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Abstract

This is the third of a series of five reports on some new techniques in

data intercomparison theory, devised particularly with observed and model

climate data sets in mind. In this study we derive a set of statistics which

describe differences in spatial patterns and temporal evolutions of data sets.

These are derived from the SHAPE statistic of the second study. It is shown

that SHAPE and its derivates are all of a correlational nature, thereby permitting

immediate statistical significance tests using existing tables. However, it

is also shown that correlation-type statistics, especially in multivariate

settings, are limited in their ability to discern differences in spatial and

temporal patterns of data sets. Two multiparameter tests (the S-Phase and

T-Phase) are devised to remedy this limitation and their properties are given

a preliminary examination. The S-Phase test is based on the canonic rotation

angles between the spatial (eigenvector) frames of two data sets that have

been given their singular value decomposition. The T-Phase test is based on

the canonic correlation angles between the temporal (principal component)

frames of two data sets under the same type of decomposition. These multi

parameter tests, unfortunately, are difficult to interpret, even though they

appear to perform well under realistic data conditions. Further multiparameter

tests are devised and outlined with research programs suggested for future

study. The five general procedures of the second study of the series (lOP,

EOP, APP, PPP, CIP) are potential sources of reference distributions for the

new multiparameter statistics.
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Data Intercomparison Theory

III. S-Phase and T-Phase Tests for
Spatial Pattern and Temporal Evolution

Rudolph W. Preisendorfer

Curtis D. Mobley

I. Introduction

We continue our development of data intercomparison methods begun in*

DIT(II). In that study we began with a systematic analysis of the squared

distance (DIST2) between two data sets. We saw how that squared distance

could be additively split into three parts: one (namely SITES) describing the

separation of the centroids or average location of the data sets, another

(SPRED) describing the difference in radial spread of the data sets (thought

of as swarms of points in a euclidean p-space), and finally (SHAPE), a part

describing the difference in spatial and temporal configurations of the data

sets in p-space. It is this third statistic, SHAPE, that we shall analyze

into its elemental parts in the present study.

The statistic SHAPE is by far the richest of the three that we carved out

of DIST2, for it contains within it the information about the difference in

spatial patterns of the two data sets, and also differences in their temporal

evolution. A preliminary examination in DIT(II) of the power of SHAPE, using

random sampling from gaussian populations to simulate different pairs of data

sets to be intercompared, showed that the power was relatively low compared to

that of SITES and SPRED, under similar testing conditions. This is not surprising

in view of the fact that SHAPE is the result of the collapse of the multivariate

* A list of titles in the present series is given in the reference section
(§8), below. It will be assumed that the reader has access to DIT(II) in
the developments that follow.



§1

internal temporal and spatial structure of a data set down into a single

number. We illustrate this information crunch by some examples in §4, and use

that discussion to motivate some attempts at multiparameter tests (in §§5, 6)

for spatial pattern and temporal evolution differences between data sets.

Besides attempting the construction of new multiparameter tests, we also

devote some effort to analyzing SHAPE. By splitting apart the various pieces

of information within a data set we can produce correspondingly simpler

SHAPE-type statistics (such as ORIEN, COREL, DIAGS, e.g., in §2) that concentrate

on one attribute at a time, namely space properties, time properties, or

variance properties of a data set. This splitting apart of information is

effected through the singular value decomposition of a data set. The resultant

simpler statistics have somewhat higher power.

All of these SHAPE-derived statistics (including SHAPE itself) share a

common statistical structure, namely that of a correlation. This fact endows

these statistics with the advantage that they could be relatively simply

applied using standard statistical correlation tests. But there are also

disadvantages. First of all, the classical correlation test is designed for

the usual gaussian-population sampling procedure. Under real-life sampling

conditions, the ORIEN, COREL, and DIAGS statistics (for example), along with

many other correlation-type statistics presently used in practice, can in

principal have distinctly non-classical distributions (unless special

transformations are devised), and so there could be abuses of the classical

test. But this abuse seems to be common practice (so common that many

practitioners go about the ritual of declaring a correlation significant

without a moment's thought as to the validity of the underlying test).

To some extent we shall go along with such practice, especially in large

sample settings where the data-derived correlations will very likely

2



§1

obey a reasonable facsimile of the classical theoretical distribution. However,

in §7 we will outline some research that can be done to provide some valid

procedures for the new SHAPE-derived correlation-type statistics.

