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SIMULATION DATA SETS FOR TESTING MOS (MODEL OUTPUT STATISTICS)
PREDICTION METHODS

Rudolph W. Preisendorfer

ABSTRACT. It is shown how to construct a set of time series with
prescribed autocorrelations and cross correlations which will
serve as simulators of real fields drawn from Nature for use in
testing methods of prediction. These constructions are applied in
particular to the problem of evaluating the skill of prediction
methods in the context of a model output statistics (MOS)
framework. In an MOS framework there are three main
ingredients: (i) a model (e.g. an atmospheric general circulation
model) that produces a set of predictor time series called the
model predictors, (ii) an observer (a human Or an instrument) that
produces the observed predictand, and (iii) a prediction method
(usually a set of statistical algorithms) that forecasts the
predictand given the predictors. The distinguishing feature of an
MOS framework is that the observed predictands are not in the list
of outputs of the model. It therefore falls upon the prediction
method to link the model predictors and the observed predictand
during a training period for the method. Then, when fresh
realizations of the predictors are produced by the model, the
prediction method will produce its forecasts of the predictand.
The skill of the prediction method is determined by comparing its
forecasts with subsequent estimates of the predictand by the
observer. The model and observer in (i) and (ii) above are
generally imperfect and these imperfections find their way into
the skill scores of the prediction method--itself an imperfect
instrument in practice. To help sort out the various
contributions of these three types of imperfection to the final
skill scores of the prediction method, we use the time series
construction techniques mentioned above to produce controlled
simulators of the real predictor and real predictand fields, and
we also develop controlled simulators of the fields produced by
the model and observer. Hence in the simulation of an MOS
prediction setting there are basically these four fields to
generate and interrelate. In such a controlled experimental
setting a prediction method's inherent and apparent skills and its
robustness to changing prediction conditions may be measured and
studied.

1. INTRODUCTION

A. Purpose

In this note we outline a procedure to generate data sets for the purpose

of determining the skills of various MOS (model output statistics) prediction

methods. These data sets have controllable parameters so that the prediction
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methods are set to their tasks under known and controllable conditions of

predictability and reproducibility of results. The distractions of incomplete

and uncertain real-data sets are momentarily set aside so that we may discern

the inherent and apparent skills (to be defined below) of each prediction

method, along with the stability of these skills and the robustness of the

prediction methods. In the present note we report only on the theoretical

basis of the simulation of the data sets.

B. Background

The present work is based on some research for the Naval Prediction

Research Facility (NEPRF) at Monterey, California. It was required to set up

a procedure whereby various MOS prediction methods were to be evaluated in a

systematic way prior to full operational use in conjunction with the Naval

Operational Global Atmospheric Prediction System (NOGAPS). The latter

provided the 'model' in the Model Output Statistics program. Research support

was provided in part by NEPRF through Prof. Robert Renard, Chairman of the

Meteorology Department of the Naval Postgraduate School, Monterey, CA.* The

work was begun during the author's tenure at the School as the 1983 holder of

the Haltiner Research Chair in Meteorology.

A history of the MOS applications to weather prediction may be

reconstructed from the references found in the bibliography by Carter and

Dallavalle (1985).

* The MOS aspect of this work was funded by the Naval Environmental
Prediction Research Facility, Monterey, California, under Program Element
63207N, project 7W05l3: 'Model Output Statistics'. The development of the
simulation model of Appendixes A, Band C was done under the auspices of a
TOGA (Tropical Ocean, Global Atmosphere) Grant from the U.S. TOGA Project
Office, NOAA headquarters, Rockville, Maryland.
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Here at PMEL, word proce~sor assistance was provided by Ryan Whitney and

the diagrams were made by Gini Curl.

2. THE SIMULATION PROBLEM IN THE MOS SETTING

The problem of designing simulation (or artificial) data sets for MOS

prediction methods is a relatively interesting one, for it requires a mix of

two simulated natural fields, a modeled field, and a field estimated by an

observer. In particular it requires the simulation of four main data sets:

(i) primary real fields (e.g., winds, temperatures, pressures), (ii) the

modeled versions of these primary real fields, (iii) secondary real fields

(e.g., visibility, fog, cloud height), and finally, (iv) an estimate of the

secondary real fields by an observer (a human or an instrument). The

secondary real fields are, by definition, those not in the output menu of the

MOS model. Once these four fields are 1n place we allow a prediction method

(e.g., conditional probability method, discriminant method, or linear

regression) to enter the scene and to be trained on part of the set of modeled

primary fields (the predictors) and estimated secondary fields (the

predictands). Then the prediction method is tested on another portion of the

set of simulated predictors and predictands, saved just for that purpose, and

prediction skill scores are accumulated and interpreted.

In the present simulation setting the model of the primary real field

takes the place of an actual general circulation model such as the Naval

Operational Global Atmospheric Prediction System (NOGAPS) at NPS, Monterey,

CA, while the observer in this study simulates, for example, someone on the

deck of a ship estimating a secondary field (say) atmospheric visibility. In

setting up an actual MOS prediction method, i.e., to train it to forecast some

predictand (say, visibility), the observations of the predictand must be

3
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coupled with a set of predictors supplied by the NOGAPS model (say, winds,

temperatures, or pressures). When the NOGAPS model is subsequently used, it

will produce a fresh set of predictors. The prediction method is applied to

these predictors to produce its forecast. In attempting to emulate this

activity in an artificial data set we must construct a simulation of the

NOGAPS model fields as well as construct a simulation of the primary real

fields it is trying to model. Moreover, we must simulate an observer

estimating some aspect (visibility, say) of a secondary real field, as well as

simulate the secondary field itself. In the construction of the artificial

data set we therefore have the opportunity not only to build in the inherent

correlations between the real predictors--the fields coming from Nature--but

also to build in the errors of the observer viewing the effects of these

fields (e.g., visibility) and also the errors of the NOGAPS in its attempts to

model the real predictors.

To see this in more detail, consider Fig. 1 which summarizes the MOS·

concept diagrammatically. The real atmosphere and oceans are the ones given

to us by Nature and are denoted by the top box of the left column. In the

real atmosphere and oceans, all fields (primary or secondary) and all their

interconnections are known--if only to the Creator. The real primary fields

are the ones traditionally we have come to incorporate in the laws of motion,

such as the Newtonian equations of motion of the fluids comprising the oceans

and atmosphere, including the first and second laws of thermodynamics. The

real secondary fields are largely those that interest navigators of the sea or

the air above it. A representative but not exhaustive list of such real

secondary fields is displayed in the left hand column of Fig. 1. While many

of the real secondary atmospheric fields are in principle obtainable from the

real primary fields by special physical theories, they usually are not in the

4
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fATMOSPHERE]
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lQR OCEAN

REAL PRIMARY FIELDS (Z)
(REAL PREDICTORS)

MODEL PRIMARY FIELDS (X)
(MODEL PREDICTORS)

Radiance field N (from sun)
Pressure P
Wind U,V,W
PHASES OF H20, ATM GASES
TEMP T
+ immediately derived fields

initialization ..
and

computation

As in nature, but now only
imperfectly simulated.

+ immediately derived fields

1-

OBSERVER OF REAL PREDICTANDS

,
FORECAST OF OBSERVED
PREDICTANDS VIA MODEL
PREDICTORS

MOS METHOD: COMBINES MODEL
PREDICTORS AND OBSERVED
PREDICTANDS USING METHOD X,
METHOD Y, ••• ,METHOD Z

--

yields

OBSERVED PREDICTANDS

MODEL SECONDARY "FiELDs- - ..,
(MODEL PREDICTANDS) I

(assumed not available) I_____________ ..J

(y)

• INHERENT AND APPARENT SKILLS
OF X,Y, ••• ,Z

• ROBUSTNESS OFX,Y, ••• ,Z
• RELATIVE SKILLS OF X,Y, ••• ,Z

r­
I

I
L _

observation ...

Some attributes
of Methods
X,Y, ••• ,Z
determinable via
simulation
Data Sets:

REAL SECONDARY FIELDS
(REAL PREDICTANDS)

E. G. :

1. LIGHT FIELDS (visibility)

2. CLOUD COVER
(v)

3. CLOUD HEIGHT

4. FOG

S. - SOUND FIELDS

6. OCEAN WAVE FIELDS

7. OCEAN CURRENTS

8. BIOTIC FIELDS:

Phytoplankton
Zooplankton

9. ETC.

Figure l.--The general concept of the MOS (Model Output Statistics) approach
to forecasting.
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derived products generated by NOGAPS or other present-day theoretical

atmospheric systems. These latter systems are therefore models, not only

because many of the needed secondary fields are missing from their outputs,

but also because the primary fields and the derived products they do generate

are usually more or less in error.

