to give the rigorous definition of

~(x,y) and lead us toward the global interaction principles on bare media;

however, later, in the development of theory, ~(a,b) was used to give meaning

to ~(a,b) on composite media, as was just done. By keeping both these

conceptual tools handy, we can solve any conceivable problem of radiative

transfer in composite optical media, as will next be demonstrated.
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R T H ALGEBRAIC PROCEDURE- -n
We now formulate the first of three solution procedures of (11.19)

subject to various boundary conditions such as (11.20), and generalizations of

(11.20) that include finitely thick fluorescing layers X(a,x), X(z,b) as

boundaries. In the present section we first set down the general boundary

data and boundary conditions on (11.19) that all three solution procedures

will use. Then we will present the ~ ! ~n algebraic procedure. In section 20

we present the ! ~n analytic procedure and in section 21, the ~ ~n analytic

procedure.

The R ! ~n algebraic procedure is based on the algebraic form of the

imbed rule presented in section 17C, while the ! ~n and R ~n procedures stem

from the analytic form of the imbed rule given in section 17D and as

elaborated in pars. E and F of section 17.

A. Given Data and Boundary Conditions (for the ~ ! ~n' ! ~n' and ~ ~n

Finitely-Deep-Media Procedures)

The present setting 1S a natural or laboratory stratified hydrosol X(a,b)

of the form X(a,b) = X(a,x) U X(x,z) U X(z,b) where X(a,x) and X(z,b) are the

upper and lower boundaries of X(a,b) while X(x,z) is its interior. X(x,z) is

assumed to be a bare slab (cf. section 17). The boundary media can be of

finite or infinite thickness and can have depth-distributed internal sources

that produce emerging source-generated irradiances H at their upper and lower-n
surfaces. The interior slab X(x,z) as usual may have internal sources of flux

and by definition has continuously varying local properties. The interior is

partitioned into n contiguous subslabs such that

X(x,z) = X(YO'Yl) U ... U X(y. l'Y.) U ... U X(y l'y)
J- J n- n
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It is at the levels y., j = O, ••• ,n that we want to
J

determine the irradiances H(Yj'±). Moreover, we wish to find the emerging

irradiances H(a,+), H(b,-) at the upper and lower boundary surfaces. The

given data and required irradiances are listed as follows:

Data Given:

a) !(x,a) , !(a,x) , H (a,x)
-n

(i) Boundary Data, X(a,x):

b) !(a,x), !(x,a), H (x,a)
-n

(ii) Boundary Data, X(z,b):

Interior Data, X(x,z):

(i ii)

a) !(z,b), !(b,z), H (b,z)-n

b) !(b,z), !(z,b), H (z,b)-n

{a) .e.(y,±), .!.(y,±), h (y,±), x ~ Y ~ z-e

Incident Data: I
b)

c)

!!(a,-)

(incident irradiances)

a) !!(a,+) = !!(x,+) !(x,a) + !!(a,-) !(a,x) + H (x,a)
-n

X(a,x):

b) !!(x,-) !!(x,+) !(x,a) + !!(a,-) !(a,x) + H (a,x)
-n

(iv) Boundary Conditions

c) !!(z,+) = !!(b,+) !(b,z) + !!(z,-) !(z,b) + H (b,z)
-n

X(z,b):

d) !!(b,-) = !!(b,+) !(b,z) + !!(z,-) !(z,b) + H (z,b)
-n
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a) H(y",±), J = O, ••• ,n
- J

b) !!(a,+)

B. The R T H Algebraic Procedure (Finitely Deep Media)- - -n

There are six main stages of the ~ T ftn procedure:

I. Integrate the major Riccati trio (16.6)-(16.8) in the form

a!(a,y)

ay

a
x
y----
z
b---

aH (a,y)-n
--~--- = H (a,y)[,(y,-) + p(y,-) R(y,a)] + [h (y,-) + h (y,+) R(y,a)]ay -n - - - -e -e -

The integration starts at level x with initial values (ia) (of par. A,

above) and proceeds downward to level z using (iiia). Along the way the mxm

matrices R(YJ",a), T(a'YJo
) are stored with the lxm vectors H (a,y.),- - -n J

j = O, ••• ,n. Here {Yj: j = O, ••• ,n} is the partition of X(x,z) decided upon

in (19.1).
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II. Integrate the major Riccati trio (16.14)-(16.16) In the form

a---
x---
y--
z
b---

aH (b,y)-n
--~-- = H (b,y)[T(y,+) + p(y,+) R(y,b)] + [h (y,+) + h (y,-) R(y,b)]

ay -n - - - -e -e -

The integration starts at level z with initial values (iia) (of par. A,

above) and proceeds upward to level x using (iiia). Along the way the mxm

matrices ~(Yj,b), T(b'Yj) are stored along with the lxm vectors ~n(b'Yj)'

j = O, ••• ,n.

III. Using the stored results of stages I and II above, find for J = O, ••• ,n,

T(b,y.,a) = T(b,y.)[I - R(y.,a) R(y.,b)]-l
- J - J -m - J - J

R(b,y.,a) = T(b,y.,a) R(y.,a)
- J - J - J

H (b,y.,a) = [H (b,y.) + H (a,y.) R(y.,b)][I - R(y.,a) R(y.,b}]-l
-n J -n J -n J - J -m - J - J

and also

T(a,y.,b) = T(a,y.)[I - R(y.,b) R(y.,a)]-l
- J - J -m - J - J

R (a, y . , b) = T( a, y . , b) R(y . , b)
- J - J - J

H (a,y.,b) = [H (a,y.) + H (b,y.) R(y.,a)][I - R(y.,b) R(y.,a)]-l
-n J -n J -n J - J -m - J - J
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These formulas are obtained from the imbed rules (17.35)-(17.40) with the

substitution Y+Yj. The resultant mxm matrices and 1xm vectors are stored.

IV. Using (iiib,c) and the stored results of stage III, find for J = O, ••• ,n,

H(y.,+) = _H(b,+) T(b,y.,a) + _H(a,-) R(a,y.,b) + H (b,y.,a)
- J - J - J -n J

H(y.,-) = _H(b,+) R(b,y.,a) + _H(a,-) T(a,y.,b) + H (a,y.,b)
- J - J - J -n J

These results are stored.

V. Using (ib), (iib) and the results of Stage III, compute

~(a,b) = ~(a,x) + ~(a,x,b) !(x,a)

H (b,a) = H (x,a) + H (b,x,a) _T(x,a)
-n -n -n

and also

~(b,a) = ~(b,z) + ~(b,z,a) !(z,b)

H (a,b) = H (z,b) + H (a,z,b) _T(z,b)
-n -n -n

For these computations use the union rules (18.25)-(18.27) and (18.28)-

(18.30). Recall that x = = Yo and z = Yn' so that, e.g., T(b,x,a) is

T(b,yo,a) and T(a,z,b) is T(a'Yn,b) as found in stage III. The matrices
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~(a,x), !(x,a) and the vector ~n(x,a) are given 1n (ib), while ~(b,z), !(z,b)

and ~n(z,b) are supplied by (iib).

VI. Using the results of stage V and (iiib,c), compute

~(a,+) = ~(b,+) !(b,a) + ~(a,-) ~(a,b) + ~n(b,a)

This completes the computation of the required results ~(Yj'±)' j = O, ••• ,n,

~(a,+), and ~(b,-).

C. Checking the Results

Preliminary checks are made by means of the boundary conditions (iv).

For example, in (iva) we can compute ~(a,+) and compare it with the ~(a,+)

found in Stage VI. In (iva) use the boundary data (ib) along with the

incident datum (iiib), and observe that ~(x,+) is ~(Yo,+) found 1n Stage IV.

These two values of ~(a,+) found in distinct ways should agree. The check for

~(b,-) 1S made by using (ivd) in a similar way and comparing the resultant

~(b,-) with the ~(b,-) candidate ~(Yn'-) found in stage IV. Checks on H(x,±)

are made using (ivb,c) and the vectors ~(x,±) found (as ~(Yo,±) in

stage IV): on the right sides of (ivb,c) use the step IV results and compare

the boundary-condit ion-computed candidates for ~(x,±) with the ~(Yo,±) values

of stage IV.

More thoroughgoing checks can be made, but they require more preliminary

work. For example, one can integrate routinely not just the major trio

(16.6)-(16.8) but the entire sextet (16.6)-(16.11). Their initial values are

given in (ib). Store the additional matrices T(y.,a), R(a,y.) and the vectors
- J - J
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~n(Yj,a), j = O, ••• ,n. Similarly, compute the sextet (16.14)-(16.19) with

additional initial values (ib),and store the additional quantities !(Yj,b),

~(b'Yj) and ~n(Yj,b), j = O, ••• ,n. Then, using these additional matrices and

vectors, one can write down global interaction principles that act as

generalized versions of the boundary conditions (iv) for j = O, ••• ,n:

a) H(a,+) = H(y.,+) T(y.,a) + H(a,-) R(a,y.) + H (y.,a)
- - J - J - - J -n J

General
Boundary

conditions
(v)

b) H(y.,-) = H(y.,+) R(y.,a) + H(a,-) T(a,y.) + H (a,y.)
- J - J - J - - J -n J

c) H(y.,+) = H(b,+) T(b,y.) + H(y.,-) R(y.,b) + H (b,y.)
- J - - J - J - J -n J

d) ~(b,-) = H{y_,-) T(y_,b) + H(b,+) R{b,y.) + H (y_,b)
- J - J - - J -n J

These may be used to check the Stage IV results H(Yj'±) for all

J = O, ••• ,n, as well as the two Stage VI results. The cases for j = ° and

j = n were discussed above for boundary conditions (iv). Hence the

generalized boundary conditions (v) contain the boundary conditions (iv) as

special cases.