Even with this improved testing procedure of the SHAPE-derived correlation

type statistics, there remains one more disadvantage, beyond that discussed in

the preceding paragraph, and one that in our opinion is the more serious of

the two. This is the disadvantage in a correlation statistic of having much

information (spatial pattern, temporal evolution, distribution of variance)

compressed into a single number. It is this information-loss property of

correlation that should be the focus of new research on multiparameter statistics

for intercomparing multivariate phenomena in the geosciences. In §§5,6 we

introduce two new procedures (the S-Phase, T-Phase tests) for possible use in

data intercomparison. In §7 we make some simple suggestions for possible

multiparameter statistics (beyond those of §§5 and 6) that are compromises

between the simplicities of a correlation and the complexities of a full

point-by-point description of the phenomenon of interest. In this way we set

the groundwork for a family of statistical procedures that would allow inter

comparisons of such objects as principal components, principal vectors (empirical

orthogonal functions), and other multivariate objects used in data inter

comparisons.
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2. SHAPE and Its Descendants

We shall now analyze the statistic SHAPE into various simpler pieces

using the concept of a singular value decomposition of data sets. First of

all, SHAPE was derived in DIT(II), and according to (2.2) of that study we

have,

SHAPE =2
n [~' (t)-d ]T1 - I -0

t=l °D
(2.1)

The notation in (2.1) is also defined in Appendix B below where we exhibit the

decomposition of a standardized nXp data set ~ =~,!~T into its singular-value

form.* Thus the first of the two factors in (2.1) has the alternate

representation (cf. (B3.21)):

d'(t)-d
- -0

°D

p
= I

j=l
K.a.(t)e.

J J -J
t=l, ... ,n (2.2)

If the standardized nXp data set Mis given an SVD similar to D (using the

theory of Appendix B as a pattern):

where

(2.3)

B' (2.4)

* The name "singular value decomposition" of a matrix comes from the fact
that the data matrix may be rectangular and its associated covariance
matrix may have zero (singular) eigenvalues. Another name that would be
natural is the principal decomposition of a matrix, since its factors are
closely related to the principal-components and principal.eigenvectors of
a matrix.

4
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and where

L - diag[Ai, ... ,A2 ]
P

F - [!1 ... f ]
-p

Tf. - [f.(l), .•. ,f.(p)]
-J J J

then the second factor in (2.1) can be written as

(2.5)

(2.6)

(2.7)

m' (t)-m
- -0

aM

p
= I A.~.(t)f.

j=l J J -J
t = 1, ... ,n. (2.8)

Introducing these representations into (2.1) we find

SHAPE(Q,~)
p P T T

= 2{1 - I I K.Ak(a.Ak)(e.fk)}
j=l k=l J -J~ -J-

(2.9)

Here there is revealed the rich inner structure of SHAPE(Q,~) in terms of the

temporal evolution (~j,1!k) of Q and ~, and their principal spatial patterns

(e.,fk), along with the distribution in space of the dimensionless variances
-J -

(K.,Ak) of Dand M. It should be plausible from this view of its innards that
J -

the power of SHAPE is relatively low. We shall next systematically reduce

SHAPE(~,~) to its elemental parts which have simpler structure and presumably

somewhat higher power. The results are summarized in Table 2.1, in the left

two columns.

The statistics of simplest structure are ORIENk , CORELk , and DIAGS, as

defined in (2.10)-(2.12). For example, ORIENk ("orientation") gives the norm

between the corresponding kth principal vectors (EOFs) of ~' and ~', respectively.

CORELk ("correlation") gives the norm between the kth normalized principal

components of the data sets, while DIAGS ("diagonal spread") compares the way

all the eigenvalues K~,A~ change with j. These three types of statistic,
J J

5



§2

TABLE 2.1

NAME SHAPE DESCENDANT How obtained Inner Product
from SHAPE DEFINITION

P T (!\Tt~T)}S-SHAPE 2[1 - I K.A.(e.f.)] set A' = B' 2{1 -
j=l J J -J-J

P T (~'~t!!'~)}T-SHAPE 2[1 - I K.A.(a.1!.)] set E = F 2{1 -
j=l J J -J J - -

ST-SHAPE 2[1
1 P T T set K= L= I 2{1 - (A'ET B'FT)}- - I (a.1!.)(e.f.)]
Pj=l -J J -J-J - - 1»