3. THE GENERAL MOS PREDICTION CONCEPT AND SOME SPECIAL CASES

We describe first the so-called standard prog form of the general MOS

concept. Then we shall make an overview of the general MOS concept and

illustrate it with several of its other special cases.

A. Standard Prog

By definition, in the present study, an MOS prediction method is

concerned only with forecasting those real secondary fields that are not in

the output menu of the model. The general approach of MOS methods to the

atmospheric (or oceanographic) forecasting problem is depicted in the right­

hand column of Fig. 1. An observer records some estimate of a real secondary

field of interest (say marine atmosphere visibility). It is assumed that this

real secondary field (the real predictand) is not available as a model

secondary field. Hence we settle for an estimated version of the real

secondary field of interest over some given region. This estimate is the one

to be predicted; it is called the observed predictand. It is usual to assume

that the real secondary field is constant over this region. The region is

taken small enough so that this is a reasonable assumption. It is also

assumed that the predicted model primary fields (of NOGAPS, say) have been

recorded at various locations of the given region and at the same times when

the real secondary field was observed. The model primary fields are called

the model predictors for this region. Such model-predictor/observed-

6
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predictand pairings of fields is done over the geographic region of interest

at selected times t+, with a chosen lag, between the present (t) and the

future (t+,). This produces a Basic Data Set of predictor/predictand pairs

over the region for lag, measured from time t. The lag times allow pairings

of the recorded model predictors at times t+" i.e., , hours (say) in the

future of t with the values of the observed predictands also at times t+,.

This particular uniting of predictor and predictand pairs defines the standard

prog form of the general MOS prediction concept. (We will place the standard

prog form into perspective, below, when making the overview of the general MOS

prediction concept.)

An MOS prediction method (X,Y, ••• , or Z) is then trained on part of the

Basic Data Set to decide on a value of the predictand field at time t+, (say,

visibility) given a set of one or more values of the model predictor fields

predicted by the model for t+, from analyzed real predictors obtained at time

t (the present). This method is tested on the remaining part of the

predictor/predictand Basic Data Set as follows: A set of model predictor

values is chosen from the testing-part of the Basic Data Set, using the

predictors determined during the training stage. The method produces a

forecast of visibility (say) from this set. The forecast is compared with the

observed predictand (visibility) that was paired in the Basic Data Set with

this set of predictor values. As a result of the comparison, a skill score 1S

assigned to the forecast of the method. This is done for all the prediction

methods (X,Y, ••• ,Z) under study. The various methods (X,Y, ••• ,Z) are

intercompared using these scores, and some assessment of their relative skills

1S made.

The assumption underlying this testing activity is that these relative

standings of the prediction methods (X,Y, ••• ,Z) under simulated conditions

will be indicative of their relative standings when the model and the

7
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associated prediction methods (X,Y, ••• ,Z) are put to work in the real world

(i.e., when using non-simulated data sets). This assumption will be well­

founded provided that: (i) the simulation data set is representative (in a

statistical sense) of the real primary fields and also (ii) representative of

the real secondary fields encountered in Nature as well; (iii) the errors of

the model (e.g., NOGAPS) have been well-simulated; and (iv) the errors of the

observer have been well-simulated also. We shall consider these matters

below, in turn. For the moment we pause to make an overview of the general

MOS prediction concept.

B. General Prog and Some Special Cases

In figure 2 we indicate the general MOS concept leading to the general

prog. On the left margin of the diagram we see the four basic data sets

displayed: the sets of real predictors, model predictors, real predictands

and observed predictands. The model and observer, as explained above, relate

the real fields to the model-predictor!observed-predictand pairs, and the

latter pairs ar~ coupled statistically by the prediction method (say X).

Along the bottom axis of the diagram is displayed the time domain, partitioned

into a training period and a testing (or application) period. During the

training period the p model predictor fields ~(t+'A'·) = [x(t+'A,l), ... ,

x(t+'A,P)]T, produced by the model for a lag 'A into the future beyond the

present time t, are paired with the observed predictand values y(t+'A+'x).

Here ''X' denotes an extra lag into the future beyond t+'A produced with the

aid of prediction method X. In general, the model and the method each can

project its given field into the future: the model projects

!(t,·) = [z(t,l), ••• ,z(t,p)]T into ~(t+'A'·) and the method links ~(t+'A'·)

with y(t+'A+'X) during the training period. During the testing period the

model, having some flexibility as a general circulation model, can project
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!(t,·) to !(t+'B'·)' where 'B is generally different from 'A. However, the

statistical method is considered here as less flexible, and during the testing

period we must retain the same lag 'X used in the training period. Therefore

the prediction method predicts y(t+'B+'X) as an estimate of the observed

predictand y(t+'B+'X). Then y(t+'B+'X) and y(t+'B+'X) are compared, and skill

scores are recorded and interpreted, as usual.

Several special cases of general prog are of interest. First of all, the

standard prog, as described in par. A above, is the case where 'A = 'B = , > 0

and 'X = O. In standard prog, therefore, the model's lag into the future is

fixed and positive during both the training and testing periods. The

prediction method's lag 'X in standard prog is set for zero. Thus the

prediction method's role in standard prog is to produce a link between

~(t+,,·) and y(t+,), i.e., between two contemporaneous fields. In this sense

the method X serves more as a means of specifying y(t+,) as a (statistical)

function of ~(t+,,·) rather than as a true prediction of ~(t+,,·).

Another common variant of general prog is the so-called perfect prog

wherein 'A 0, 'X = 0 and 'B > O. In this case, during the training period,

we use the method X to link ~(t,·) with y(t). The field ~(t,·), with time t

thought of as the present, 1S sometimes called the initialized field of the

model, or alternately, the analyzed field version of the primary field

~(t,·). The latter is the raw field coming in from Nature observed at time t;

!(t,·) is !(t,·)'s smoothed, gap-filled, and generally objectively analyzed

version; and ~(t+'B'·)' used during the testing period, is computed by the

model with ~(t,·) as an initial value.

Both standard prog and perfect prog are special cases of the prediction

scheme called dynamical prog, where 'A > 0, 'X = 0, 'B > O. Once again the

burden of prognostication is carried by the dynamical model rather than the

prediction method X. This is the antithesis of statistical prog for which

10
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LA = 0, LX > 0, LB = 0. Now method X carries the model's analyzed field

~(t,·) into the future to match up with and attempt to predict y(t+LX)'

All of the above schemes are special cases of the general prog form of

the MOS idea, which is also called the statistical/dynamical prog. For this

we generally have all three lags positive: LA > 0, LX > 0, LB > 0.

4. SIMULATING THE REAL PRIMARY FIELDS (REAL PREDICTORS)

The theory of simulation of a real primary field z(t,~) over a region is

given in Appendix A. The main formula is (A4.6). The developments in the

Appendix show how to find the varlOUS maln pieces of z(t,~), the ~th field's

value in the region at time t, such as the principal component aj(t) and

eigenvector component. ej(~). Some physical interpretations of z(t,~) are

listed in the 'Real Primary Fields' box of Fig. 1. The z(t,~) are potentially

of great generality and can be used to simulate arbitrary finite sets of

fields at each of an arbitrary finite set of points of some region. This is

possible by suitably defining the meaning of~. For example suppose

z(t,(n,I», z(t,(n,2», z(t,(n,3»

are respectively three atmospheric fields such as air temperature, north-south

wind component, and relative humidity at a point n ln space near the sea

surface. n itself is an integer over the range n = 1, ••• ,m which codifies a

latitude and longitude and a distance from mean sea level. The ~ values ln

the general notation z(t,~) are then defined for each pair (n,k) via:

~ = 3{n-l) + k k = 1,2,3 n = 1, ••• ,m.

Therefore, we may include for study all three atmospheric fields at each of

the m points in space. In what follows below, ~or brevity, we will simply

11
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write It' for (n,k), and understand that generally nand k can vary over the

ranges n = l, ••• ,m and k = 1, ••• ,1, respectively. Hence as t runs from 1 to

p = 1m it can cover all possible 1 real primary fields that we may wish to

simulate, at each of a given set of m points in space.

5. SIMULATING THE REAL SECONDARY FIELDS (REAL PREDICTANDS)

The real secondary fields of this study are those that are of interest to

the navigators of the sea or the air above it. Some examples are depicted in

Fig. 1. The variety of these fields is virtually unlimited; they arise under

all conditions of visual or auditory search below and above sea level, and for

many submarine travels under, sailing conditions on, or flying conditions over

the sea. The main characteristic of these real secondary fields is that they

are not immediately available through algorithms applied to either the real or

modeled primary fields. It may be that such algorithms exist in various

subdisciplines of oceanography or meteorology (e.g., radiative transfer theory

for visibility; marine acoustic theory for sound fields; surface-wave spectrum

theory for sea state) but that the special relations governing such algorithms

simply have not yet been incorporated in the derived products of the model

primary field; or perhaps it is simply desired to predict the real secondary

fields in a new way, say by some novel statistical MOS prediction method.