D. R T ~n Example 1: Finitely Deep Medium with Air-Water Surface and
Reflecting, Opaque Bottom

The present example shows how the general data and boundary conditions of

par. A may be trimmed or changed to handle a finitely deep arbitrarily

stratified medium whose upper air-water boundary X(a,x) is of infinitesimal

thickness and with no fluorescing taking place within it. Moreover, the lower

boundary X(z,b) of X(a,b) is a surface at a finite depth (perhaps even visible

through the upper surface) and is assumed non-fluorescent and opaque, so that

no light passes through it in either direction. The statements (i)-(iv) of

par. A are now of the form
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a) ~(x,a) = E(x,a), !(a,x) = !(a,x), H (a,x) = 0
-11

(i) Boundary Data, X(a,x) :

b) ~(a,x) = E(a,x), !(x,a) = !(x,a), H (x,a) = 0
-11

(for !(x,a), and other air-water boundary transfer matrices, see (11.20»

a) ~(z,b) = E(z,b), !(b,z) = 0 , H (b,z) = 0
~ -11

(ii) Boundary Data, X(z,b):

b) ~(b,z) = 0 !(z,b) = 0 , H (z,b) = 0
~' ~ -11

(!(z,b) 1S assumed known, e.g., for a matte wavelength-dependent reflectance)

a) !!(a,+) = !!(x,+) !(x,a) + !!(a,-) E(a,x)

X(a,x) :

b) !!(x,-) = !!(x,+ ) E(x,a) + !!(a,-) !(a,x)

(iv) Boundary Conditions

c) !!(z,+ ) = !!(z,- ) E(z,b)

X(z,b):

d) !!(b,-) = 0
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a) H(y.,±), J = O, ••• ,n
- J

b) !!(a,+)

The S1X stages of the R T H procedure 1n par. B are now modified as follows:- -n

I. Integrate the major Riccati trio (16.6)-(16.8) in the form

a~(y,a)

+ .e.(y,-)~(y,a)]ay = ~(y,a) [!.(y,-) + [.e.(y,+) + !.(y,+) ~(y,a)]

a1'.(a,y)

ay =1'.(a,y) [!.(y,-) + .e.(y,-) ~(y,a)]

The integration starts at level x with initial values (ia) (of this

paragraph) and proceeds downward to level z using (iiia). Along the way the

mxm matrices ~(YJ·,a), !(a'YJ') are stored with the 1xm vectors H (a,y.),-n J

j = O, ••• ,n. Here {Yj: j = O, ••• ,n} is the partition of X(x,z) decided upon

in (19.1).

II. Integrate (16.14) and (16.16):

(1'.(b,y) = 0
-m

x :s y :s z)

aH (b,y)-n
ay
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The integrations starts at level z with initial values (iib) (hence it

follows that !(b,y) = Qm for all y, x ~ y ~ z, as shown) and proceeds upward

using (iiia). The results ~(Yj,b), ~n(b'Yj)' j = O, ••• ,n are stored.

III. Using the results of stages I, II, above, find for J = O, ••• ,n,

T(b,y.,a) = 0
- J ~

R(b,y.,a) = 0
- J ~

H (b,y.,a) = [H (b,y.) + H (a,y.) R(y.,b)] [I - R(y.,a) R(y.,b)]-l
-n J -n J -n J - J ~ - J - J

and also

T(a,y.,b) = T(a,y.) [I - R(y.,b) R(y.,a)]-l
- J - J ~ - J - J

R(a,y.,b) = T(a,y.,b) R(y.,b)
- J - J - J

H (a,y.,b) = [H (a,y.) + H (b,y.) R(y.,a)] [I - R(y.,b) R(y.,b)]-l
-n J -n J -n J - J ~ - J - J

These formulas are obtained from the imbed rules (17.35)-(17.40) with the

substitution Y+Yj. The results are stored. Observe that when j = 0, then

y. = x and we set H (a,x) = 0 by (ia). Moreover, when j = n, then y. = z, and
J -n - J

we set ~n(b,z) = Q by (iia). Similarly, ~(x,a), ~(z,b) have the values

E(x,a), E(z,b) by (ia), (iia), respectively. Observe that, although

~n(b,z) = Q and ~n(a,x) = Q, the integration from z upward or x downward will

produce non-zero ~n(b'Yj,a) or ~n(a'Yj,b) if sources are present in X[x,z].
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IV. Using the stored results of stage III and (iiib,c) find for j = O, ••• ,n

H(y.,+) = _H(a,-) R(a,y.,b) + H (b,y.,a)
- J - J -n J

H(y.,-) = _H(a,-) T(a,y.,b) + H (a,y.,b)
- J - J -n J

These results are stored.

V. Using (ib), (iib) and the results of stage III, compute

!(b,a) = 0
-m

H (b,a) = H (b,x,a) _t(x,a)-n -n

and also

!(a,b) = 0
-m

~(b,a) = o
-m

H (a,b) = 0-n

VI. Using the results of stage V and (iiib,c), compute

~(a,+) = ~(a,-) ~(a,b) + ~n(b,a)

This completes the computation of the required results H(y.,±), j = O, ••• ,n,
- J

and ~(a,+). The checks are carried out as in par. C, above. The new general
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boundary conditions (v) of par. C that are the basis of the general check now

take the following forms for depths Yj' j = O, ••• ,n

General
boundary

conditions
(v)

a) H(a,+) = H(y.,+) T(y.,a) + H(a,-) R(a,y.) + H (y.,a)
- - J - J - - J -n J

b) H(y.,-) = H(y.,+) R(y.,a) + H(a,-) T(a,y.) + H (a,y.)
- J - J - J - - J -n J

c) H(y.,+) = H(y.,-) R(y.,b) + H (b,y.)
- J - J - J -n J

As can be seen by comparing this with its earlier version 1n par. C,

conditions a), b) are unchanged and condition c) has been modified to the

present form (since ~(b,+) = 0). Condition d) has been omitted since all

terms in it are zero vectors or zero matrices by virtue of the data and

boundary conditions. We now check this in detail: Observe by union rule

(18.28) that T(Yj,b) = !(Yj,z,b) !(z,b), and recall that !(z,b) = Qm by

(iib). This accounts for the missing transmittance term in d). By (iiic),

~(b,+) = Q, which accounts for the missing reflectance term in d). Finally,

by the union rule (18.30), ~n(Yj,b) = ~n(z,b) + ~n(Yj,z,b) !(z,b). By (iib),

~n(z,b) = Q and as noted already above, !(z,b) = Qm' Thus term d) in (v)

above is omitted from present form of the check.

E. R T H Example 2:- -n Finitely Deep Stratified Natural Hydrosol Resting on
an Infinitely Deep Homogeneous Lower Hydrosol

We now consider a natural hydrosol of the form X(a,m) = X(a,x) U X(x,z) U

X(z,m) where X(z,m) 1S an infinitely deep homogeneous hydrosol.

The main point of the present example is to show how to handle the

computational problem presented by the infinitely deep homogeneous layer

X(z,m) that starts at some finite depth z below the surface. We certainly

cannot integrate over such a medium; but we have the results of our
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eigenmatrix analysis in section 13 to fall back upon. Between the surface

X(a,x) and level z the medium X(x,z) can fluoresce and have optical properties

that vary generally with depth. The interface at level z between X(x,z) and

X(z,m) is by choice here nonreflecting. The data and boundary value

statements (i)-(iv) of par. B reduce to the present case, as follows:

a) R(x,a) = r(x,a) , !(a,x) = !(a,x) , H (a,x) = 0-n
(i) Boundary data, X(a,x) :

b) ~(a,x) = .!.(a,x) , !(x,a) = !(x,a), H (x,a) = 0-n

(ii) Boundary Data, X(z,m):

a) R(z,m)

b) ~(m,z) =

= 0 , H (m,z) = 0
~ -n -

o , _T(z,m) = 0 , H (z,m) = 0
~ ~ -n

The form of R will be given below. The air-water surface transfer matrices !(x,a),

!(a,x), !(x,a), !(a,x) are given.

Interior Data X(x,z):

(iii)

Incident Data:

p(y,±), T(y,±), h (y,±), x $ y $ z
-e

b) !!(a,-)
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(iv) Boundary Conditions

a) !!(a,+) = !!(x,+) !(x,a) + !!(a,-) !.(a,x)

X(a,x):

b) !!(x,-) = !!(x,+) !.(x,a) + !!(a,-) !(a,x)

c> !!(z,+) = !!(z,-) ~(Z,CD)

X(Z,CD):

d) !!(CD,-) = 0

The matrix ~(Z,CD) is that given by g_(CD) 1n (iia), and specified, below.

a) H(y 0 ,f) , j = 0, ••• , n
- J

Results Required:

b) !!(a,+)

The SlX stages of the R ~ ~n procedure 1n par. B now take the forms:

I. Integrate the major Riccati trio (16.6)-(16.8):

ll:!:(a,y)

lly

llH (a,y)-n
lly

Therefore this first stage 1S the same as 1n Example 1.

The integration starts at level x with initial values (ia) of the present

paragraph and proceeds downward to level z using (iiia). Along the way the

mxm matrices ~(YJ·,a), T(a'YJo) are stored with the 1xm vectors H (a,yo),-n J

j = O, ••• ,n. Here, {Yj: J = O, ••• ,n} is the partition of X(x,z) decided upon

in (19.1)
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II. Integrate (16.14) and (16.16)

a.~(y,ex»

= ~(y,ex» [~(y,+) + p(y,+) ~(y,ex»] + [p(y,-) + ~(y,-) ~(y,ex»]
ay

T(ex>,y) = 0 , x 5 Y 5 z- -m

aH (ex>,y)
- -nay = ~n(ex>,y) [~(y,+) + £(y,+) ~(y,ex»] + [~(y,+) + ~(y,-) ~(y,ex»]

The integration starts at level z with initial values (iia) [hence it follows

that !(ex>,y) = Qm for all y, x 5 Y 5 z, as shown] and proceeds upward using

(iiia). The matrices ~(Yj'ex» and vectors gn(ex>'Yj)' j = O, ••• ,n are stored.