__ t__

ORIEN 2[1
1 P T A' = B' 2{1 1

(!t!)}-- I e.f.] set - -
P j=l -J-J K= L= I P

- - 1»

COREL 1 P T E = F 2{1 1 (A' B')}2[1 - - I ~.1!.] set - -
P j=l J J K= L= I P - '-

- - 1»

P A' = B'
(~t~)JDIAGS 2[1 - I K.A. ] set - - 2{1 -

j=l J J E = F

Special fragments of ORIEN and COREL, and also the vector form of DIAGS t are

of interest:

T k = (2.10)ORIENk = 2(1 - ~k!k) 1, ... ,P

T k = 1, ... ,p (2.11)CORELk = 2(1 - ~k1!k)

DIAGS = 2(1 _ ~T~) (2.12)

T A = Twhere K = [Kl,· .. ,K] , [AI' ... ,A ]p p

6
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§3

respectively, intercompare in great detail the spatial, temporal, and variance

structures of the data sets beyond those structures described by SITES, SPRED

and SHAPE.

Going up the scale of complexity, we come to ORIEN and COREL, in Table

2.1. These intercompare entire eigenframes and principal component frames: E

with! and!' with ~', respectively, as can be seen from their forms involving

inner products of e.,f. and a.,A., respectively. Since there is now more
JJ J~

structure crammed into one number by these statistics, we would expect lower

power than their counterparts in (2.10), (2.11).

The S-SHAPE statistic in Table 2.1 weights the vectors e.,f. with their
JJ

respective eigenvalues as shown. In this way ORIEN is somewhat sharpened by

helping it to emphasize those vectors in the sets {el, ... ,e }, {fl, ... ,f }
- ~ - ~

that are the more important with regard to variance. A similar set of observations

holds for T-SHAPE in Table 2.1. Finally, ST-SHAPE eliminates only the statistical

effects of the eigenvalues, again (as SHAPE itself) leaving a considerable

amount of structure to be represented by one number. The ST-SHAPE statistic

is included mainly for completeness. It is not anticipated that ST-SHAPE will

be of much use in practice, since it mixes together spatial and temporal

information much in the way SHAPE does. An overview of these statistics, and

others that are derived from DIST2, is given in Fig. 2.1.

3. Correlational Structure of SHAPE and its Descendants

When we view the nxp data sets D,H as points in E ,then it becomes-- ~

clear that the essential structures of SHAPE, S-SHAPE, T-SHAPE, and all the

other descendants of SHAPE in Table 2.1, are manifestations of the classical

correlation coefficient. The basis for this assertion is developed in Appendix A.

8



§4

Using the notion of the inner product (~,ff) of ~ and ff, we see that

SHAPE(~,ff) =2 {I - (~,ff)} (3.1)

It is clear from this (cf. (Al.19)) that SHAPE(~,ff) is the distance between two

unit vectors n,M in E ,where n,M in another view (sec. 2 of Appendix B) are- - np - -

standardized nxp data sets. Using this broad algebraic perspective, we can

then view all the descendants of SHAPE in similar manners, and the results are

displayed in the right column of Table 2.1. To deduce the indicated inner

product forms listed in the table, use the SVD forms of ~,ff (cf. (B3.1S),

(Cl.2)) and the appropriate one of the formulas (A2.22), (Al.23).

4. Limitations of Correlational Statistics

A. Information Loss by Compression

We alluded several times in the Introduction to the fact that much information

compression takes place in the statistic SHAPE. This behavior is a general

characteristic of correlational statistics, i.e., of that class of statistics

whose algebraic form involves inner products or algebraic combinations of

inner products. This interrelation of correlations and inner products is

summarized in (A2.19) (on the matrix level) and in (A2.20) (on the vector

level). We shall now give a simple example that illustrates this compression

property of correlations.