Hence in either case the MOS prediction method must statistically combine the

observed predictand field with the model's predictors in some effective way.

In order to simulate the real secondary fields (real predictands) we must

invent reasonably realistic functional relations between the real predictand

v(t) and the real predictors z(t,t), t = l, ••• ,p where It' denotes time and

It' denotes a predictor index. To fix ideas, suppose that at some point n

just above the ocean surface, the atmospheric state is given as follows:

12



§5

v(t) is visibility

z(t,l) is air temperature

z(t,Z) is north-south wind component

z(t,3) is relative humidity.

All of these z(t,~) values are readily derived from the real primary fields.

Then some possibilities for simulating the connections of these three fields

z(t,~) with v(t) are:

(a) v(t) = a v(t-l) + b\z(t,l)1 + clz(t,Z)\ + d!z(t,3)1

(b) v(t) = alz(t,l)l b Iz(t,Z)I C Iz(t,3)l d

(c) v(t) a exp[-bz(t,l)]/[c+dlz(t,Z)1 + elz(t,3)ll

(d) w(t) = E{v(t)}

(e) v(t) = z(t,p+l) (see comment, below)

We omit the ~ index from the notation for v(t) because, by assumption, the

predictors z(t,~) , ~ = 1, ••• ,p, are associated with a region of space over

which v(t) is independent of location. For example, in (a), on setting a = 1

and b = c = d = 0, we have a simple persistence relation for v(t) over the

region of interest. Otherwise, for a = 0, and b,c,d arbitrary, we have a

simple linear regression formula. In (b) there is a multiplicative power law

between the z(t,~) and v(t), all suitably nondimensionalized. This law could

be linearized by taking logarithms of each side. In (c) we have a typically

nonlinear relation to confound the prediction methods during the simulation

studies. Finally, in (d),v(t) could be any of the v(t) in (a)-(c). Here

w(t) is the ensemb~e average -of v(t). so that w(t) is the climatology of

v(t). In (e), le~ving the present example of p = 3, we generalize, and we

simply single out the (p~l)st of p+l real primary fields to act.as the real

13
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secondary field of interest. The remaining p fields z(t,~), ~ = 1, ••• ,p, take

up the role of the real primary fields (see §6, Appendix B).

The preceding examples merely give the flavor of the simulations of the

real secondary fields that could be made. Further examples are likely to be

tried as the simulation study progresses.

6. SIMULATING THE MODEL PRIMARY FIELDS (MODEL PREDICTORS)

From Fig. I we see that the model primary fields attempt to represent

their real counterparts. Such attempts are rarely perfect and the result is a

somewhat distorted and noisy version of the real primary fields coming out of

Nature's mill. Moreover, when it comes to predicting the real primary field's

future states, the model reveals still further imperfections. To quantify

this aspect of the model, let x(t,~) be the model's version of the real

primary field z(t,~), for ~ = l, ••• ,p, and time t. Then for a given time lag

T we simulate the model's ~th predicted field value X(t+T,~) in terms of the

~'th real primary field's future value Z(t+T,~') at t+T by:

p

I

t = 1, ••• ,n

s (~,~') Z(t+T,~') + n(t+T,~)
T

~'=l

~ = 1, ••• ,p

(6.1)

We may write this in vector form:

X(t+T) = S Z(t+T) + n(t+T)
-T

Here ST(~'~')' ~,~' = 1, ••• ,p are chosen real constants of a linear

transformation from the Z(t+T,~)'S to the X(t+T,~)'S. Moreover, n(t+T,~) is

the noise which further distorts the attempt to precisely represent the

Z(t+T,~). Ideally (i.e., if the model were perfect) we should have

14
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ST(~'~') = 0 for ~ * ~' and 1 for ~ = ~'; and n(t+T,~) = 0 for all t, T and

~. In practice a good model would have ST(~'~') and n(t+T,~) values close to

these ideals. In general, it is natural to expect ST(~'~') to decrease and

n(t+T,~) to increase with increasing T, for fixed ~,~'. This simulates the

decreasing ability of the model to predict the future values of z(t,~). One

must decide on these matters before undertaking the simulation study (cf.

step 4, §8).

7. SIMULATING THE OBSERVED REAL SECONDARY FIELDS (OBSERVED PREDICTANDS)

In Fig. 1 the observer of the real secondary fields makes estimates of

their magnitudes, and these estimates are combined with the model predictors

by the MOS methods X,Y, ••• ,Z to be studied. Here then arises another possible

source of error that must be simulated, that produced by an imperfect

observer. This error is particularly evident in the case of human observers

estimating atmospheric visibility at sea where there may be few visual

benchmarks to guide such an estimate. When observers make estimates of

visibility, the estimates are usually in terms of a finite set of discrete

categories. Suppose, e.g., there are three categories 1, 2, 3 (representing

low, medium and high visibility) to be estimated.*~hen it is the case that

category 1 indeed prevails in Nature at some locale and time, the observer may

correctly estimate category 1 visibility. However, the observer may also at

that locale and time, with some non zero probability, estimate category 2 or

category 3. The 3x3 table below summarizes the relative frequency eij of the

observer estimating category i when actually category j exists in Nature.

* Three categories are chosen here to be specific. In general, the theory
below can handle any finite numb~r of categories, formable in any of
several ways.

15
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Observer-error Table

1 2 3
e· .

1J

Estimated
category i

ell e 12 e 13

e21 e22 en

e31 e32 e33

Actual
category J

1

2

3

0.1)

Here the eij have been normalized so that each column of (7.1) sums to 1:

3
l. e .. = 1

i=l 1J
for j = 1,2,3 (7.2 )

The perfect observer would have eij = 0 if i ~ j and eii = 1 for i = 1,2,3. A

bad observer would have relatively large off-diagonal eij values.

One uses the observer's error table in the simulation procedure as

follows. Suppose that a realization of the real primary field {z(t,~):

t = 1, ••• ,n; ~ = l, ••• ,p} has been generated over some given region of

space. From this, by means of one of the algorithms in (a)-(d) of §5, we

generate values of the real predictand v(t), t = l, ••• ,n that are assumed

representative of the real predictand over the given region. Arrange these n

values v(t) in ascending order so that, after relabeling, we have

~ v
n

16
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Next, group these values into three equally populous category sets CI ,C 2 , and

C3 (or nearly so if n is

respectively the lowest,

not divisible by 3)*. CI ,C 2 , and C3 is then

middle, and highest visibility class.t Now these v·
J

values (which are of the form vet) for some t) are the values of visibility as

they actually occur 1n Nature; i.e., in the context of the present simulation

exercise, they come to us by a known alg()rithm (given by (a)-(d) of §5, e.g.)

applied to the simulated primary field. When the observer is confronted with.

say vk ' which happens to actually be in the set Cj , the probabilities are

eIj,e2j,e3j that the observer will estimate vk to be in class sets CI ,C 2,C 3,

respectively. To simulate the ~bserv~r's estimate of the category to which vk

belongs we randomly choose a uniformly distributed number v on the interval

I = [0,1] which has been partitioned into three subintervals

AI' = {u: a ~ u ~ e I .}
J J

A2 . = {u: e I . < U ~ e I . + e2 .} (7.4)
J J J J

A3 . = {u: e I . + e 2 · < u ~ I}
,J . J J

so that I = Al . + A2 . + A3 · j = 1,2,3 (7.5 )
J J J

If the random number v falls, e.g., in A2j then vk 1S assigne~ to categ~ry 2

by the observer simulator. In the long run, then, vk ' when actually in set

* For example if n is 5, then [vI v2],[V3 v~],[~~] = CI ,C 2 ,C 3 is one
grouping. If n is 7, ~hen CI ,C 2,C 3 = [~I ~2]~[v3v4]'[VS v6 V7] is the
associated grouping. In general, the third group C3 takes up the remainder
so as to have one more or one less member than its two predecessors. For n
on the order of 100, this convention should not materially affect the
subsequent results. Otherwise, the odd category C., that t.kes up the odd
v·I value, is chosen randomly. 1

t It should be noted that there are other ways of defining categories
CI 'C 2' and C3• For instance, instead of having them contain the same
number of points, they could be constructed to have the same variance about
their centtoids; or the range of the v(t)'s could be partitioned into
categories of equal length.

17
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Cj , will be placed with probability eij in Ci , and hence with probability eij

the associated visibility vet) will be placed in category i, i = 1,2,3.

8. PUTTING IT ALL TOGETHER

When the prediction methods X,Y, ••• ,Z have been selected for evaluation,

we construct the Basic Data Set on which they will be tested by going through

the procedure outlined below. All prediction methods will then be trained on

the same part of this Basic Data Set and tested on the same remaining part of

the set. At the outset of the task of constructing the Basic Data Set,

several broad decisions should be made. Thus decide whether:

a) the field-to-field correlations m(t,t') should be high or low (cf.