We generally expect gn(ex>,y) to be nonzero owing to the presence of true

sources ~e(Y'±) * Q for y in the range x 5 y 5 z, and despite the initial

condition (iia), H (ex>,z) = O.-n -

III. Using the results of steps I, II above, find the J = O, ••• ,n

T(ex>,y. ,a) = 0
- J -m

R(ex>,y. ,a) = 0
- J -m

H (ex>,y.,a) = [H (ex>,y.) + H (a,y.)R(y.,ex»] [I - R(y.,a) R(y.,ex»]-l
-n J -n J -n J - J -m - J - J

and also

T(a,y.,ex» = T(a,y.) [I - R(y.,ex» R(y.,a)]-l
- J - J -m - J - J

R(a,y. ,ex» = T(a,y. ,ex» R(y. ,ex»
- J - J - J

H (a,y.,ex» = [H (a,y.) + H (ex>,y.) R(y.,a)] [I - R(y.,ex» R(y.,a)]-l
-n J -n J -n J - J -m - J - J
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These formulas are obtained from the imbed rules (17.35)-(17.40) with the

substitutions Y+Yj and b+oo • The results are stored. When j = 0, then Yj = x

and we set ~n(a,x) = 0 by (ia) (no internal true sources in the air-water

surface). Moreover, when J = n, then Yj = Z and we set ~n(oo,z) = 0 by (iia)

(no true sources below depth z). Similarly, ~(x,a) is set equal to !(x,a) and

~(z,oo) is set equal to g_(oo), by (ia) and (iia), respectively.

IV. Using the stored results of stage III and (iiib,c), find for j = O, ••• ,n,

H(y.,+) = _H(a,-) R(a,y.,oo) + H (oo,y.,a)
- J - J -n J

H(y.,-) = _H(a,-) T(a,y.,oo) + H (a,y.,oo)
- J - J -n J

These results are stored. Observe the absence of any upward incident

irradiances on X(a,oo), as may be expected.

V. Using (ib), (iib) and the results of Stage III, compute

o
-m

H (oo,a) = H (oo,x,a) _t(x,a)-n -n

and also
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\

T(a,<XI) = 0
- -m

R(<XI,a) = 0
- -m

IH (0,00) = 0
\ -n -m

VI. Using the results of Stage V and (iiib,c), compute

The new general boundary condition check (v) of par. C takes the

following form for depths Yj' j = O, ••• ,n:

a) H(a,+) = H(y.,+) T(y.,a) + H(a,-) R(a,y.) + H (y.,a)
- - J - J - - J -n J

b) H(y.,-) = H(y.,+) R(y.,a) + H(a,-) T(a,y.) + H (a,y.)
-J -J -J - - J -n J

c) H(y.,+) = H(y.,-) R(y.,<XI) + H (<XI,y.)
-J -J -J -n J

On comparing the present SlX stages with those in Example 1, the varlOUS

changes entailed in going from a finite to an infinite medium are now

precisely stated. It is seen that the salient change is in ~(z,b) which is

now the reflectance ~(z,<XI) of an infinitely deep homogeneous slab X(z,<XI). By

(15.57) and (15.69) we have

-E E-1
--+ -++

= F-1 F
--+

- .!.(_)] £.-1(+)
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where £(+), !(-) are the depth-independent mxm local transfer matrices for the

homogeneous layer X(z,~). Moreover, ~__ and ~_+ are mxm submatrices of F

defined in (13.20).

to use.

The representation -E E-l of R (~) is perhaps easiest--+ -++

It lS possible to relax the homogeneous and source-free condition on

X(z,~), and still obtain in a workable way the reflectance ~(z,~), and source-

generated vector H (~,z). Suppose the interior data in X(z,~) are arbitrary-n

but specified non-constant functions of y: £(y,±), !(y,±), ~e(Y'±)'

z $ y <~. Now, for all natural hydrosols the entries of £(y,±) and !(y,±)

are non-zero for all y, and in fact are bounded away from zero, so that they

have positive minima. Hence we would expect the effectively infinitely deep

layer X(z,~) of a lake or sea to have the property that !(z,u), where z < u,

becomes small as u increases, i.e., that T(z,u) + 0 as u + ~, and, moreover,- -m

that ~(z,u) approaches a finite matrix ~(z,~) as u +~. We have a way of

finding this limit. We simply program the downward sweep Riccati sextet

(16.6)-(16.11) (with 'x' replaced by 'z', and 'y' by lUI, so that z < u).

Then we would expect to have well-behaved (bounded, non-oscillatory) solutions

_R(z,u) and H (u,z) (as given by (16.10), (16.11», and we also expect that-n
they would go to finite limits fairly quickly as u +~. Although X(z,~) lS

optically infinitely deep and the depth variations of £±' !± and ~e± can be

quite wild over limited depth intervals, the integrations of (16.10)-(16.11)

would converge reasonably quickly for all practical purposes. For example

convergence to within three or four significant figures of their limits would

occur at depths u about 10 optical depths below z, l.e. when a (u-z) ~ 10,m

where am is the mlnlmum of a(y) over the range x $ y $ z.
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Infinitely Deep Homogeneous Natural Hydrosol with
Uniformly Distributed Internal Sources

The present medium X(a,oo) is a special case of that considered in

Example 2. Once again we can write X(a,oo) = X(a,x) U X(x,z) U X(z,oo), but now

X(x,oo)= X(x,z) U X(z,oo) is homogeneous, from just under the air-water surface

on down to 00. The lower boundary X(z,oo) is homogeneous and source-free as in

Example 2; but now we imagine z to be arbitrarily large, so that the boundary

data of (iib), Example 2 hold for all z > x. This feature of X(x,oo) allows us

to retain the framework of Example 2 for each finite z. It allows a sequence

of Example 2 problems to approach the present problem. Ultimately this

produces a simplification of various stages in the ~ ! ~Tl solution procedure

we have been studying, and these simplifications will be brought out in the

stage statements below. In particular it will be possible in principle to

replace all Riccati sweeps by closed algebraic forms found through the

eigenmatrix formalism. Except for the distinguishing feature about the

present X(z,oo) defined above (z arbitrarily large) the data and boundary value

statements are essentially the same as those of Example 2. To verify this,

and for future reference, these are fully written out here:

a) R(x,a) = r(x,a) , !(a,x) = !(a,x) , H (a,x) = a-n
(i) Boundary Data X(a,x):

b) ~(a,x) = !.(a,x), !(x,a) = !(x,a), H (x,a) = a
-Tl

(The form of R (00) is -~_+ ~;~, as given below stage VI of Example 2; cf. (15.57),

(15.69»
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(iii)

Interior Data X(x,z):

(For all z, z > x,

choices of z.)

i.e., _p(y,±), T(y,±), h (y,±) are constant on X(x,z), for all
- -e

a) !!(a,-)

Incident Data:

a) !!(a,+) = !!(x,+) ,£(x,a) + !!(a,-) !.(a,x)

X(a,x):

b) !!(x,-) = !!(x,+) !.(x,a) + !!(a,-) ,£(a,x)

(iv) Boundary Condition:

c) !!(z,+) = !!(z,-) ~(z,co), for all z, z > x

X(z,co)

d) !!(co,-) = 0

The SlX stages of the ~ r ~n procedure on par. E now take the forms

I. Integrate the major Riccati trio (16.6)-(16.8):

a!.(a,y)

ay
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Integrate the trio from x (= Yo) down to any finite z (= Yn). Use initial

values in (ia). Record ~(Yj,a), !(a'Yj) and ~n(a'Yj)' j = O, ••• ,n.

Observe that the local properties £, !, ~e are independent of depth

II. ~(y,oo) = R (00) x S Y < 00

!(oo,y) = 0 x S Y < 00
~

H (oo,y) = -[h (+) + h (-) ~_(oo)] [!(+) + £(+) R (00)]-1 (= ~n(oo,+»
-n -e -e

The particular value ~_(oo) of ~(Y,~) is -~_+ ~;~ and follows from the

discussion of Example 2 in par. E. The reason that !(oo,y) is Qm was covered

also in Example 2. The form for ~n(oo,y) follows rigorously from setting to Q

the derivative aH (oo,y)/ay in Stage II of Example 2 and solving for H (oo,y).-n -n
This is based on the observation that H (z,y), for very large fixed depth z,-n
is nearly independent of y because the build-up of ~n(z,y) through ~e(±) over

the depth interval from z to y has then nearly completely taken place, even

though the boundary datum (iia), namely H (oo,z) = 0, began the integration of-n -
the differential equation for H (z,y). Store this fixed value of H (oo,y) and-n -n
henceforth denote it by 'H (00,+)'. Note how boundary data (iia) and the-n
interior data (iiia) are used throughout stage II to establish the above three

statements.

III. Using the results of stages I, II above, find for j = O, ••• ,n
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T( co , y . , a ) = 0
- J -m

R(co,y. ,a) = 0
- J -m

and also

R (a , y . , co ) = T( a , y . , co ) R (co)
- J - J --

H (a,y.,co) = [H (a,y.) + H (co,+) R(y.,a)] [I - R (co) R(y.,a)]-l
-n J -n J -n - J -m -- J

These formulas are obtained from the imbed rules (17.35)-(17.40) with the

substitutions y+yj and b+co. The results are stored. Observe that ~n(a,x) = 0

by (ia) and ~n(co,z) = Q by (iia), for every z, z > x (in the sequence of

approximations of X(x,z) to X(x,co». Moreover, ~(x,a) =E(x,a) by (ia) and

~(z,co) has been replaced by ~_(co) by virtue of (iia).

IV. Using the stored results of Stage III and (iiib,c) find for j = O, ••• ,n

H(y.,+) = _H(a,-) R(a,y. ,co) + H (co,y. ,a)
- J - J -n J

H(y.,-) = _H(a,-) T(a,y.,co) + H (a,y.,co)
- J - J -n J

These results are stored.

V. Using (ib), (iib) and the results of Stage III, compute
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!.(m,a) = 0
-m

!(a,m) = .!.(a,x) + ~(a,x,m) !(x,a)

H (m,a) = H (m,x,a) !(x,a)-n -n

and also

!.(a ,m) = 0
-m

!(m,a) = 0
-m

H (a,m) = 0-n -m

VI. Using the results of Stage V and (iiia), compute

The boundary value checks are as given below Stage VI, Example 2.