Let ~ ={d(t,x): t =1, ... ,n; x =1, ... ,p} and ~ ={m(t,x): t =1, ... ,n;

x = 1, ... ,p} be two space-centered data sets. Specifically, we set p =24,

and these 24 points are arranged as a 4x6 rectangle on the ocean's surface,

say. One may picture the set as one of numbered points as sketched below:

9



§4

1 2 3 4 5 6 } N
7 8 9 10 11 12

13 14 15 16 17 18 } N'
19 20 21 22 23 24

At each one of these points x, m(·,x) and d(· ,x) are functions that take on

values for t = 1, ... ,no At each x and t, let m(t,x) be related to d(t,x) by

the rule

m(t,x) = g(x) d(t,x)

where for the moment we set

(4.1)

g(x) =
for x = 1, ... ,12

for x = 13, ... ,24

(the domain N)

(the domain N')
(4.2)

Hence, depending on the value of g, the m(t,x) values are greater or smaller

than the d(t,x) in the "northern half" N of the common data domain sketched

above. On the southern half N' of the whole domain, m(t,x) and d(t,x) agree.

Computing the inner product (Appendix A) of this ~ and ~, we find

p n
(~,~) = l l d(t,x)m(t,x)

x=l t=l

n n
= g l l d2(t,x) + l l d2(t,x)

xeN t=l xeN' t=l

- gV + V' (4.3)

Where V and V' are defined in the context of (4.3). The norms of D and Mare

11~112 = (~,~) = V+V'

11~1I2 = (~,~) = g2V+V'

10
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§4

Then we find the inner product, i.e., the correlation, of the normalized data

sets to be:

r =
D M

(II~II ' II~II) =
gV+V' (4.6)

To see the point of the present example very simply, let us set n =2m, and

d(t,x) = 1 for all x and t =1, ... ,m; and d(t,x) = -1 for all x and t =m+l, ... ,n.

Then V =V' =12n, and so (4.6) reduces to

r = g+1 (4.7)

Now r is a simple function of the magnification factor g over the domain N.

If g =1, then r =1, as expected (perfect correlation). If g =0, then for

each t we have a marked contrast in m(t,x) and d(t,x) values between the

northern and southern halves of the domain. For this, r =0.707. If g were

very large (say infinite), then r = 1/2\ = 0.707 once again. Therefore the

correlation coefficient doesn't distinguish between these two different spatial

patterns for g = 0 or g =~. Indeed, it may be checked that the same value of

r in (4.7) holds not only for an equal north-south partition of the 24 point

field but also for an equal east-west partition for the two choices of g

(i.e., g =0 or g = ~); and for that matter, r = 0.707 for any of the 2,704,156

partitions of the 24-point domain into two 12-point subfields. Therefore, as

the spatial configurations vary over all possible partitions of the 24-point

field into two equal subfields, r stays fixed at r = 0.707 for either of these

two choices of g. Under the present sampling conditions, the sample size is

24. With this sample size the r value of 0.707 is significant on the 1%

level. If we set g = -1, then the visual contrast between the two fields

(North-South, East-West, etc.) is just as great as the preceding g = 0 or

11
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g =~ cases. But now r =0, and the correlation is not significant for any of

the 2,704,156 possible partitions.

To summarize, as long as g was non negative, the correlation coefficient

did a creditable job of spotting significant departures of the overall patterns

from the usual random types. When g went negative, the potentially significant

patterns for g =-1 were arithmetically wiped out as the correlation summation

extended over Nand N'. Moreover, even in the statistically significant cases

(g =1, ~), we observed an insensitivity of the correlation coefficient to

geographical redistributions of the two contrasting regions Nand N'.

Of the two limitations in the correlation coefficient just summarized,

that dealing with insensitivity to geographical distributions of variance is

essentially removable. One simply performs a new correlation significance

test over the smaller regions of interest. For example if an arithmetic

cancellation is suspected over N+N' when g =-1 and N,N' are the north, south

partition elements, then, while r = 0 over N+N', we would in turn find r = 1

over N and over N' separately for d(t,x), m(t,x) restricted to these smaller

domains. However, the limitation of arithmetic cancellation, the first and

more essential limitation of the correlation calculation, is still around to

do its nullifying work over these smaller regions.

B. Power Loss by Dimension

The second example of correlation limitations concerns the angular separation

of two unit vectors such as e.,f. or a.,A. occurring in the SVD of the data
-J -J -J k::.J

T Tsets M and D. This separation is measured by e.f. or a. A., respectively.
-J-J -Jk::.J

Thus, specifically, in E we would have e:f. =cose, where e is the angle
p -J-J

between e. and f .. We will now describe how the probability distribution of
-J -J

cose changes with increasing dimension p of the space containing ~j and !j.