(A2.l) and (B2.1».

b) the temporally lagged field-to-field correlations k(t,t') should be

high or low (cf. (A2.2) and (B3.l)).

These decisions will simulate the level of determinism (high correlation)

or randomness (low correlation) of the real primary field, as encountered by

the prediction methods.

Moveover, choose:

c) the algorithm for determining the real secondary field from the real

primary field «a)-(d) §S; cf. §6, Appendix B).

d) the prediction-error level s,(t,t'), n(t+"t) in (6.1) of the model

in its forecasts of the model primary field (the model predictors)

with lag, (cf. (B4.l».

e) the error level (via table (7.1» of the observer in his estimates

of the real secondary field (the real predictand) (cf. §5,

Appendix B).

18
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These latter three decisions will fix the inherent difficulty of

forecasting the real predictand (choice c), the quality of the model

(choice d), and the quality of the observer (choice e). Appen9ix B has been

written to facilitate the five decisions a)-e).

Once these broad decisions have been made, the procedures for

constructing the Basic Data Set and for applying and evaluating the prediction

methods reduce to the following:

Step 1: Initial Choices

a) Choose the number 'p of real primary' fields z( t, f,;), f,; = 1, ••• , p

. (e.g., p ='9).

b) Choose the numb'er' n of samples of z(t~f,;)', t '" l, ••• ,n (e.g.,

n = 100).

c> Choos~ the field-to-field correlat ions m( f,;, f,;' ), f,;, f,;' = 1, ••• , p with

m(f,;,f,;) = 1 for f,; = l, ••• ,p. Observe the constraints (A3.4) which

hold for m(f,;,C'), 'i.e.,lm(f,;,f,;')I:$ L See App'endix B for

suggestions on parameterizing' m(f,; ,f,;") ~ See Appenaix C for a package

construction of the data set.

d) Determine the field-to-field lagged;correlations k('l;,f,;'),

f,;,f,;' = l, ••• ,p. There are two options.

Option 1: Choose the temporally lagged field-to-iield correlations

k(f,;,f,;'), f,;,f,;' = 1, ••• ,p with a :$ k(f,;,f,;) < 1 for f,; = 1, ••• ,p.

Observe the constraint (A3.6), i.e., Ik(~,f,;')1 < 1,

f,;,f,;' = 1, ••• ,p. See Appendix B for suggestions on p~rameterizing

k(f,;,f,;'). See Appendix C for a package construction of the data set.

Option 2: Choose autoregressive correlations Pj such that IP -I < 1,
J

j = 1, ••• ,p. If the package construction of Appendix C is chosen,

then the Pj are automatically determined.
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If Option 1 in d) 1S chosen, then condition Ipjl < 1, j = 1, ••• ,p

should be checked at step 2b below. If Option 2 in d) is chosen,

then condition (A3.6) should be checked at step 2b below.

Step 2: Construct the Real Primary Field

a) Starting with the pxp matrix ~ chosen in Step 1, find ~, and A V1a

(A2.6). Check that all Xj are positive.

b) If Option 1 in Step 1 above was used, then find Pj via (A2.20).

Check that Ipjl < 1. If check doesn't hold, then redefine the

k(t,t') (generally make them smaller in magnitude).

Generate realizations of aj(t), j = l, ••• ,p; t = l, ••• ,n using

(A3.l). £j(t) for each j and t is randomly drawn from the normal

distribution N(O,l-pH (Le.·, of zero mean and variance I-pO.
J J

If Option 2 in Step 1 above was used, then check that (A3.6) holds

using (A2.4) on the scalar level:

p

k(t,t') = I
j=l

t,t' = l, ••• ,p

p.n.(t) n.(t')
J J J

(8.1)

c) From Pj' aj(t), ej(t) for t,j = l, ••• ,p; t = l, ••• ,n, find z(t,~)

via (A4.6). These z(t,t) values form the real primary fields.

Step 3: Construct Real Secondary Field and its Category Classes

a) Choose the functional representation of v(t) from among (a)-(d) of

§s. Find the real predictand values v(t), t = 1, ••• ,n. See §6 of

Appendix B for the alternative adoption of the In-House Real

Secondary Field.
20
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b) Arrange these n values v(t) in ascending order, as in (7.3), and

determine the category classes 'C 1 ,C 2 ,C 3 as'described in §7.

Step 4: Construct Model Predictors

a) Choose the,sT(~,E;'), E;,E;' = l; ••• ,p in (6.1)',- a:long with n(t+T,~).

See (B4.,1) for a p'arameterization {)f s~{E;,E;'). n(t+T,E;) is a

normally distributed variat~of zero mean and variAnce o~ which we

choose to be independent of t,~, and E;, for simplicity. Th~

relative sizes of s (E;,E;') and an' deteimin~ the signal to noise
T ,

ratio. A good model will have small nqise, parameter an relative to

ST(~'~)' ~ = 1, ••• ,p. The result of the construction will be the

set (X(t+T,~): t = l, ••• ~n; ~ = l, ••• ,p} of model predictor values

fashioned for iag T.

Step 5: Construct Observed Predictands r

a) Go ~ystematically through.v(t)~ t. =l;.~.,n of Step 3 and classify

(c£.(7 .3» .,

b) Simulate the observer's erroneous classification of the v(t) values

by choosing and using the Observer-error Table'O.U. Thus go

through the classifiedv( t), values and m.;lke; the follqwing

simuiLations:- If v(t) is in Cj as determined in. a) above, then use a

random number generator, as explained in §7, to simulate the

observer's estimate of the categQry to which v(t) belongs. Let y(t)

(=1, 2, or 3) be the resultant category index of the predictand

v(t), t =1, ••• ,n. Then the set of integers (y(t): t =1, ••• ,n} is

the set of o~served predictands. See §5 of Appendix B for ,a

parametric version of, the observer-error table~
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Step 6: Construct Basic Data Set for the MOS Methods

a) For lag, and each t, pair the observed predictands y(t+,) with the

model predictors x(t+"t), t = l, ••• ,p to form the Basic Data Set

D(,) = ([x(t+"l), ••• ,x(t+"p»), y(t+,)]: t = l, ••• ,n}.

b) Randomly partition D(,) into two subsets Dtrn(,), Dtst (') the

training and testing sets, respectively (the number of elements ln

Dtrn should, for starters, be about twice that in Dtst ). Let the

number of elements of Dtrn(,) be ntrn and the number in Dtst(L) be

Step 7: Application of the Prediction Kethods X,Y, ••• ,Z. Skill Scores

a) Train* prediction methods X,Y, ••• ,Z on the set Dtrn(,) of Step 6.

b) Test** prediction methods X,Y, ••• ,Z on the set Dtst(.) of Step 6.

The verification of a forecast is made as follows. Suppose it is

time t (= It ••• ,n) and that a forecast y(t+,) has been made by

method X. y(t+,) is an integer, namely 1, 2, or 3. Suppose in

actuality the observed predictand value at time t+l is y(t+,), a&

found in Step 5. above. The forecast is of j-class error, j = 0,1,2

if and only if Iy(t+,) y(t+,)1 = j = jX(t). Go through all times

t and find jX(t} for t = l, ••• ,n. Make a tally of the number no of

O-class errors, the number nl of I-class errors, and the number n2

* By 'train' is meant the procedure whereby a prediction method is fitted to
the data set Dtrn(,). This procedure of course depends on the method.

** By 'test' is meant the quantitative intercomparison of the forecast and
observed predictand values. The forecast procedure consists of taking a
member [[x(t+"l), ••• ,x(t+"p)], y(t+,») from Dtst (')' and applying the
method X to the predictor set [x(t+"l), ••• ,x(t+"p)] to produce the
forecast y(t+,), the method's estimate of y(t+,). The skill scores defined
below will then be a measure of the distance between y(t+,) and y(t+,).
The smaller this distance, the better the forecast.
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of 2-class errors for method X. Do the same for methods Y, ••• ,Z.

The integers nO,nj,n2 for each method constitute the (integral)

skill scores for that method. Clearly no + nj + n2 = n. An

alternate (fractional) skill score is aj = nj/n, j = 0,1,2, so that

ao + aj + a2 = 1.

9. INHERENT AND APPARENT SKILLS OF METHODS X,Y, ••• ,Z, AND ROBUSTNESS

a) To place in perspective the scores obtained in Step 7 of §8--i.e., to

assess the effects of imperfect models and imperfect observers on the skills

of each of the prediction methods X,Y, ••• ,Z--one should perform the following

experiments on each method with the same real primary fields generated in

Step 2 of §8. Return to Step 4, §8 and construct model predictors that are

error-free. That is, for the given " set s,(~,~') = 1 for ~' = ~ and 0 for

~' * ~, along with n(t+,,~) = 0 for all t and~. The result will be a set of

perfectly predicted values {x(t+,,~): t = l, ••• ,n; ~ = l, ••• ,p} for lag ,.