It is of interest to examine some special values of ~(Yj'±)' as given by

Stage IV. Our intent is to establish the assertions, stated at the outset,

that the present problem may be solved without resort to numerical

integrations of differential integrations. Consider the case of Yo = x, so

that ~(x,±) are the irradiances just under the air-water surface. We have

from IV:

!!(x,+) = !!(a,-) R(a,x,m) + H (m,x,a)
-1'\

(19.2)

!!(x,-) = !!(a,-) !(a~x,m) + H (a,x,m)
-n

Here, by Stage III,
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= t(a,x) [I - ~_(oo) ~(x,a)]-l
- -m

Moreover,

~(a,x,oo) R (00) = -E E-1
--+ -++

H (oo,x,a) = H (00,+) [I - r(x,a) R__ (oo)]-l
-n -n -m-

H (a,x,oo) = H (oo,x,a) _r(x,a)
-n -n

where, by Stage II,

This explicit array of formulas shows that g(x,±) in (19.2) can be

obtained without any integrations: all that need be known are R (00)

(= -E E-1) and _t(a,x), _r(x,a) of the air-water surface. _H(a,+) in Stage VI--+ -++

is also found without integration, since ~(a,b) in Stage VI is obtained via

~_(oo), the air-water surface's transfer functions, and ~n(oo,x,a). Hence when

working with a homogeneous medium the main concepts needed for computations

are the eigenstructures ~ and! of Section 13.

The preceding observation may be illustrated further. Let us find,

without the aid of a differential equation integration, the irradiance field

g(y,±) at an arbitrary depth y, x < y < 00 in X(x,oo). From (17.3), (17.4), for

the case of z = 00 and incident datum (iiib) we have
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H{y,+) = _H{x,-) R{x,y,m) + H (m,y,x)-n
(19.3)

where by (17.7) and (17.8),

and by (17.9), (17.10)

(19.4)

H (x,y,m) = [H (x,y) + H (m,+) R{x,y)] [I - _R_{m) _R{y,x)]-l
-n -n -n - -m

Now, !(x,y) and ~(y,x) occurring in these formulas, particularly for ~(x,y,m)

and ~(x,y,m), can be obtained from the eigenmatrix theory. See (15.56b,c) and

(17.91). Thus ~(x,y,m) and ~(x,y,m) can be determined without numerical

integration, and for arbitrary depths y (not just those Yj' J = O, ••• ,n of

Example 2). The representations of ~ and T given specifically in terms of the

M-matrix can also be used (cf. (17.96» •

As for the !!n{x,y) and H (m,+) terms in (19.4), above, if sources are-n

present then we require !!n{x,y) to complete the calculation of H{y,±) • It is

possible in the present homogeneous setting to evaluate Hn{x,y) in closed form

using the calculus. From (15.52b) we have
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where ~e(Y'x,-) is the downward (-) part of ~e(Y'x) = [~e(Y'x,+), ~e(Y'x,-)],

as originally encountered in (14.17a). Hence we require the evaluation of

~e(Y'x,-).

Now, from (14.16), for arbitrarily located x,y (i.e., we can have x < y

or y < x, as long as x,y are in the region of definition of ~e(s), £(s,±), and

.!.(s,±»:

y.
H (x,y) = J h (s) ~(s,y) ds
-e -ex

(19.6)

For ~e(Y'x) we would simply interchange 'x' and 'y' in the results below.

Using the eigenmatrix representation (13.33) of ~(s,y) and the postulated

s-independence of ~e(s), (19.6) becomes

y.
H (x,y) = h J E exp{k(y-s)}F ds
-e -e - - -

x
y.

= h E[J exp{k(y-s)}ds] F
-e - - -

x

= -h E k-1[I - exp{k(y-x)}]F
-e-- -1II - -

(19.7a)

(19.7b)

where we have used (13.14). As a check, differentiating (19.7b) with respect

to y, we obtain agreement with (14.16a). Next, recall (cf. (14.17b» that

~e(x,y,±) = [He (x,y,±,I), ••• ,He (x,y,±,m)]. Then on the component level

(19.7a) becomes,* for j = 1, ••• ,m,

* Alternatively, one can work out the inverse K-l in terms of the matrices
£(±), .!.(±); see (13.2) and (15.14). However~ since the E and F have
presumably been evaluated, we remain with them.
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m m
I I {[h (+,i)e++(i,~) + he(-,i)e_+(i,~)]k;1(~)[exp{k+(~)(y-x)}-11f+±(~,j)

i=l ~=1 e

+ [he(+,i)e+_(i,~) + he(-,i)e__(i,~)]k:l(~)[exp{k_(~)(y-x)}-l]f_±(~,j)}

(19.8)

This leads to the required closed-form (i.e., fully integrated) representation

of He(y,x,±,j), j = l, •• ,m, needed in (19.5) (after interchanging 'x' and 'y'

1n (19.8». The reader may perhaps now agree that (19.8), except for certain

theoretical analyses (for example, what is the expansion of He(x,y,±,j) to

first order in (y-x)?), may well be by-passed in practice. It would, in the

case of sources present, be far more expedient simply to integrate numerically

the Riccati trio in Stage I (with the substitution a+x, and bare-medium

initial conditions).
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20. TRANSPORT SOLUTION OF THE LIGHT FIELD:

A. Introductory Comments

T H ANALYTIC PROCEDURE-n

We next consider the second of three transport solution procedures of the

light field, namely the T ~n analytic procedure. This procedure differs from

the R ! ~n procedure of section 19 in that it is analytic rather than

algebraic. It uses integration sweeps of the equations governing the two

(upward and downward) complete transmittances T and the two complete

irradiances ~n to obtain these objects at various depths in the medium. The

two complete reflectances ~ are obtained algebraically from the complete

transmittances T and the slab reflectances determined in preliminary sweeps.

The distinguishing feature of the present method (and its dual companion to be

considered in section 21) is the stability of the numerical integration in

solving for the two flows of the light field. This is in contrast to the

basically unstable solution procedure afforded by the fundamental matrix

method of section 14. The price for attaining this stability is paid in the

form of preliminary sweeps of the medium that must be made to determine the

appropriate one of the two (upward and downward) standard reflectances Rand

one of the two standard source-generated irradiances H of the medium. These-n
results will serve as initial values to start the T and H integrations.-n
Then, as the transport equations for ! and ~n are integrated in reverse sweeps

over the medium, these established R and ~n values are regenerated and used to

guide the integrations in a stable way.

The medium-partitioning, the given data, and the boundary conditions for

the present procedure are given in section 19A, and will be referred to

repeatedly in what follows.
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B. The! ~n Analytic Procedure

There are six main stages in the present procedure.

I. Integrate the major Riccati pair (16.6), (16.8) in the form

a~(y,a)

ay = ~(y,a) [~(y,-) + £(y,-) ~(y,a)] + [£(y,+) + ~(y,+) ~(y,a)] a---
x----
y---

aH (a,y) z-n
--~a~y--- = ~n(a,y) [~(y,-) + £(y,-) ~(y,a)] + [~(y,-) + ~(y,+) ~(y,a)] b

The integration starts at level x with initial values (ia) (of

section 19A) and proceeds downward to level z using (iiia) in order to obtain

the values ~(z,a) and ~n(a,z). From these we compute

= T(b,z) [I - R(z,a) ~(z,b)]-l
- -m-

H (b,z,a)-n = [H (b,z) + H (a,z) _R(z,b)] [I - R(z,a) _R(z,b)]-l
-n -n -m

Here we have used (17.35) and (17.39) in which ~(z,b), !(b,z), and ~n(b,z) are

given in (iia) (of section 19A).
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II. Integrate the ~, ~n' r, ~n quartet

a---
x----
y---
z ----
b---

aH (b,y,a)-n
ay

and from r(b,y,a) and ~(y,a) find

{~(b,y,al =!(b,y,al ~(y,a)

The integration starts at level z with the R(z,a), H (a,z) and the T(b,z,a),- -n -
~n(b,z,a) initial values found in stage I and proceeds upward to level x.

Store r(b'Yj,a), ~(b'Yj,a), and ~n(b'Yj,a), j = O, ••• ,n as they evolve, where

[y.: j = O, ••• ,n} is the partition of X(x,z) defined in section 19A. The T
J

and ~n differential equations above are given in (17.70) and (17.71), while

the Rand H equations are those used in Stage I. The first two equations are- -n
used to generate the evanescent values ~(y,a), ~n(a,y) needed to march the

second two equations up the water body.
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III. Integrate the major Riccati pa1r (16.14), (16.16) in the form

a~(y,b)

ay

aH (b,y)-n
--~a-y--- = ~n(b,y) [~(y,+) + £(y,+) ~(y,b)] + [~(y,+) + ~(y,-) ~(y,b)]

The integration starts at level z with initial values (iia) and proceeds

upward to level x using (iiia) 1n order to obtain the values ~(x,b) and

H (b,x) from which we compute-n

T(a,x,b) = T(a,x) [I - R(x,b) R(x,a)]-l
- -m -

H (a,x,b) = [H (a,x) + H (b,x) _R(x,a)] [I - R(x,b) _R(x,a)]-l
-n -n -n -m -

a--
x---
y ---
z
b---

Here we have used (17.37) and (17.40) in which ~(x,a), !(a,x), and ~n(a,x) are

given in (ia).

IV. Integrate the ~, ~n' ~, ~n quartet

a
x---
y--
z
b---

aH (a,y,b)-n
ay

and from T(a,y,b) and R(y,b) find- -
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The integration starts at level x with the R(x,b), H (b,x) and T(a,x,b),- -n -
~n(a,x,b) initial values found in Stage III and proceeds downward to level

z. Store r(a'Yj,b), ~(a'Yj,b), and ~n(a'Yj,b), j = O, ••• ,n, as they evolve.

The r and ~n differential equations are given in (17.65) and (17.66). These

two equations are guided in their downward march by the ~(y,b), ~n(b,y) values

supplied immediately before by the first two differential equations.

V. Using (iiib,c) and the stored results of stages II, IV, find, for

j = O, ••• ,n,

H(y.,+) = _H(b,+) T(b,y.,a) + _H(a,-) R(a,y.,b) + H (b,y.,a)
- J - J - J -n J

H(y.,-) = _H(b,+) R(b,y.,a) + H(a,-) T(a,y.,b) + H (a,y.,b)
- J - J - - J -n J

These results are stored.

VI. Using (ib), (iib) and the results of stages II and IV, compute

~(a,b) = ~(a,x) + ~(a,x,b) !(x,a)

H (b,a) = H (x,a) + H (b,x,a) _T(x,a)
-n -n -n

and also
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!(a,b) = !(a,z,b) !(z,b)

~(b,a) = ~(b,z) + ~(b,z,a) !(z,b)

H (a,b) = H (z,b) + H (a,z,b) _T(z,b)
-n -n -n

For these computations use the union rules (18.25)-(18.27) and (18.28)-

(18.30).