12
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The change is such that it induces power losses in the ORIEN test as p increases.

To aid in visualizing the distribution, we will hold f. fixed, and project e.
-J -J

onto the fixed f .. Then, if we draw e. randomly from a population of unit
-J -J

vectors that are distributed uniformly* over the (p-1)-dimensional surface of

a unit sphere in E , we find that the distribution (for fixed f.) of e~f. =cos8
p -J -J-J

(= x) is

(4.8)

where

D =r(\p)/n\r(\(p-1» , -1 ~ x ~ 1.

This formula is derived in Appendix E. Some plots of P(x) vs x are shown in

Figs. 4.1-4.8 for selected values of p. Starting with p =2, we have the pdf

of the component of a unit vector in the plane: Picture the vector on a unit

circle in the xy plane, base at the ori8in, arrow on the circle. The tips of

the vectors in the population are uniformly distributed, by construction, over

the circle. The projections of the tips on the x axis (along which f. lies)
-J

produce cos8 values ranging from -1 to +1. Notice how the cos8's dwell mostly

around +1 and -1. This is intuitively clear. In Figure 4.2 we have p = 3 and

we can still visualize the geometry: the tips of the vectors lie uniformly

distributed over the two dimensional unit sphere in E3 • The projections of

these vectors on the x axis are distributed uniformlyt on the axis, as shown.

* If we draw p random, independent samples from N(O,l) and form a unit
vector in E , then this type of vector will have a uniform distribution

p
over the (p-1)-sphere in E .

P

t This is related to the euclidean-geometry theorem that says the area of a
spherical cap or zone is proportional to its height.

13
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PROBABILITY DENSITIES FOR RANDOM UNIT VECTOR COMPONENTS

0 0
(T) 0

N co

0 0
~ 0- CD

- -N en
11 0 11 0

o..."? o...l:?
~ ...

LL LL
0 0
0... 0...

0 0
~ 0

0 N

0 0
(T) 0

0 0
-1.00 -0.50 0.00 0.50 1.00 -1.00 -0.50 0.00 0.50 1.00

COS(THETRJ COS(THETR)

0 0co ~
0 0

0 0
CD CD

0 0

- ~

'<l" Ul

11 0 IIC'
0..."': 0..."':
~O ~O

LL LL
0 0
0... 0...

0 0
N N

0 0

0 0
0 0

0 0
-1.00 -0·50 0.00 0.50 1.00 -J .00 -0.50 0.00 0.50 1.00

COS(THETRJ COS(THETR J

Fig. 4.1 Fig. 4.2

Fig. 4.3 Fig. 4.4

14



§4

PROBABILITY DENSITIES FOR RANDOM UNIT VECTOR COMPONENTS
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The ordinate of the straight line is~. As we go on to p =4, visualization

ceases, and we stay close to (4.8) for guidance. The curve of the pdf is now

a circle (do not be misled by the choice of ordinate scale in Fig. 4.3). The

projections of the four dimensional unit vector on the x axis now tend to

gather more toward cose =O. For p = 5, the pdf curve in Fig. 4.4 is a parabola;

the tendency for cose to cluster around 0 is beginning to be more pronounced.

At P =6, in Fig. 4.5, a definite change of character of the pdf curve takes

place: it is now bell-shaped. From this point on, i.e., from p =6 in Fig. 4.5,

to p =80 in Fig. 4.8, the trend of the population's cose values toward the

origin is inexorable; the height increases linearly with p, the width goes

down as l/p~, and the pdf approaches Dirac's delta singularity, as p ~ ~.

The practical consequence of this crowding of the components of a random

unit vector (and hence the values of random correlations) toward zero is that

the power of the ORIEN statistic decreases with increasing p: in higher

dimensional settings, two randomly selected unit vectors are very lkely to be

found nearly orthogonal. This is in contrast to the everyday case of p =2

where the opposite is the case. As a result, as we rotate one unit vector

away from another in E , and cose drops from 1 down toward 0, the larger the p
p

is, the longer the drop is before cose is out of the (say) 5% critical region

of the right tail of the pdf. Translated into angles, this means that, starting

from 0°, in an Eto setting, say, we reach 75° or so before a statistic such as

ORIEN can detect with confidence 95% that the null hypothesis no longer holds.