Next, return to Step 5, §8 and set e· . = 1 for i = j and 0 for i * j. The
1J

result will be a set {y(t): t = l, ••• ,n} of observed predictands (in integer

form) which agree exactly with the classifications of the v(t) done in Step 3,

§8. Then go on to Step 6, §8 and construct the error-free Basic Data Set

D(t). When the methods X,Y, ••• ,Z are in turn applied to this Basic Data Set,

as in Step 7, §8, we will accumulate skill scores that show the inherent

skills of each of the prediction methods. These skill scores act as

benchmarks for the performance of the prediction methods when less ideal

models and observers are encountered.

b) The skills found in the error-distorted experiments of Step 1 to

Step 7 of §8 are called apparent skills. The differences between the inherent

and apparent skills will then be traceable to the effects, of model and

observer errors, on the skill scores of each prediction"method. In this way
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we will discover that some prediction methods are more robust (skill scores

less affected by model and observer errors) than others. Moreover, when

comparing the inherent skills of methods X,Y, ••• ,Z, we will gain a V1ew into

how these methods cope with the linearities or nonlinearities of the

connection between the real predictands and real predictors. At this level we

may be led to design a prediction method tailored to handle a specific

analytic form of connection, e.g., one of those listed in (a)-(d) of §5. We

can then go on to test the method's robustness for MOS forecasting by

gradually and systematically introducing model and observer errors.

10. RELATIVE SKILLS OF METHODS X,Y, ••• ,Z

The training and testing of the prediction methods, as outlined 1n

Step 7, §8, and in §9, above are all initially to be done for a fixed set of n

samples and p fields. It is of interest to study the behavior of the

fractional skills ao and al (defined in Step 7, §8) of each method as a

function of nand p, holding all other parameters fixed. Since we split n

into a training part ntrn and a testing part ntst (so that n = ntrn + ntst ) we

should also consider, for fixed n, the effect of increasing or decreasing ntrn

relative to ntst ' Too small a training set (relative to a fixed n) would

likely not adequately set up the prediction method's structure, so that its

skills, as brought out on Dtst(T), may not be high or may be erratic (high

scatter on the aOal skill diagram*). Too large a training set (relative to a

fixed n) would perhaps leave too small a test set on which to see how well the

method works. For each prediction method, the present simulation procedure

could be used to find the optimal size of n and the optimal split of n into

ntrn and ntst ' Further, for the optimal ratio of ntrn/ntst' as n increases,

* As examples of the aOal skill diagram, see the figures in Preisendorfer and
Mobley (1984). There u and v are the integer correspondents to ao and al'
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what are the method's limiting average values of ao, and a 1 1 Even more

desirable: what are the method's population distributions of ao and al for

large n1 This last question is of importance in deciding whether or not two

methods are significantly different, and particularly in deciding which of the

two prediction methods is the better. This is one of the ultimate goals in

the problem of designing and intercomparing prediction methods.

25
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APPENDIX A

Construction of the Simulator of the Real Primary Field

1. INTRODUCTION

The present simulator of the real primary field (cf. Fig. 1) is basically

statistical in character. It is built around the concept of a principal

eigenvector decomposition of a data set that has principal component time

series generated by first order autoregressive processes. This basic idea can

be elaborated by generating principal component time series using higher order

autoregressive processes. Moreover, simulated data sets can be generated by

using realistic dynamical partial differential equations reduced to coupled

systems of ordinary differential equations governing the principal components

by means of empirical orthogonal function decompositions of the data sets. In

the final stages of this exercise, one can use the real data and the model's

output directly. In the present exposition of the basic idea we will keep the

discussion to its simplest (and thereby probably its most useful) level, for

simulation purposes, by using first order processes.

2. SIMULTANEOUS DIAGONALIZATION OF A PAIR OF CORRELATION MATRICES

Given two pxp matrices ~ and ~, with ~ positive definite, which

respectively describe the field-to-field correlations and the time lagged

field-to-field correlations of a data set Z = (z(t,~): t = l, ••• ,n;

~ = l, ••• ,p}. Here It' denotes time, and '~' denotes a field. Thus, let

z(t,~), be a standardized (zero mean unit variance) variate, such that the

following sets of numbers are specified at the outset:
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E{z(t,~) z(t,~')} = m(~,~')

E{z(t,~) z(t-l,~') = k(~,~')

(entries of M)

(entries of K)

(A2.1)

(A2.2)

for t = l, ••• ,n; ~,~' = l, ••• ,p. Here E is the ensemble average operator

applied to the random variate z(w;t,~), where the realization index w is

suppressed in (A2.l), (A2.2) for brevity. Clearly ~ and! are symmetric

(MT = ~, ~T = ~, where "T" denotes transpose). Positive definiteness of M

means that its eigenvalues X· (found below) are all positive. Note that the
J

m(~,~') are to be independent of t, along with the k(~,~'). In practice the

entries m(~,~'), k(~,~') of ~ and ~, ~,~' = l, ••• ,p, are dimensionless and are

specified at the outset of the simulation study (step 1, §8). Also see

(A3.4), (A3.G), below, for basic constraints on M and K.

We wish to simultaneously diagonalize ~ and K. This entails finding a

common set of orthogonal vectors! = [~l .•• ~p]' with

~j = [nj(l), ••• ,nj(p)]T, j = l, ••• ,p, and a diagonal matrix R such that

P

M L
T N NT= n.n. =

j=l -J-J

P

K L
T N R NT= p .n.n. =

j=l J-J-J - --

(pxp)

(pxp)

(A2.3)

(A2.4)

where

(A2.S)

The construction of N begins with a diagonalization of M by solving the

eigenvector problem:
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M E = E 1\ (A2.6)

where

E = [e •.. e ]
- _1 -p T
e. ::: [e.(l), ... ,e.(p)]
-J J J

and where

The ~j are orthonormal:

(pxp)

j = 1, ••• ,p

A. > 0, j = 1, ••• ,p
J

(A2. n

(A2.8)

where !p ~s the pxp identity matrix. Thus on the vector level we have:

T
~j~k = °jk j,k = 1, ••• ,p (A2.10)

and on the scalar level (A2.9) states:

p

I e} E;) ek( E; ) = ° jk
E;=1

p

I e.(E;) e.(E;') = 0E;E;'
j=1 J J

j,k = 1, ••• ,p

E;,E;' = 1, ••• ,p

(A2.ll )

(A2.12)

where 0jk'0E;E;' are Kronecker deltas. The ~j and Aj can be found by standard

subroutines. Arrange the Aj in descending order: Ai ~ •.. ~ Ap• This

automatically orders the ~j. Avoid ambiguity of ~j by multiplying ~j by -1,

if necessary, to make the first non zero component of ~j positive, for all

j = 1, ••• ,p.
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Using the property (A2.9) we can rearrange (A2.6) to the form:

We attain the representation (A2.3) by introducing N via:

(A2.l3 )

N _ E A~ (A2.l4a)

from which:

n. = A~e.
-J J-J

where, as before,

Tn. _ [n.(l), ••• ,n.(p)]
-J J J

From this and (A2.l3) we find (A2.3):

J = l, ••• ,p

(A2.l4b)

(A2.1S)

Clearly the ~j are orthogonal by virtue of (A2.10) and (A2.l4b). To find R in

(A2.4) we use the form of ~ as given in (A2.l4a) to obtain:

whence, on solving for R:
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Setting

we find

C _ E A-~

(A2.17)

(A2.1S)

as the required formula for R. A convenient form of (A2.17) or (A2.19) for

numerical work is:

p p

p. = X-: 1 L L e.(E;) k(t,t') e.(t') (A2.20)
J J J J

{=1 t'=1

j = 1, ••• ,p

Thus we have found the required orthogonal set N = [n1 ••• n ] of vectors and
- - -p

the diagonal matrix R = diag[p1' ••• 'p ] which yield the simultaneous
- n

diagonalization of M and K.