Recall that x = Yo and z = Yn' so that, e.g., !(b,x,a) is !(b,yo,a) and

!(a,z,b) 1S !(a'Yn,b) as found in stages II and IV, respectively.

The matrices ~(a,x), !(x,a) and vector ~n(x,a) are given by (ib) while

~(b,z), !(z,b), and ~n(z,b) are given by (iib). From the above results and

(iiib,c) we find

~(a,+) = ~(b,+) !(b,a) + ~(a,-) ~(a,b) + ~n(b,a)

~(b,-) = ~(b,+) ~(b,a) + ~(a,-) !(a,b) + ~n(a,b)

C. Checking the Results

To check these results, proceed as 1n section 19C.

D. General Comments

The stability of the present method rests 1n the ! ~n equations of

Stages II and IV. A formal proof of the stability rests on the negativity of

the matrices !(y,+) + ~(y,a) £(y,-) and !(y,-) + ~(y,b) £(y,+) in real

media. Thus !(b,y,a) (in the upward sweep) and !(a,y,b) (in the downward

sweep) tend to be exponentially damped. As the integrations of these

equations proceed, any numerical 'glitches' or inaccuracies in T or Hare-n
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eventually exponentially damped out. Observe how ~(y,a) and ~n(a,y) found 1n

stage I by a downward Riccati sweep are 'deintegrated' in the upward sweep of

the same Riccati pair in stage II; and how R(y,b) and H (b,y) are deintegrated- -n
in a similar manner in the downward sweep of IV.
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21. TRANSPORT SOLUTION OF THE LIGHT FIELD:

A. Introductory Comments

R,H ANALYTIC PROCEDURE-n

Finally, we consider the third of three transport solution procedures of

the light field. The present procedure is built around the integration of the

R H pair and is the natural companion to the computation in section 20. It-'-n

is worth writing out the key parts of the various stages of this procedure

because, while it is formally the companion to that in section 20, the basic

equations and some other statements differ in rather interesting ways, the

full understanding of which comes only after mastering the connections among

the complete transfer operators, as developed in section 17. Because of these

differences, the relative effectiveness of these three different numerical

solution procedures remains open to further study, which will not be done

here.

B. The R ~n Analytic Procedure

There are six main stages in the present procedure.

I. Integrate the major Riccati pair (16.6), (16.8) in the form

a~(y,a)

ay a ---
x ---
y ---
z ---
b ---

The integration starts at level x with initial values (ia) (of section 9A) and

proceeds downward to level z using (iiia) in order to obtain the values ~(z,a)

and H (a,z) from which we compute-n
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~(b,z,a) =!(b,z) ~(z,a) [I - R(z,b) R(z,a)]-l
4II -

H (a,z,b) = [H (a,z) + H (b,z) _R(z,a)] [I - R(z,b) _R(z,a)]-l
-n -n -n 4II -

The parts R(z,a), H (a,z) come from the major Riccati pair's sweep while- -n

R(z,b), T(b,z) and gn(b,z) come from (iia).

II. Integrate the ~, !, gn major trio (16.14)-(16.16) and the ~ ~n complete

pair (17.80), (17.81):

d~(y,b)

dy = ~(y,b)[~(y,+) + £(y,+) ~(y,b)] + [£(y,-) + ~(y,-) ~(y,b)]

a --
x---
y---
z ---
b--

aH (b,y)-n
--~a-y--- = gn(b,y)[~(y,+) + £(y,+) ~(y,b)] + [~(y,+) + ~e(Y'-) ~(y,b)]

a~(b,y,a)

ay

aH (a,y,b)-n
--~----- = H (a,y,b)[,(y,-) + R(y,b) p(y,+)] + [H (b,y) p(y,+) + h (y,+)]

ay -n - - - -n - -e

!(b,y,a) =!(b,y) + ~(b,y,a) ~(y,b)

The integration starts at level z with initial values (iia) for ~(y,b),

!(b,y), and gn(b,y) and with initial values ~(b,z,a), ~n(a,z,b) found in

Stage I. At each level y of interest, T(b,y,a) is found, as shown, from

!(b,y), ~(b,y,a) and R(y,b) (cf. imbedding rule (17.63». Store R(b'Yj,a),

T(b'Yj,a), and ~n(a'Yj,b), j = O, ••• ,n.
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III. Integrate the major Riccati pair (16.14), (16.16) ln the form

aH (b,y)-n
--~--- = H (b,y)[,(y,+) + p(y,+) R(y,b)] + [h (y,+) + h (y,-)R(y,b)]

ay -n - - - -e -e-

The integration starts at level z with initial values (iia) and proceeds

upward to level x using (iiia) in order to obtain the values ~(x,b) and

H (b,x) from which we compute-n

R(a,x,b) = T(a,x) R(x,b)[I - R(x,a) R(x,b)]-l
- - - -m - -

H (b,x,a) + [H (b,x) + H (a,x) R(x,b)] [I - R(x,a) R(x,b)]-l
-n -n -n - -m-

The parts ~(x,b), ~n(b,x) come from the major Riccati pair's sweep while

~(x,a), I(a,x) and ~n(a,x) come from (ia).

IV. Integrate the ~, I, ~n major trio (16.6)-(16.8) and the ~ ~n complete

pair (17.75), (17.76)
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a!(y,a)
-------- = R(y,a)[,(y,-) + p(y,-) R(y,a)] + [p(y,+) + ,(y,+) R(y,a)]

ay - - - - - - -

a!(a,y)

ay

aH (a,y)-n
--~--- = H (a,y)[,(y,-) + p(y,-) R(y,a)] + [h (y,-) + h (y,+) R(y,a)

ay -n - - - -e -e -

a~(a,y,b)

--~----- = ~(a,y,b)[~(y,+) + !(y,a) £(y,-)] + !(a,y) £(y,-)ay

a --
x---
y--
z--
b -"'--

The integration starts at level x with initial values (ia) for ~(y,a), !(a,y),

and H (a,y) and with initial values R(a,x,b), H (b,x,a) found in Stage III.-n -n

At each level of interest !(a,y,b) is found as shown (cf. imbedding rule

V. Using (iiib,c) and the stored results of Stages II, IV, find for

j = O, ••• ,n

H(y . ,+) = _H(b, +) T( b, y . ,a) + _H(a, -) R(a, y . , b) + H (b, y . ,a)
- J - J - J -n J

H(y.,-) = _H(b,+) R(b,y.,a) + _H(a,-) T(a,y.,b) + H (a,y.,b)
- J - J - J -n J

These results are stored.

VI. Using (ib), (iib) and the results of Stages II and IV, compute
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!(b,a) = !(b,x,a) !(x,a)

~(a,b) = ~(a,x) + ~(a,x,b) !(x,a)

H (b,a) = H (x,a) + H (b,x,a) T(x,a)
-n -n -n

and also

!(a,b) = !(a,z,b) !(z,b)

~(b,a) =~(b,z) + ~(b,z,a) !(z,b)

H (a,b) = H (z,b) + H (a,z,b) _T(z,b)
-n -n -n

For these computations use the union rules (18.25)-(18.27) and (18.28)-

(18.30). From the above results and (iiib,c) we find

~(a,+) =~(b,+) !(b,a) + ~(a,-) ~(a,b) + ~n(b,a)

~(b,-) = ~(b,+) ~(b,a) + ~(a,-) !(a,b) + ~n(a,b)

c. Checking the Results

To check these results, proceed as in section 19C.

D. General comments

Various dualities and differences in the present ~ ffn procedure and the T

~n procedure in section 20 may be noted. The first part of Stage I in each

case is the same, but the ~ ~n and ~ ~n values derived therefrom are quite

different. The Riccati pair in Stage II of Section 20 is now replaced by a
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Riccati trio of a different kind (downward type in sec. 20, upward type in the

present section). Moreover, while the standard Riccati pair in Stage II of

sec. 20 was deintegrated to supply material for the complete pair ~ ~n' now it

is the complete Riccati pair ~ ~n pair that is being deintegrated back to the

x level. Observe how the! equation of the major Riccati trio in Stage II of

the present section is essential to the ~-equation, while it is missing from

Stage II of section 20. Observe finally how the ~(y,a), ~n(a,y) pair is

integrated downward on two separate occasions in Stages I and IV, while the

R(y,b), H (b,y) pair is integrated upward on two separate occasions in- -n
Stages II and III. The end values of the integration of the Riccati trio in

Stage II can be saved to avoid the integration in Stage III. However, the

Stage I and Stage IV duplications seem unavoidable.

216



§22

PART IV. INVERSE SOLUTION OF IRRADIANCE MODEL

22. ASSUMPTIONS UNDERLYING THE INVERSE PROCEDURE AND A TALLY OF UNKNOWNS

We now reverse the procedure of Part III. There the local optical

properties T(Y,±li,j), p(Y,±li,j) in (11.15) over the Y range x $ Y $ z were

assumed known, and we desired the irradiances H(y,±,j) over that range. Now

we have the case that the light field components H(y,±,j) have been measured

throughout the water body and we wish to estimate the local optical properties

T(y,±I,i,j), p(y,±li,j) for y in the range a $ y $ b. This is the inverse

problem of the irradiance model. Towards this end the following preliminary

steps A-F, involving assumptions and constructions, are entailed.

A. As a first step in the inverse solution procedure, we choose a

subinterval X[x,z] from X[a,b] over which we wish to determine the values of

a(y,j), b(y,j) and s(y,i,j), i,j = l, ••• ,m, used in the irradiance model of

sec. 11. The subinterval X[x,z] is to be taken small enough so that

a(y,j), b(y,j) and s(y,i,j), where x $ y $ z, are to be considered constant

over it. The subinterval is in turn divided into m-l subslabs by choosing the

m equally spaced partitioning depths Yj' such that x = Yl < Y2 < •.. <

Ym = z. See Fig. 8.

B. The irradiances H(Yk,±,j) have been measured at the depths Yk of X[x,z],

defined in par. A, and at each depth Yk the measurements for each wavelength

index j = l, ••• ,m have been filed for use. It is assumed that in X[a,b] there

are no true emissive sources, i.e., he(y,±,A) = 0 in (10.15) for all y.