We shall illustrate this phenomenon with some examples.

In Fig. 4.9 we have displayed some power curves of ORIEN. In the upper

panel we have the case of n =50 and one of the curves labeled "p =2." This

is how that curve was made: Two 50x2 (= nxp) data sets Q',~' were drawn from

Nz(O,!z); i.e., the 50 rows of these matrices were drawn randomly, one by one,
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ORIEN
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from a spherical two dimensional normal distribution.

§4

The e. and f. eigenvectors,
-J -J

j = 1,2, were found using the theory of Appendix B, and ORIEN was then formed,

as defined in Table 2.1. One hundred such draws of D' and H' were made and

from the 100 resultant realizations of ORIEN, a cumulative distribution function

(cdf) was constructed. This constituted the cdf of the null hypothesis--i.e.,

that ~',~' were drawn from the same population. Next, 10 fresh realizations

of D' were drawn from the population. Each of the 10 E frames of the realizations

was homogeneously spatially rotated* by 2\0 (to simulate draws of D' and H'

from populations of different orientation), and it was noted whether the ORIEN

between the rotated ~ frame and the original ~ frame of Q' lay in the 5% right

critical region of the constructed ORIEN cdf. If it did, the trial was called

a "success." (The null hypothesis was detected to be false.) Out of 10 such

trials 4 were successful, and this is recorded by the leftmost point of the

"p =2" curve (with ordinate 0.4) in Fig. 4.9. The remaining three points

were made in a similar manner from 10 trials each. From the resultant curve

for p =2 we see that the power of ORIEN increases rapidly, and by 150 the

power is 0.9. The remaining two curves in the upper panel of Fig. 4.9 were

constructed similarly. The lower panel in Fig. 4.9 gives more detail on the

power of ORIEN for p = 2 when different sample sizes are taken.

The curve for p = 10 in Fig. 4.9 is of special interest here. This

illustrates our comments above about the loss of power of ORIEN in higher

dimensional spaces. Thus we must rotate an E frame in E10 on the order of 750

* Refer to (C2.19) in Appendix C, for the theory of spatial rotations.
There, p =2, so ! =1 for the present example. Hence there was only one
canonic rotation angle by which to rotate in this example. In the other
curves of Fig. 4.9, say for p = lOt then! =5, and a homogeneous rotation
means simply that all five e., j =1, ... ,5, were set equal to a common

J
value e, which was then varied.
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before ORIEN can detect (with confidence 95~) 9 out of 10 such rotations. The

power magnitude and confidence level here are satisfactory; it is the size of

the angle that is not satisfactory, being unworkably large.

We shall next illustrate what it means physically for a unit vector in

Eso to be rotated by various amounts. The result is quite representative of

general rotations in E with high values of p.
p

One way to illustrate this rotation effect in higher-dimension spaces and

still retain a semblance of visualizability is to work with a principal component

time series, as follows. The rotations will then be temporal rather than

spatial. We generated a 50x2 random data set ~' just as we did in the context

of the p =2 curve of Fig. 4.9. We then found the first (unstandardized)*

principal component time series {a1(t): t =1, ... ,50} as defined in (B3.13)

of Appendix B. We next constructed a 50x50 temporal rotation matrix L as

shown in (C2.19). Note that the rotation theory leading to (C2.19) is general,

so that we can replace "p" everywhere by "n" in that theory. Moreover, we can

choose the 50x50 matrix ~ to be anything we please in the present example, and

we chose it to be _Iso. We further may set all a. in L equal to a common angle
J -

a, thereby producing a homogeneous temporal rotation. We then applied the

homogeneous temporal rotation, for varying amounts of a, to the vector

Ta1 = [a1(1), ... ,a1(50)] . The results are shown in the sequence of

Figures 4.10-4.16. In Fig. 4.10 the solid curve represents the unrotated,

original 50-component principal vector !1; the dashed curve represents the

50-component !1 rotated by an homogeneous rotation of 10°. As shown in the

* That is, do not divide the centered data set by aD. The result is

a.(t) = aD~.(t), j = 1, ... ,p.
J J
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subsequent figures, the rotation effect becomes noticeable between 20° and

45°. By 90°, the two curves are shifted considerably. Observe that it is not

a rigid shift, but a less obvious one dictated by the structure of (C2.19).