3. CONSTRUCTING THE AUTOREGRESSIVE PROCESS

We next use the diagonal elements Pj of ~ to construct p autoregressive

processes {aj(t): tEJ}, j = l, ••• ,p, where J is the set of integers. The

aj(t) are generated by:
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a.(t) = p.a.(t-1) + E.(t)
J J J J

j = 1, ••• ,p tEJ

Ip·1 < 1
J

(A3.1)

Here Ej(t), for each j and t, 1S by construction a normally distributed random

variable of zero mean and, for the moment, with general variance o~. In
J

particular the Ej(t) are of zero mean and are independent variates in the

sense that

E{E .(t)} = 0
J

E{Ej(t) Ek(t')} - oj 0jk Ott' o~ > 0
J

(A3.2)

j,k = 1, ••• ,p t,t'EJ

The condition Ip·1 < 1, j = 1, ••• ,p is needed for physically realizable
J

autoregressive processes {aj(t): tEJ}. In view of (A2.20), we can always

choose.. the Ik(~,~')I small enough S? that this condition holds. In this

connection, observe that the diagonal elements m(~,~) of ~ are by construction

unity:

~ -·1, ••• ,p (A3.3)

This places a constraint on the off-diagonal elements of M by means of

Schwarz's inequality:

Im(~,~')1 = IE{z(t,~) z(t,~')}l ~ [E{z2(t,~)} E{z2(t,~')}]~

= [m(~,~) m(~',~')]~ = 1 (A3.4)

for ~,~' = 1, ••• ,p.
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As for the diagonal elements k(~,~) of !, in view of (A2.2), it IS

physically likely that strict inequality holds:

~ = l, ••• ,p (AJ.5)

Then the off diagonal elements k(~,~') of K are constrained by the

condition:

1

Ik(~,~')1 = IE{z(t,~) z(t-I,~')}1 ~ [E{z2(t,~)} E{z2(t-I,~')}]~

= [k(~,~) k(~',~')]~ < I (AJ.6)

for ~,~' = l, ••• ,p.

Under the conditions (AJ.2) it follows from (AJ.I) that for j,k=l, ••• ,p

and all te:J,

(AJ.7)

a~

= p -----L. 6. l-p~ J'k
J J

(AJ.8)

The result (AJ.7), e.g., may be arrived at as follows. Rearrange (AJ.I)

by writing

a.(t) = p.a.(t-l) + e:.(t) = p.[p.a.(t-2) + e:.(t-l)] + e:.(t)
J JJ J J JJ J J

= p~a.(t-2) + [p.e:.(t-l) + e:.(t)]
J J J J J

= p~a.(t-3) + [p~€.(t-2) + p.e.(t-l) + e.(t)]
JJ JJ JJ J

3J

(A3.9)
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Continuing this way we arrive at the infinite series representation of aj(t):

a.(t} =
J

(A3.10)

J = 1, ••• ,p tEJ

where the leading term in (A3.9) converges to zero as ,+00, by virtue of the

condition Ipjl < 1 on Pj' j = 1, ••• ~p. Using (A3.10) we can compute:

00 00

E{a j(t)ak(t)} I ~ ,,' E{E.(t-,) Ek(t-,')}= P'Pk,=0 , =0 J J

00 00 , 'I
)=0

,
a~ ojk 0= p.p. .

1':;:0 J J J _(t-,),(t-,')

00 (J~

= o'ka~ I (pn' = ----l... .
°jkJ J ,=0 J 1-p~

J

as was to be shown. The relation (A3.8) fOllows in a similar way.

4. CONSTRUCTING THE SIMULATOR OF THE REAL PRIMARY FIELD

(A3.H)

The properties (A3.7) and (A3.8) of a.(t) and the representation (A2.3)
. . J

of M suggest the following form of the ~th variable's value z(t,~) at time

tEJ:

p

I (J~l[l-p~]~ a.(t) n.(~)
j=1 J J J J

~ = 1, ••• ,p

34
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The values z(t,~) in (A4.1) comprise one verS10n of the simulation of the real

primary field. Here aj(t) is defined in (A3.1) and nj(~) is the ~th component

of n· in (A2.14b). We have explicitly included oJ' in (A3.2) and (A4.1) to
-J

show that, without loss of generality, we may set o~ = I-p~, j = 1, ••• ,p.
J J

This will be seen as a matter of course in establishing (A4.2), below:

m(~,~') and k(~,~') emerge, regardless of the value of OJ.

The resultant data set ~ = (z(t,~): tEJ; ~ = 1, ••• ,p} has the required

correlation properties. Thus, for ~,~' = l, ••• ,p and for tEJ; using (A3.7)

and (A2.3):

p p

= E{[ L o~l[l-p~]~a.(t) n.(~)][ L 0kl[l-p2]~ak(t)nk(~')]}
j=l J J J J k=l k

P P

= L L O-J.IOkl[l-PJ~]~[l-P~]~ E{aJ.(t)ak(t)} nJ'(~) nk(~')
j=l k=l

P

= L
j=l

n.(~) n.(~'} = m(~,~')
J J

(A4.2)

Thus the data set ~ has the required property (A2.1).

In a similar manner, using (A3.8) and (A2.4):

p p

= L L Ojlakl[l-pj]~[l-P~]~ E{a j (t)ak(t-1)} nj(~) nk(~')
j=l k=l

P

= L p.n.(~) n.(~') = k(~,~') (A4.3)
j=l J J J

which establishes the required property (A2.2).
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The reader may have noted that (A4.1) 1S very close to the general form of

the principal component analysis of the data set Z = (z(t,~): t = J; ~ =

l, ••• ,p}, with ~j' j = l, ••• ,p, the unnormalized eigenvectors of the covariance

matrix M of the data set, and aJl[l-pj]~aj(t), the rescaled principal components

of the set. In the present development we start with the covariance matrix M

and construct Z. This is just the reverse of the usual PCA activity of starting

with Z and constructing~. During this reversed procedure, of course, we are

constantly guided by the desire to end up with the PCA-type of form (A4.1) of

the representation of ~.

In view of the preceding observations, we may reformulate the construction

of the time series aj(t), t = l, ••• ,n, so that (A4.1) takes on exactly the form

of the singular value decomposition of z(t,~). We return to (A3.1) and, for

each t£J, draw the £j(t) from N(O,I-pj), i.e., a normal population with zero

mean and variance a~ = l-p~, j = l, ••• ,p. Then the discussion leading to
J J

(A3.7), (A3.8) may be repeated to yield

E{aj(t) ak(t)} = 6jk

E{aj(t) ak(t-l)} = Pj6jk

for j,k = l, ••• ,p, t£J, and (A4.l) becomes:

(A4.4)

(A4.5)

P

z(t,~) I ~
e.(~) (A4.6)= A. a.(t)

j=l J J J

t£J ~ = l, ••• ,p

with
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p

L e.(~) ek(~) =
°jk

~=l
J

P

L e.(~) e.(~') = o~~,
j=l J J

j,k = l, ••• ,p

(A4.7)

~,~' = l, ••• ,p •

as in (A2.ll), (A2.l2).

We make one final observation that considerably extends the scope of the

preceding theory. By construction z(t,~), for each t and ~, is a normally

distributed variate of zero mean and unit variance, with the required covariance

properties (A4.2), (A4.3). If desired, by rescaling the ej(~)' the variances at

the ~ points can be made of arbitrary Size. This of course will modify ~ and K

accordingly. Taking this simple idea one step further, the data set Z can be

transformed so as to change the probability density functions of z(t,~) at each

t and ~ to other desired continuous functions. By reversing this

transformation, we apparently can generate simulation data sets of great

versatility. Thus suppose we require a data set ~ = (w(t,~): t = l, ••• ,n;

~ = l, ••• ,p} to have certain correlation matrices H' and ~', and also require

w(t,~) at t and ~ to be distributed according to some continuous function ~(w)

on the real line -~ < w <~. We then determine, for fixed t and ~, the mapping

z = g(w), of the real line into itself, that reshapes ~ into the gaussian

function; this can be done with sufficient accuracy by numerical means in all

cases. As a result, the w(t,~) go over into the normally distributed z(t,~)

variates under g; the associated correlation matrices Hand K as a matter of

course can then be computed from the resultant z(t,~) variates. We are then at

the starting point (A2.l), (A2.2) of our constructions above. In this way,

after having found z(t,~) in (A4.6), we can then use w = g-l(z) on the z(t,~) to

generate the desired data set W.
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Analytic Aids in Parameter Decisions

1. INTRODUCTION

To help in the decisions needed to start any simulation exercise, some

suggestions are given below for the structures of the ~ and ~ matrices, along

with that of the matrix S , and the observer-error table. The suggested
-T

structures reduce the many decisions to a relatively few, namely those

concerning the parameters in the suggested analytic aids. In the case of the

pxp matrix ~, e.g., instead of having to decide on the ~[p2_p]+p = ~p(p+l)

possibly distinct entries of ~, only one parameter ~ in (B2.l) below need be

chosen. Similar savings occur for the K and S matrices. It should be
-T

emphasized that these analytic aids are not definitive, nor exhaustive. They

are merely suggestions that may be followed in some initial explorations of

the present simulation strategy. Considerations of other possibilities are

encouraged.