C. It will be assumed that in each homogeneous subslab X[x,z] of X[a,b] the

distribution functions D(y,±,j) (cf. (10.4» are independent of depth y. A
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Surface
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-----.........--------.-

Other
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--x"
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are determined
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Figure 8--Setting of the irradiance measurements used in the inverse solution
of the irradiance model.
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similar depth independence assumption holds for the eccentricity functions

Ef(y,±,i), Eb(y,±,i) in (10.20), (10.21) for depth range x ~ y ~ z,

i = l, ••• ,m. D(y,±,j), Ef(y,±,i) Eb(y,±,i) may take on different values 1n

neighboring subslabs X[x',z'], X[x,z],X[X",Z"], etc.; but within each subslab

of X[a,b] they are considered constant. Moreover, Ef and Eb are assumed

independent of the directions (±) of flow.

D. For easy handling of the optical properties during the solution procedure

we rewrite the local reflectances p(y,±li,j) and local transmittances

T(y,±!i,j) in (11.17) and (11.18) within any given subslab X[x,z] in the

following abbreviated notation. First, for the monochromatic properties,

write

'a .. ' for ;(y,j)
JJ

'b .. ' for b(y,j)
JJ

j = l, ••• ,m (22.1)

For the heterochromatic properties write

's .. ' for s(y,i,j), i,j = 1, ••• ,m, 1 ;: j
1J

where s(y,i,j) is defined in (11.11) and used in (11.13), for x ~ y ~ z.

Next, for the monochromatic properties write

'-D.(±}(a .. + b .. ]' for T(y,±\j,j)
J JJ JJ

J = l, ••• ,m

'D.(±) b .. ' for p(y,±lj,j)
J JJ

Further, for the heterochromatic properties, write
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'D. (±) f..
,

for -r(Y,±li,j) i,j = l, ••• ,m
1 lJ

1 ;f: J (22.3)

'D. (±) b ..
,

for p(Y,±li,j)
1 lJ

for x ~ Y ~ z. Thus all optical properties are assumed independent of Y in

X[x,z].

E. Recall that the Dj (±) are assumed known within each subslab X[x,z].

Hence the unknown properties are the monochromatic absorption and backscatter

coefficients ajj and bjj , j = l, ••• ,m, along with their heterochromatic

associates bij and f ij , where in particular (cf. (11.13»:

'b .. ' stands for e:b(y,±,i) s ..
lJ lJ

(22.4)

'f. . ' stands for e:f(y,±,i) s ..
lJ lJ

for i,j = l, ••• ,m, i ;f: j.

Once the heterochromatic

the eccentricities e:f(i)

b·· and f ..lJ lJ

:: e:f(y,±Ii)

are determined i,j = l, ••• ,m, i ;f: j, then

and e:b(i) :: e:b(y,±li) in each subslab may

be found, since the two equations

b . .If.. = e:b(i)/e:f(i)
lJ lJ

and

(via (22.4»

(22.5)

(via 00.22»

can be solved for the required quantities:
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= [1 + (b . . /f .. )]-1
lJ lJ

From this, by (22.4), we may find

§22

i,j =

i 1:- J

l, ••• ,m (22.6)

s .. = b . . hb(i) = f. .hf(i), i 1:- j
lJ lJ lJ

(22.7)

•

•

which is the transpectral total volume scattering function, the heart of

T(y,±li,j) and p(y,±/i,j) in (11.13). Finally, from (22.2) we can determine

b jj and hence ajj for j = l, ••• ,m.

F. In summary, then, a tally of the unknown coefficients to be determined

shows that in X[x,z] we have 2m 2 unknowns in all, consisting of (cf. (11.17),

(11.18»

(i) m2 + m local transmittances T(y,±!i,j) consisting of

m monochromatic absorption coefficients ajj

m monochromatic backscatter coefficients b jj

• m(m-l) heterochromatic forward scatter coefficients f .. , i 1:- jlJ

[totalling m2 + m distinct unknown coefficients]

(ii) m2 - m local reflectances p(y,±li,j) consisting of

• m monochromatic backscatter coefficients b·· (the same ones as in
JJ

(i) and therefore not counted)

• m(m-l) heterochromatic backward scatter coefficients b .. , i 1:- j
JJ

[totalling m2 - m distinct unknown coefficients]
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Using the 2m 2 pieces of irradiance information {H(Yk,±,j): j,k = l, ••• ,m} we

will next show how to determine the 2m 2 unknowns listed above.
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23. PRIMING THE PUMP: FINDING THE MONOCHROMATIC UNKNOWNS

The full inverse procedure, defined in sec. 24, will be given a good

start if we can hand it some initial estimates of the a··, b .. , and f .. in1J 1J 1J

each subslab X[x,z] of X[a,b]. This will shorten the iterative work which the

inverse procedure must do to home in on the true values of these

coefficients. In this section we will develop a monochromatic version of the

full procedure that will serve this purpose. The end result will give

estimates of the monochromatic quantities defined by ajj and bjj in (22.1).

We return to the basic equation (10.15) and shut off the coupling of the

wavelength-dependent transfer functions. This in effect drops the integral

term over the spectrum A and so, with he(y,±,A) = 0 (and with assumption B in

sec. 22 in force), we obtain the classic monochromatic irradiance model:

+ dH(y,±) = _ [a(y,±) + b(y,±)] H(y,±) + b(y,+) H(y,+)
dy

(23.1)

For simplicity of notation, the A has been dropped and is understood to be one

of the m discrete wavelengths in the spectral interval [Aa,Ab ] defined in

sec. 11. The same preparations gone through to find (11.15) apply

automatically to (23.1). Hence following the procedure in Preisendorfer and

Mobley (1984), we may then write (23.1) as

(23.2)

If we write this in the notation established 1n (22.1), then we would

associate D± to Dj (±), a to ajj and b to bjj for the jth wavelength band of

interest (with j understood, for brevity). In what follows, then, we will

show how to determine estimates a and b of a·· and b .. , respectively from
JJ JJ
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knowledge of D± and measurements of H(y,±,j). This will result in a numerical

exercise gone through separately for each wavelength index j = l, ••••m. It

should be noted that the a and b so found are only approximations of their

associated coefficients a·· and b .. in the full model. For if fluorescence 1S
JJ JJ

active in the hydrosol, then (23.1) must have on its right side a positive

source term: he(y,±,A) > 0 in order to correctly account for the arrival of

photons of wavelength A having been transpectrally scattered from some

wavelength AI ~ A. It may be noted here that one of the main motivations for

the present study is the desire to solve the inverse problem for (23.1) when

he(y,±,A) is positive, due to fluorescence.

The procedure described below is closely patterned after that in

Preisendorfer and Mobley (1984). The salient difference is that the present

development is based on the fundamental solution procedure, while that in the

cited reference uses the transport procedure. This is done mainly to explore

possible alternate inverse procedures. The cited solution is applicable here

also, if one wishes to use it.

A. In Fig. 9 we have two pairs of measured irradiances H(x,±), H(y,±) at

depths x and y in the source-free hydrosol. These pairs are related by means

of the mapping property (14.13):

H(y,-) =

for x $ y $ z.

H(x,+) M (x,y) + H(x,-) M (x,y)
+- --

(23.3)

Now, if we have fixed a and b only approximately, then the ~(x,y) matrix

used in (23.3) may not be exactly computed. When H(x,±) are applied to such a
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Figure 9--Setting of the iterative procedure used in inverting the irradiance
model.
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matrix we may produce irradiances H(r)(y,±) at level y that differ from the

true value H(y,±) there by the amounts ~H(r)(y,±) shown in Fig. 9. This

suggests that, in order to correct these errors, we trace in detail the

effects on the computed irradiance field of the errors ~a and ~b in the values

of a and b. Hence consider the differentials ~H(y,±) given by the calculus:

~H(y,+)

~H(y,-)

= aH(y,+) ~a + aH(y,+) ~b

aa ab

= aH(y,-) ~a + aH(y,-) ~b

aa ab

(23.4)

B. From (23.3) we know in principle how to find the derivatives of the

irradiance field 1n (23.4):

and also

aH(y,+)
aa

aH(y,+)

ab

aM++(X,y)
= H(x,+) + H(x,-)

aa

aM++(X,y)
= H(x,+) + H(x,-)

ab

aM (x,y)
-+

aa

aM (x,y)
-+

ab

(23.5)

aH(y,-) = H(x,+)
aa

aH(y,-) = H(x,+)
ab

aM (x,y)
+-

----:-- + H(x,-)
aa

aM (x,y)
+-

---- + H(x,-)
ab ab

For example, knowing a,b we can compute the difference quotients for any pair

oa, ob of increments of a and b that will approximate the derivation of the

~(x,y) entries:
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aM++(x,y;a,b)

aa

(23.7)

In a similar way the remaining six derivatives of the M-functions can be

found.

c. The inversion of the system of equations (23.4) is possible if we know

the values of the irradiance increments and the four irradiance derivatives

evaluated at some pair of values a,b. First we write (23.4) as

aH(y,+)
aa

[AH(y,+), AH(y,-)] = [Aa,Ab]
aH(y,+)

ab

_ [Aa,Ab] C

Then we can find

[Aa,Ab] = [AH(y,+), AH(y,-)] C-l

aH(y,-)
aa

aH(y,-)

ab

(23.8)

(23.9)

D. In order to start the monochromatic inverse procedure we need initial

estimates of a and b. For this we use the expressions K(y,±) in (12.15),

(12.16). In the present homogeneous subslab geometry, these equations can be

written, using the notation adopted above, as
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K(-) = (a+b) D - bD R(-)
+

§23

(23.10)

Solving these equations for a+b and b, and appending superscripts '0' to

denote the fact that these are initial estimates, we have

(23.11)

where we have written

'Den' for D2 R(+) - D2 R(-)
+

(23.12)

Thus once a(O) + b(O) and b(O) have been determined as ln (23.11), we obtain

a(O) from the difference [a(O) + b(O)] - b(O).