It is easy to obtain explicit expressions for each t-value of at(t) as a

function of a to see what this dependence is. For this, we note parenthetically

that we can write ~ in (C2.19) as:

R,

R = I
j=l

T T T T[c.(x.x. + v.v.) + s.(x.v. - v.x.)]J -J-J LJLJ J _JLJ LJ _J
(4.9)

See Sec. 6 of Appendix C. Hence if z is a pX1 vector, then its rotated form w

is given by:

R,

w =R z = I
j=l

where we have written

't·' for Tx.z
J -J-

'~.' for T
Y:.. z

J J-

[(c.t. + s.~.)x. + (-s.t. + c.~.)y:'.]
J J J J -J J J J J J

j = 1, ... ,R,.

(4.10)

Continuing to study the sequence of figures, particularly the figures for

aT =80°, 90°, we gain an immediate impression of the effect on the time

series {a.(t): t = 1, ... ,50} of an homogeneous rotation of 80° to 90°. This
J

is, as suggested by the trend of curves in the upper panel of Fig. 4.9, the

amount of rotation needed to attain a power of 0.9 or more for the statistics

ORIEN or COREL, when p or n is 50. This amount of rotation is large and

easily detectable by eye. In the presence of such shifts we do not need a

statistic such as ORIEN to tell us the two curves are significantly different.
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What we need for this task are more sensitive statistics, ones that are not of

the correlation type, when working in high-dimensional settings with smaller

rotation angles. We next turn to consider this matter.

5. S-Phase Test

We now introduce the S-Phase test, which is designed to tell whether the

E and F frames of a given data/model pair Q,~ (and hence their spatial patterns)

are significantly close or distant, as the case may be. The central concept

used in the test is the set of canonic rotation angles between! and F. The

theory of these angles is given in Appendix C, and how they enter the S-Phase

test will be fully described in the discussion paragraphs below. A preliminary

glance at Appendix C for notation and terminology will help the reader prepare

for a first reading of the S-Phase test.

We should state at the outset that the S-Phase test, despite its somewhat

finished appearance, is actually but a first attempt to systematically and

objectively gauge the distance between data/model eigenframes ! and ! in a

practical way. On the one hand, the test, as it is presently constructed, has

several strong features, particularly in the way the rotation angle distributions

are linked to the values of the data matrix ~ and hence to the physics of the

process under study. On the other hand the test shows some weakness in the

behavior of the canonic rotation angles as measures of distance. These positive

and negative features will be discussed after the test has been defined.

The S-Phase test below has been specifically devised for the case where

the number of samples n and the number p of points in space are such that

n-l ~ p. The theory of Appendix B then shows that the pxp ~ and! frames are

uniquely defined, and rotations in E can uniquely relate E and F. Moreover,
p
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it is then possible to define a unique set of canonic rotation angles between

E and F. The complementary case n-! < p, as the theory of Appendix B shows,

has associated at most only n-! non-zero eigenvalues and their uniquely defined

eigenvectors. In this case there is no unique rotation between those sets of

column vectors of E and of F that are uniquely determined. However, it is

possible in this case to use the formalism of the T-Phase test. How this can

be done will be outlined in the closing paragraph of §6.

A. S-Phase Test Stages

The S-Phase test has four main stages. Stage I finds the canonic rotation

angles el, ... ,e~, ~ = [p/2] between the space-centered versions of the given

nxp primitive data sets ~',~'. In Stage II the cumulative distribution of the

e. is found under the null hypothesis, using a Monte Carlo procedure. Stage III
J

connects the e. with the values of D in such a way that we know on the average
J

how much of a rotation of ~'s ~-frame will produce a given percent change in

D's field values. Finally, in Stage IV, the results of Stages II, III are

combined with that of Stage I to decide whether E and F are significantly

close or significantly distant, as the case may be.

STAGE I. (Canonic Rotation Angles e.)
J

1. Given: two nxp matrices ~',~'. Center them in space to obtain ~,~,

respectively.