2. PARAMETRIC FORM OF H

The matrix H 1n (A2.l) may have its entries m(~,~') parameterized via:

~ > 0 (B2.1)

~,~' = l, ••• ,p

sgn(~,~') = sgn(~',~) (symmetry constraint)

Here one can set sgn(~,~') = ±l at the choice of the investigator, except for

the above symmetry constraint and when ~ = ~', for which we set

sgn(~,~) = 1. Large ~ will reduce sharply the correlations between distinct

fields, small ~ will keep the correlations larger.
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3. PARAMETRIC FORM OF K

The matrix K in (A2.2) may have its entries k(~,~') parameterized via:

~,~' = l, ••• ,p

The parameter K a controls the general level of the lagged correlations, while

K b governs the inter-field correlation fall-off.

4. PARAMETRIC FORM OF Sand n
-T -

The matrix S in (6.2) may have its entries ST(~'~') parameterized by:
-T

s (~,~') = exp[-(aT + BI~-~'I + y)]
T

(B4.l)

~,~' = l, ••• ,p a,B,y > 0

The parameter a controls the temporal decay of predictability of the model

predictors. A good model will keep a small. Moreover, parameter B controls

the cross-talk between model predictors. A good model will keep B large. The

parameter y gives the level of unpredictability of the model predictors for

the case T = 0, ~ = ~'. A good model will keep y small.

The noise term n(t+T,~) in (6.2) is distributed as N(O,a~), the variance

a~ being the adjustable parameter in this case. Small an are associated with

good models.
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' .....,

5. PARAMETRIC FORM OF THE OBSERVER-ERROR TABLE

The observer-error table in (7.1) generally has nine entries of which six

may vary independently, because of the sum-constraint on the elements of its

three columns. Below is suggested a two parameter form of the table, thereby

giving a three-fold savings in the nUmber of decisions to be made in

constructing it:

1 2 3

estimated
category

}+a+S 1 1
'3-a --a. 3

1 }+a+S 1.-S'3-a 3

L S 1.-S
1

3 3 '3+a+S

actual
category

1

2

3

When a = S = }, the observer is perfect: each category is correctly

estimated. When a = S = 0, the observer behaves randomly. The permitted

range of a,S falls within the truncated square in the as-plane, below:

{3 o:=~:.. ............... ..... 'p~d~~i' ...; {3 = ~

Observer

o:=-~

{3=0
0: = 0, {3 = 0
Random
Observer

0:=0
{3= -~

40
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6. THE CASE OF THE IN-HOUSE REAL SECONDARY FIELD

In §5 of the maln text one of the suggestions made for the real secondary

field was to set aside one of the real primary fields to assume the role of a

real secondary field. This suggestion has the merit of not having the

investigator construct a special functional relation of the forms displayed ln

§5. If one decides to have such an 'in-house' real secondary field, i.e., one

drawn from the family of real primary fields, then it is suggested that p be

raised by 1 when going through the initial setups in §7 of the main text.

Then choose anyone of the p+l fields to be the real secondary field, relabel

it as 'v(t)', and re-index the remaining fields so that ~ runs from 1 to p.

In choosing the candidate for the real secondary field note that it can be

fixed to be ln the 'middle' of the set of fields or on the 'end' of the set of

fields, in the sense of the M matrix sketched below (case of p = 5):

~ = 1 2 3 4 5

1 • • • • 1 = ~ ,
1 • • • 2

M = 1 • • 3

1 • 4

1 5

For example, z(t,3) is in the middle and so has two closely correlated

neighbors z(t,2), z(t,4) (using (B2.l». On the other hand z(t,l) is on the

end and has only one closely correlated neighbor (using (B2.l». Hence one

can control to some extent in this way the relatedness (predictability) of the

real secondary field relative to the real primary fields.
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Stationary Real Primary Fields

1. INTRODUCTION

Savings in computation effort are possible when adopting stationary real

primary fields for the MOS simulation problem. A real primary field is

stationary when ~ and K have essentially the forms given in (82.1), (83.1),

i.e., the covariances depend only on the differences t-t' of the arguments in

m(t,t') and k(t,t'). When such is the case, the eigenvalues and eigenvectors

of M and! are expressible in simple algebraic forms; the need for computer

routines to find these quantities is thereby eliminated; and one has only to

program simple algebraic formulas for these variables. In the following

section the basic relations, ready for programming, are listed, resulting in

the present stationary counterpart to (A4.6), the main generator of the

simulator of the real primary field. In section 5 below, derivations of the

formulas are given.

2. THE STATIONARY CONTEXT

As in the main procedure of Appendix A above, one begins with a choice of

the covariance matrices M and K. Thus choose parameters ~, Ka , Kb in:

m(t,~') = sgn(t,t') exp[-~It-t'I]

k(t,t') = sgn(t,t') Ka eXP[-Kblt-t' I]

o < ~ < m (C2.l)

(C2.2)

where t,t' = O, ••• ,p-l and sgn(t,t') is defined as in (82.1). This range of

variables t,t' is specially tailored for the stationary context. In fact 1n
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that context, we must do arithmetic modulo p on ~,~'. Thus if ~-~' is not in

the set {~: O, ••• ,p-1}, then ~-~' must be reduced modulo p to place it back

in the set. The diagram below shows that this procedure may be visualized as

taking place on a circle around which O, ••• ,p-1 have been plotted. We

consider the case of p = 2m+1, where m = 4, so p = 9.

p
" m(l)

" m(8)
'0

To reduce ~-~' = 3-4 modulo 9, we have 3-4 = 8 modulo 9. (Start at 3 and go

clockwise 4 units.) Again: ~-~' = 2-4 = 7 modulo 9. This convention has the

effect of extending {~: O, ••• ,p-1} to the set J of all integers:

J = {~: ••• ,-l,O,l, ••• }, which, by the modular arithmetic, is viewable as

being wrapped around the circle, modulo p.

By construction, the values of m(~,~') depend only on ~-~', and indeed,

m(~,~') = m(~-~',O) ('modulo p'--this qualification will be omitted as

understood, henceforth). To simplify notation we will write 'm(x)' for

m(x,O); similarly we will write 'k(x)' for k(x,O), x = O, ••• ,p-1. From now on

p = 2m+1, in the discussions of this Appendix.
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By adopting the stationary setting we in effect define m(~,~') for all

pairs of integers ~,~'. This, coupled with the symmetry m(~,~') = m(~',~) of

~, implies an important symmetry of m(x) and k(x) on the finite set

{x: O, ••• ,p-l} = {x: O, ••• ,2m}. It is easy to see that

m(p-x) = m(x)

and

for

k(p-x) = k(x)

x = l, ••• ,m

(C2.3)

A diagram of the nine values of m(x) is shown on the circle above. Thus, by

arithmetic modulo 9, m(S) = m(l), m(7) = m(2), etc. For example,

m(S,7) = m(l), while m(7,S) = m(-l) = m(S). Since m(7,S) = m(S,7) (by

symmetry of construction), we have m(S) = m(l).

3. LIST OF BASIC FORMULAS

We now list the basic formulas, culminating in the present counterpart to

(A4.6). These are listed in order of occurrence in a computation procedure.

In what follows, p = 2m+l.

The eigenvalues of the pxp covariance matrix ~, are given by:

with

m
~. = 1 + 2 I m(x) COSK.X

J x=l J
j = O, ••• ,m

(C3.1)

j = l, ••• ,m

K. = 2lrj/p
J

j = O, ••• ,p-l (= 2m)

44
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For m(~,~') (= m(~-~'» as In (C2.l), it can be shown that X· > 0 for
J

j = O, ••• ,m.

The autoregressive correlations Pj (cf. (A2.20» are now given by:

with

m
p. = X7 1 [k(O) + 2 I k(x) COSK.X]

J J x=l J

j = O, ••• ,m

P .:: p.
P-J J

j = l, ••• ,m

(C3.3)

(C3.4)

The variances for the random forcing terms of the autoregressive equations are

given by:

a~j= 2(l-pj)(l+oOj) (C3.5)

j = O, ••• ,m

(C3.G)

where OOj is a special case of Kronecker's delta 0ij with i = O.

The autoregressive equations for the time dependent coefficients bj(t), Cj(t)

are:

b.(t) =
J

c.(t) =
J

p.b.(t-l)
J J

p.c.(t-l)
J J

+ 6.(t)
J

+ y.(t)
J

(C3.7)

(C3.8)

with

j = O, ••• ,m

6.( t)
J

y.(t}
J

- N(O'O~j)

- N(O 0 2 .), YJ

45
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Observe that a~j = a~j for j = l, ••• ,m, and that o~o

(so co(t) = a for all t). Program accordingly.