The K(±) in (23.11) can be estimated using (12.14), thus

K(±) ~ -1 log H(y,±)
(y-x) e H(x,±) (23.13)

The R(±) ln (23.11) are estimable by

R(±) ~ H(x,+) + H(z,+)
H(x,±) + H(x,±) (23.14)

With these approximations R(±) and K(±) are associated with the mid-depth of

X[x,y], i.e., ~(x+y). These estimates will be practically valid if (y-x)a is

on the order of 10- 1 or less.
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E. The general iterative cycle in the monochromatic inverse procedure will

now be described. Suppose we are working in subslab X[x,z]. Suppose also

that we have gone through r cycles of the iterative process and have at hand

estimates a(r) and b(r), r = 0,1, •••• Then the next [the (r+1)st] cycle is

performed in the following sequence of eight steps:

(i) From a(r) and b(r) find the rth estimate of the fundamental functions

X[x,z] the 2x2 system of equations (cf. (14.4»:

x S Y S z (23.15)

where

and where

The expanded form of (23.15) for integration 1S (the iteration superscript is

implicit>:
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dM++(X,y)
M++(X,y) + M (x,y)p= T+dy +- -

dM (x,y)+-
M++(X,y) p + M (x,y)T=dy + +- -

dM (x,y)-+
M (x,y) + M__ (X,y)p_= T+dy -+

dM__ (x,y)
= M (x,y) P + M (x,y)T

dy -+ + -- -

(23.l6a)

(23.l6b)

The initial values for the integration are

(23.l6c)

M (x,x) = M (x,x) = 0
+- -+

(ii) Find the rth estimate of the response irradiances H(r)(y,±) using (23.3)

in the form

(23.17)

Here H(x,±) are the measured irradiances of level x = Yl 1n X[x,y).

(iii) Define the rth estimate of the irradiance increments

(23.18)
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As shown in Fig. 9, these ~H(r)(y,±) give the discrepancy between the

measured irradiance field at level y and the estimated field there.

(iv) Compute the eight derivatives of M±±(X,y), M+±(X,y) with respect to a

and b, as illustrated by (23.7) and evaluate these derivatives at the rth

( ) - -(r)estimates a = a r , b = b •

(v) From the eight rth estimates of the M-functions found 1n (iv), find the

four irradiance derivatives aH(y,+)/aa, ••• ,aH(y,-)/ab as in (23.5),

(23.6).

(vi) From the four irradiance derivatives found in (v) and the two irradiance

increments found in (iii), use (23.9) to find ~a(r+l) and ~b(r+l).

(vii) Define

(r+1) (r) + A (r+1)a _ a ua

(23.19)

(viii) Make the tests

(23.20)

where E is some suitably small number, say 10- 3 •
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If this test is not satisfied, return to step (i) and repeat the cycle

ending with (23.20). If this test is satisfied, then set a :: a (r+l) ,

- -(r+l)
and go on the next subslab, beyond X[x,y]. Repeat theb :: b to

initialization step in D and the preceding seven iteration steps.
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24. THE GENERAL INVERSE PROCEDURE FOR THE HETEROCHROMATIC UNKNOWNS

We turn next to the basic equation (11.15) and, following the assumptions

and constructions 1n A-F of sec. 22, we are ready to solve for the optical

constants a· ., b·., and f .. representing the absorption, backscatter, and1J 1J 1J

forward scatter properties of the medium X[x,z]. These constitute the ,'s and

pIS in (11.17) and (11.18). It will be convenient to 'linearize' these two-

dimensional arrays as follows. Write

'A ' for
ll. a ..

JJ

if

if j=k
(24.1)

where ll. = (j-1)m+k, and j,k = 1, ••• ,m. Thus, e.g., if m = 5, then f 43 , where

now j = 4, k = 3, is denoted by 'Ala' since ll. = (4-1)x5+3 = 18. Conversely,

given All.' we can find which f jk or ajj it belongs to by dividing ll. by m. The

integer part of the quotient will be j-1. Then k = ll.-(j-1)m. If j * k, then

'B' f bll. or jk

1S a··.
JJ

Next, we write

(24.2)

where ll. = (j-l)m+k and j,k = 1, ••• ,m. Hence ll. runs from 1 to m2 in each case,

and the 2m 2 unknowns to be found are All.' Bll.' ll. = 1, ••• ,m 2 • These are

A. We next find the new multidimensional counterparts to the set (23.3)-

(23.9). Thus (23.3), by virtue of the source-free forms of (14.20, 14.21),

for each depth Yk' k = 1, ••• ,m in X[x,z] we have
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(24.3)

where the source terms H (x,y,±) are now zero, by assumption. In numerical-e

calculations it is necessary to write out (24.3) in component form. For

example, using the notation (11.16) and denoting the (ij)th components of

~++(x'Yk) by 'M++(x,ykli,j)', with like notation for the other three matrices,

the first of (24.3) is expanded to

m m
H(yk,+,j) = L H(x,+,i) M++(x,ykli,j) + L H(x,-,i) M_+(x,ykli,j)

i=l i=l (24.3a)

j,k = 1, ••• ,m; x = Y1' Z = Ym

and the second of (24.3) 1S

m m
H(yk,-,j) = L H(x,+,i) M+_(x,ykli,j) + L

i=l i=l

j,k = 1, ••• ,m; x = Y1' Z = Ym

The present counterpart to (23.4) 1S then

H(x,-,i) M__ (x,Yli,j)

(24.3b)

(24.4a)

This system of equations (24.4a) can be placed into matrix form suitable

for solving for the A. ,B.. Thus write
1 J
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'.!!(±) , for [.!!(y l'±)' ••• '.!!(Ym'±)]

'6.!!(±), for [6.!!(Yl,±), ••• ,6.!!(ym,±)]

'6A' for [6A 1 ,···,6A 2]
m

(lxm 2 )

(lxm 2 )

(lxm 2 )

(lxm 2 )

(24.4b)

where Yl' ••• 'Ym are the partition depths of X[x,z] established in sec. 22A.

Moreover, we define an m2 xm 2 matrix a~(±)/a~ such that its element in row p

and column q is given by

[
a;:±)]

- pq
(24.4c)

where q = (k-l)m+j for j,k = l, ••• ,m. Similarly we set

(24.4d)

where q = (k-l)m+j, for j,k = l, ••• ,m. The range of p and q 1S l, ••• ,m 2 •

Then (24.4a) can be written as

6H(±)
aH(±)

= 6~~ + 6B
aH(±)

aB (24.4)

which 1S the heterochromatic counterpart to (23.4).

B. The general form of (23.5) 1S, for t=l, ••• ,m 2 ,

a.!!(yk ,+) aM (X,Yk ) a~_+(x'Yk)
~(x,+)

-++
+ .!!(x,-)=aAt aAt aAt

a.!!(yk ,+)
.!!(x,+)

a~++(x'Yk)
+ .!!(x,-)

a~_+(x'Yk)
=aB t aBll. aBll.
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and also

(24.6)

In numerical calculations each of these is opened up and written out as

in (24.3a,b). Equation (23.7) now becomes, for i,j = 1, ••• ,m2 ; k = l, ••• ,m:

aM (X'Yk;A.,B.)-++ 1 J
aA.

1

aM (x,yk;A.,B.)-++ 1 J
aBo

J

~ [M (x,yk;A. + ~oA.,B.) - M (x,yk;A. - ~oA.,B.)]/oA.-++ 1 1 J -++ 1 1 J 1

(24.7)

~ [M (x,yk;A.,B. + ~oB.) - M+ (x,yk;A.,B. - ~oB.)]/oB.
-++ 1 J J - + 1 J J J

The derivatives of the remaining three m2 xm 2 block matrices ~+_(x'Yk)'

~_+(x'Yk)' ~__ (x'Yk) in ~(x'Yk) (cf. (14.3» are found in an exactly similar

way.

c. The inversion of the system of equations (24.4) is in principle possible

if we know the values of the irradiance vector's increments 6H(±) and the 4m4

irradiance derivatives in (24.4c,d) evaluated at some set of values At,B t ,

t = 1, ••• ,m 2 • First we write (24.4a) as

aH(+)

aA

aH(+)

aH(-)

aA

aH(-)

aB aB
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That is

(24.8)

Then we can find

(24.9)

The inverse of the 2m 2 x2m 2 matrix ~ for, say, m = 10 wavelengths over the

visible spectrum (so that each wavelength band is 30 nm) requires inversion of

a 200x200 matrix. This is easily done on present-day general purpose

computers. The question of realizability of the inverse solution therefore

devolves on the quality of the measured irradiance field.

D. To start the heterochromatic inverse procedure over the slab X[x,z] we

use the initial values ajj' bjj , j = l, ••• ,m found in sec. 23. The remaining

initial values are to be aij = 0, bij = 0, for i*j with i,j = l, ••• ,m and

f·· = 0 for i,j = l, ••• ,m. Hence the initial ~ and ~ matrices in (11.17),lJ

(11.18) are diagonal matrices with the diagonal elements made up of T(y,±lj,j)

and p(y,±lj,j) given in (22.2). If there were no fluorescence in the medium,

then the work of sec. 23 will already have solved the inverse problem. In a

natural fluorescence setting, the off-diagonal elements of the ~ and ~

matrices are relatively small compared to the diagonal elements, and so the

present set of initial values is already well on its way toward the final

set.
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E. The general iterative cycle in the inverse procedure will now be

described. Suppose, as in sec. 23E, we are in slab X[x,z). Suppose also that

we have gone through r cycles of the iterative process, r = 0,1, •••• Then the

next, i.e., the (r+l)st, cycle is performed in the following sequence of eight

steps.

(i) From ~(r),~(r) find the rth estimate of the fundamental m2 xm 2 block

. (r)( ) (r)( ) (r)( ) (r)( )matrices ~++ X'Yk' ~+_ x'Yk ' ~_+ x'Yk ' ~__ x,Yk , for k = l, ••• ,m

in X[x,z) by integrating the set of equations (14.4) from level x to

level z and storing these matrices at the m depths Yk. The initial

values for these matrices are analogous to (14.6), now for dimension

m2 xm 2 rather than m. Thus

M(r)(X,x) = ~~~)(x,x) = ~2-++
(24.10)

M(r)(X,x) = M(r)(X,x) = ~2-+- --+

(ii) Find by (24.3) the rth estimate of the response irradiances ~(r)(Yk'±)

using the given measured ~(Yk'±) at k = 1, ••• ,m and the M(r) matrices of

(i) above.

(iii) Define the rth estimate of the irradiance increments

k = l, ••• ,m (24.11)

where the lxm vectors ~(Yk'±) are known from measurements at level Yk'

k = 1, ••• ,m (see Fig. 8).
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(iv) Compute the A~,B~ derivatives of the elements of ~±±(x'Yk)' ~±+(x'Yk)

(displayed in (24.5), (24.6» using algorithms based on (24.7). Evaluate

these derivatives at the rth estimates A = ~(r), B = B(r).

(v) From the derivatives in (iv) find the irradiance derivatives following

the formulas (24.5), (24.6). Use these to form the C matrix in (24.8).

(vi) From the results of (iv), (iii) find the new 6~,6~ from (24.9). Label

them '6A(r+l), and '6B(r+l),.

(vii) Define

(24.12)

(viii) Make the tests

(24.13)

for ~ = 1, ••• ,m 2 • Here £ is some small number, such as 10- 3 •

If these 2m 2 tests are not satisfied, then return to step (i) and repeat

the cycle ending with (24.13).

If these 2m 2 tests are satisfied, then set ~ = A(r+l), ~ = ~(r+l) and go

on to the next subslab beyond X[x,z] to repeat the initialization step D and

the preceding seven iteration steps.
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Once the At and Bt quantities have been found in X[x,z], these are

decoded via (24.1) and (24.2) to find a", f'k' and b'k. The remaining
JJ J J

quantities, Ef' Eb' and Sij are found as described in sec. 22E.

The m depth levels Yl, ••• ,Ym, at which the m irradiance readings

H(Yu,±,j), j = 1, ••• ,m are made, are shown in Fig. 8. This set of depths may

be shifted downward by some arbitrary amount and the inverse procedure

repeated over the new set of depths. For each set of m depths over X[x,z] the

2m 2 £'s and l's in (11.17), (11.18) are determined by the above procedure.

One visualizes the £'s and l's, so determined, as average values within the

interval X[x,z].
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25. FINDING THE INTRINSIC OPTICAL PROPERTIES AND SPECIES CONCENTRATIONS

On the basis of the results in sec. 24, the intrinsic optical properties

corresponding to the inherent optical properties a{y,j), b{y,j), and s{y,i,j)

(cf. sec. 11) may now be found.

A. Determining the Specific Absorption Function

The intrinsic counterpart to the volume absorption function a{y,A), e.g.,

~s defined as follows. Consider an element of volume of the hydrosol at depth

y. Suppose a chemical analysis of the solutes and suspensions in the volume

yields t uniquely identifiable chemical substances. One may visualize these

to be chlorophyll-a, phaeophytins and yellow substances, e.g., so that t = 4,

counting the water molecules as a separate species. The identification of

these species is through their absorption spectra over the visible spectrum.

Let the concentration (in mg o m- 3 ) of the jth chemical species be Cj{y) at

depth y, x $ Y $ z. Then we postulate the existence of t specific absorption

functions aj{A), A E A, one for each chemical species j = l, ••• ,t, with units

m2o mg- 1 , such that a{y,A), for all y and A, is modeled by

t
a{y,A) = L

j=l
c.{y) a.{A)

J J
(25.l)

The function aj{A) of A is an intrinsic optical property of the jth species in

the sense that it depends on the molecular structure of the sample and not its

mass or volume or location y. The units of the aj{A) (i.e., m2o mg- 1 ) follow

from those of a{y,A) (in m- 1 ) and Cj{y) (in mg o m- 3 ). We observe that, while

it is correct to write the units of aj{A) as 'm- 1 /{mg o m- 3 )', the equivalent

way 'm 2o mg- 1 ' points up the physical details of the process of absorption,

namely that photons are encountering the electrons distributed over the
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surfaces of a unit of mass of the jth molecular species. aj(y,A) is then a

measure of the effective area presented to photons by a unit mass molecular

species j about to absorb the photon.

We will now show that the aj(A) can ln principle be determined from

concomitant in situ measurements of their concentrations Cj(y) and the light

field {H(y,±,i): x ~ y ~ z; i = 1, ••• ,m}. Recall that our procedure in

sec. 24 yields a(Yk,j), J = 1, ••• ,m, i.e., the A-average of a(y,A) over the

jth subinterval of A (sec. 11) at depth Yk in X[x,z] (Fig. 5). The

experimenter is required to supply the estimates of Cj(y), j = 1, ••• ,~ at a

sufficient number of depths y. Just how many samples of Cj(y) are needed, can

be estimated as follows. Write (25.1), for a fixed wavelength index i, as

(25.2)

1 = l, ••• ,m

k = 1, ••• ,m

Here we have replaced a(y,A) and aj(A) by their averages over the ith spectral

subinterval. It is clear now that there are ~m unknowns in (25.2), namely

aj(i), i = l, ••• ,m; j = 1, ••• ,~. We intend to find the aj(i) by the least

squares technique. We must then sample enough depths Yk' say n of them, so

that the nm determined a(Yk,i) values exceeds ~m. Thus we require n > ~.

Now, Fig. 8 shows that in each subinterval X[x,z] of X[a,b] we can determine m

values of a(Yk,i). We therefore need to invert the irradiance model in, say,

s such subintervals, so that ~ < n = sm. For example, suppose we have decided

to determine a(y,A) over m = 5 wavelength bands, and to identify ~ = 4

chemical species (say, water, chlorophyll-a, phaeophytin, and yellow
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substance). Then the number of depth determinations of a(Yk,i) will be

4 = ~ < n. Hence since m = 5, s 1n this case need only be 1. Therefore, the

~m = 4x5 = 20 unknowns aj(i) can be determined by the least squares technique

using the m2 = 25 observed values of a(Yk,i), k = l, ••• ,m; i = l, ••• ,m, and

the ~m = 20 determinations of the concentration Cj(Yk).

The least squares procedure may be formulated for numerical work by

placing (25.2) into vector form. Thus, writing n copies of (25.2) for a fixed

wavelength interval i, we obtain

a(Yl'i) C·(Yl)
J

a(y 2,i) ~ c.(Y2)
= L J ° a .(i)

j=l J

a(y ,i) c. (Y )n J n

write ':!(o,j)' for - - T l, ••• ,m[a(y1,i), ••• ,a(y ,i)] 1 =
n

'a(i)' for [al(i), ••• ,a~(i)]T 1 = 1, ••• ,m

'c. ' for T j 1, ••• , ~[C·(Yl)'···'c.(y )] =
-J J J n

where 'T' denotes transpose. Then (25.3) becomes

(25.3)

where

:!(o,i) = C a(i)

C - C£l 0 •• £~]

1 = l, ••• ,m (25.4)

Here C is an nx~ matrix of measured concentrations, :!(o,i) is the nxl

vector of average volume absorption coefficient values (of units m- 1) for the

ith wavelength band found in sec. 24, and ~(i) is the desired ~xl vector of

specific absorption values (of units m2o mg- 1). The least squares procedure
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forms the ~x~ matrix* (fTf)-l and determines the estimate of a{i) by

T T-
~(i) = (~~)-l ~ ~(.,i)

i = l, ••• ,m

(25.5)

Thus we determine ~(i) = [al{i), ••• ,a~{i)]T for i = l, ••• ,m, i.e., all ~m

unknown specific absorption coefficients. Thus we find a set of m spectral

absorption values for each of the ~ molecular species.

B. Determining Concentrations

Once the specific absorption functions aj{i) have been determined we may

say that we have trained the model (25.2). We may then use the model (25.2)

in subsequent experiments to determine the concentrations Cj{y) from

the a{Yk,i) values yielded by the inverse procedure of sec. 24.

In (25.2) hold depth Yk fixed and write ~ copies of (25.2), one for each

i = l, ••• ,~:

a{yk,l) a .(1)
J

a{yk ,2) ~ a. (2)
= L cj{Yk ) J • (25.6)

j=l
a{Yk'~) a. (~)

J

k = l, ••• ,n

* One can facilitate the numerical inversion of CTC by making a principal
component analysis of the set of ~ column vectors {c.: j = l, ••• ,~}
composing C. The principal components of C form a ~dw set of orthonormal
vectors that can replace C in (25.3).
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This is of course possible only if ~ ~ m; and we shall adopt this

assumption in order to proceed. Writing

'a(Yk'·)'
- - T 1, ••• , nfor [a(Yk,l), ••• ,a(Yk'~)] k =

'a. ' for [a.(i), ••• ,a.(~)]T j = l, ••• ,~
-J J J

'c(y )' for T 1, ••• ,n[cI(Yk),···,c~(Yk)] k =- k

we may recast (25.6) into the form

i.e. ,

where

a(y
k
,·) = ~ £(Y

k
)

~ == [~I ••• ~~]

(25.7)

Now assuming the ~x~ matrix A has rank ~, we find

c(y ) = A-I _a(y
k
,·)

- k -

k=l, ••• ,n

(25.8)

In this way we obtain the ~ concentrations cI(Yk), ••• ,c~(Yk) at depth Yk'

The requirement ~ ~ m in (25.6) is necessary in order to obtain a square

matrix ~, which is then potentially invertible. The matrix A is invertible if

the ~ specific absorption curves, formed by plotting the numbers
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(aj(i): i = 1, ••• ,~} for each j = 1, ••• ,~, are linearly independent.

Graphically, this means that their shapes are to be sufficiently dissimilar.

Notice that there 1S some room for maneuvering here: we need only ~ of the m

possible wavelengths in the discrete spectrum of each molecular species.

Suppose, for example, that (il, ••• ,i~) is a set of ~ distinct integers drawn

from the integer set (l, ••• ,m). Then form the ~ wavelength dependent specific

absorption curves (aj(iu ): u = 1, ••• ,~}, j = 1, ••• ,~ and examine them for

linear independence--i.e., find the determinant of the matrix A formed from

t~ese ~ arrays of ~ numbers. The larger the determinant's absolute magnitude,

the better conditioned will A be for inversion in (25.8).

C. Inversions for band s

The basic model for a(y,X), namely (25.2) can be written down also for

the mean backscatter function b(y,X):

(25.9)

i = 1, •.• ,m

k = 1, ••• ,m

Similarly we can write down

~

L c.(Yk) s.(i',i)
j=l J J

(25.10)

i',i = 1, ••• ,m

~ z k = 1, ••• ,m
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It follows that the algebraic procedures for inverse procedures to determine

the bj(i) and sj(i' ,i) from the light field are precisely those described

above for a/i). Observe finally that the concentrations Cj(Yk) are common to

all three models (25.2), (25.9), (25.10).
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