The main formula is then:

= 4(l-p~), while 0 2 = a
yo

where

m
z(t,~) = ~vobo(t) + L

j=l
v.[b.(t) COSK.~+ c.(t) sinK.~]

J J J J J
(C3.ll)

for j = a, .•. ,m.

tEJ, ~ = a, •.• ,p-l, v. = [A./p]~,
J J

K. = 2nj/p,
J

p = 2m+l,

4. COMPUTATION NOTES

a) The main purpose in adopting the stationary setting is to be able to

compute the Aj 1n (C3.l) directly without using an eigenvector, eigenvalue

routine. Thus (C3.l) yields up the Aj with minimum effort. Even this formula

may be condensed by algebraically summing the indicated products m(x) COSKjX

using the adopted form (C2.l) and the symmetry (C3.2). However, this will not

be done here.

b) The part of the present computation that needs some extra care is

that which generates the random coefficients bj(t), Cj(t). Towards this end

decide on the actual values of p and the number n of times t to be used:

t = l, ••• ,n. In this way one can construct a single realization of the data

set ~ = {z(t,~): t = l, ••• ,n: ~ = a, ... ,p-l}. The wth realization of the

set ~ may be made by randomly constructing the wth samples of bj(t) and Cj(t)

in (C3.7), (C3.8) for a fixed t:
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For this t, we then construct

z(w,t,O), ••• ,z(w,t,p-l)

using (C).ll), t = l, ••• ,n.

The end result, having done this n times, 1S the wth data matrix:

z(w,I,O) z(w,l,p-l)

z(w,2,O) z(w,2,p-l)
Z(w) = (nxp) (C4.1)

~

z(w,n,O) z(w,n,p-l)

When finding bj(w,t) and Cj(w,t) 1n (C).ll), one must find Bj(w,t), Yj(w,t)

for use in (C).7), (C).B). Thus for each wand t (= l, ••• ,n) the 2m+1 numbers

Bo(w,t), Bt(w,t), ••• , Bm(w,t)

yt(w,t), ••• , Y (w,t)
m

are to be pairwise independent, i.e., freshly chosen from their respective

populations in each individual case. So it may be well to select these

numbers prior to use by forming, for a given w, all (m+l)-n of the Bj(w,t)'s

and all m-n of the Yj(w,t)'s. Thus there are m-n + (m+l)-n = (2m+I)-n = p-n

random numbers in all needed to form Z(w) in (C4.6). This is also the same

number needed to form the nxp data set Z from (A4.6).
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c) It may be advisable to test the statistical properties of the data

set ~ by making up a batch of, say, r realizations ~(w), w=l, ••• ,r. The set

has been designed so that we have, for each t=l, ••• ,n,

Here, for the purpose of the test, we use

1 rL z(w,t,~) z(w,t,~') (C4.2)
r w=l

to approximate the ensemble average operation E. Compare (C4.2) with m(~-~')
w

(as usual reduce the difference ~_~', modulo p). It may be that r will have

to be on the order of 100 to get reasonable agreement.

The number generator should also be tested by seeing if the approximate

equality holds:

r
1 L [b~(w,t) + c~(w,t)] ~ 4
r w=l J J

for J = O, ••• ,m, for each t.

5. DERIVATION OF MAIN RESULT

We will now derive the basic data set representation (C3.11). Our

approach is to represent the random variable z(t,~) at each t and ~ 1n the

form of a principal component analysis, as in (CS.S), below. However, our

approach is reversed from the usual direction of PC analysis: we begin with

the covariance matrix H and construct Z.
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a) Having postulated stationary M and K matrices of order pxp and having

adopted the periodic extension of their entry arguments ~,~I to all of J (the

set of integers), some results from linear algebra now may be used to show

that the jth eigenvector ~j of ~, namely

Te. = [e.(O), ••• ,e.(p-I)]
-J J J

has components of the form:

e.(~) = p-~ exp[2nij~/p]
J

~ = O, ••• ,p-l

J = O, ••• ,p-l (CS .1)

(CS.2)

We take this result as given in this study, as it would constitute an

unnecessary digression from the maln line of the present argument to formulate

a proof. The basic eigenstructure equation for ~ is

p-l

I
~I=O

m(~,~I) e.(~') =
J

A.e.(~)
J J

(CS.3)

Using (CS.2) In this, we can solve for A' to find
J

A. =
J

p-l
I m(x) exp[2nijx/p]

x=O
(CS.4)

x = 0, ••• , p-l j = O, ••• ,p-l

Using the symmetry (C2.3), this reduces to (C3.1), (C3.2). By linear algebra

we know Aj > 0, j = O, ••• ,p-l.
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b) Since the main purpose of this study is to generate data values

z(w,t,~) with certain covariance properties, we start with the general form

for z(w,t,~) suggested by a principal component synthesis:

p-l
z(w,t,~) = I

j=O

~A. a.(w,t) e.(~)
J J J

(CS.S)

where Aj,ej(~) are as defined in (CS.2), (CS.4). The desired covariance

properties of z(w,t,~) are obtained by suitably tailoring the random variables

aj(w,t). Since ej(~) is complex and Aj' z(w,t,~) are real, the aj(w,t) must

be complex. To see the condition to be imposed on the aj(w,t), reform the

covariance matrix entries of M starting now with (CS.S) ("*" denotes complex

conjugation):

p-l p-l
= I I A~A~ e.(~)e*(~') E{a.(w,t) a*k(w,t)}

j=O k=O J k J k w J

(CS.6)

(CS.7)

p-l
= I

j=O
Le.(~)e"':(~')

J J J
(CS.8)

Observe that this is consistent with (A2.3) and (A2.13). In order to go from

(CS.7) to the representation of the matrix entry in (CS.8) we need the

property

!{aj(w,t) a~(w,t)} = 6 jk

j,k = O, ••• ,p-l

In a similar way the requirement (cf. (A2.4»:
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(CS.10)

(CS.ll)

p-1
= 2

j=O
p.A.e .(Oe'f(~')

J J J J
(CS.12)

states that we must have for tEJ and all w:

E{a.(w,t)a-k
k (w,t-1)} = P.o·k

w J J J

j ,k = 0, ••• , p-1

(CS.13)

c) The two properties (CS.9), (CS.13) of aj(w,t) can be secured, e.g.,

by letting aj(w,t) be generated by a first order autoregressive process:

a.(w,t) = p.a.(w,t-1) + e:.(w,t)
J J J J

j = O, ••• ,p-1

(CS.14)

for te:J and all realization indexes w. We split aj(w,t) into its real and

imaginary parts ~bj(w,t) and -~Cj(w,t):

a.(w,t) = ~[b.(w,t) - ic.(w,t)]
J J J

(CS.1S)

and then, following (CS.14), generate bj(w,t), Cj(w,t) (on dropping the

realization index w) by means of:
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(C5.16a)

(C5.16b)

B •(t)
J

+ y.(t)
J

p.b.(t-l) +
J J

p.c.(t-l)
J J

b.(t) =
J

c.(t) =
J

with

te:J (C5.17a)

y.(t) - N(O,a 2 .)
J YJ

J = O, ••• ,p-l (C5.17b)

and where

e:.(t) = ~[B.(t) - iy.(t)]
J J J

(C5.17c)

The real valued random variables Bj(t), Yk(t') are to be independent when

j * k or when t * t'. (The symbol I_I means 'distributed as', and 'N(O,a 2 )'

represents a normal distribution of zero mean and variance a 2 ).

To see the requirements on a~j and a~j imposed by (C5.9), we first

observe that (C5.14) may be written in the equivalent form

a.(w,t) =
J

CXl

p:- e:(W,t-T)
J

(C5.18)

Then we compute

E{a.(w,t) a*k(w,t)}
w J

E{e:.(W,t-T) e:*k(W,t-T')}
w J

(C5.19)

By construction of the Bj(w,t) and Yj(w,t) (in particular their independence)

(C5.19) reduces to

E{a.(w,t)a-kk(w,t)} =
w J

(C5.20)
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since the left side must be 0jk' we then arrive at the conditions (C3.5),

(C3.6) on the variances. The factors (1 ± OOj) come about because we want to

end up with (C5.5) looking just like the usual Fourier synthesis formula for a

stationary process. Indeed, we construct the first m+l termsbj(t}, Cj(t) in

(C3.7), (C3.S) as shown. Then the remaining m are given by symmetry:

b .(t) _ b.(t)
p- J J

c . ( t) _ -c. ( t )
P-J J

j = l, ••• ,m (C5.21)

It is easy to check, by following the procedure in (C5.1S)-(C5.20), that

(C5.13) holds, too.

d) We now may reduce a typical term in (CS.S):

~A.a.(t) e.(~) = ~v.[b.(t) - ic.(t)][cosK.~ + i sinK.~]
JJ J J J J J J

= ~v.[(b.(t) COSK.~ + c.(t) sinK.~)
J J J J J

+ i(b.(t) sinK.~ - c.(t) COSK.~)]
J J J J

(CS. 22)

1

where Vj = [Aj/P]~' and Kj = 2nj/p. Observe that the real term in (C5.22) has

even functions of j as one goes round the unit circle depicted in §2, above,

while the imaginary term has odd functions of j, and so they cancel. Thus we

arrive at the basic representation (C3.11) of z(t,~), on reducing (CS.S).
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