2. Find the E and F frames of ~ and ~, respectively.

3. Apply the octant and chirality conditions to ~,~.

4. Construct ~ =~ ~T from the conditioned ~,~.

5. Find the canonic rotation angles el, ... ,e~, of~, where ~ = [p/2].
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STAGE II. (Reference Distribution for Canonic Rotation Angles)

1. Select nxp matrices D(i),M(i) randomly from N (0,1). Center D(i),M(i)
- - p--p --

in space (average over n dimension). Here i is a realization index i =

1, ... ,r.

2. Find the ~(i),!(i) frames of ~(i) ,~(i), respectively, i =1, ,r.

3. Apply the octant and chirality conditions to ~(i) ,!(i), i =1, ,r.

4. Construct ~(i) =!(i)~(i)T from the conditioned ~(i),!(i), i =1, ... ,r.

5. Find the canonic rotation angles e~i), ... ,eii) of ~(i), where! = [p/2l

and i =1, ... ,r.

6. Pool all !r angles e~i), j =I, ... ,!; i =1, ... ,r and find the cumulative
J

distribution of this set of !r angles.

STAGE III. (Connecting Spatial Rotations and ~-field Changes)

. {(i) (i) (i) (i)}Construct rotat1on platform bases !1 ,Yl , ... ,!! ,y! for the case

(i) (i) (i) (i) (i)
P =2! or {!1 'Yl , ... ,!! ,Y! '!!+1} for the case p =2!+1, i =1, ... ,r.

Produce £(i)(e) vs e, i =1, ... ,r, via homogeneous spatial rotations of

data set ~ using the ith rotation platform.

3. Average the £(i)(e) over the i =1, ... ,r to obtain fee).

STAGE IV. (Deciding whether ~,! are significantly close or distant)

1. Choose an £ value, 0 ~ £ ~ 1. Find that e which solves fee) =fa a a a

e is the acceptance angle, and f is the acceptance fraction.a a

2. Find p that pairs with e using the reference distribution of Step 6,a a

STAGE II. p is the acceptance probability.a

3. Choose confidence level I-a of test. a is the size of the test.
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4. Compute from p and a the critical acceptance number a(close), or a(distant),
a

as the case may be.

5. E is significantly close to (significantly distant from) F if the number

a of canonic rotation angles e1 , ... ,6t (of Step 5, STAGE I) in [0,6a ] is

greater than a(close) (is less than or equal to a(distant)). In each case the

decision results in a rejection of the null hypothesis H , i.e., that D and M
o

of STAGE I are drawn from the same population as the D(i) and M(i) in STAGE II.

B. Discussion of S-Phase Test Stages

STAGE I (Discussion).

The theory of singular value decompositions of data sets is used to find

! and !, as explained in Appendix B. The octant and chirality conditions are

defined in §5 of Appendix C. Their purpose is to uniquely fix E and F so that

the canonic rotation angles are in turn uniquely defined. The computation of

the canonic rotation angles is described in Appendix C. A standard IMSL

eigenvalue routine can be used for the complex eigenvalues of R. The theory

of Appendix C provides the reader with the background that will help in the

intelligent use of the subroutine. Our program, as a result of the octant

condition, places all the 6's in the range [O,n] (see also the remarks below

(C4.4)).

STAGE II (Discussion).

The first five steps of this stage are exact replications of the five

steps of STAGE I. The randomly selected pairs ~(i) ,~(i) are drawn from

N (0,1). (We chose r =100 for our work.) For example, ~(i) is obtained by
p --p

np random samples from N(O,l), the normal distribution with zero mean and unit
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variance. The np numbers so drawn can be used to build ~(i) row by row (or

column by column). Ordinarily, i.e., without the octant condition, as both

experiment and theory show, the

over [O,2n]. In this case Step

8~i) so found, will be uniformly distributed
J

6 would not be needed, as we would know the

two orthonormal frames:

theoretical form of the reference distribution: a rising straight line over

the domain [O,2n] starting with ordinate ° and ending with ordinate 1 at 2n.

However, the octant condition prevents the 8. of the frames from going beyond
J

n. This effect shows up first of all in the elimination of rotation angles in

[n,2n], and secondly, in the slower rise of the reference distribution inside

[O,n] near n. Hence the whole point of STAGE II is to find the actual distribution

of the 8.'s over the range [O,n] as produced by the octant condition.
J

We put up with these nonlinear anomalies in the 8-distribution because

the octant condition seems to us a sensible way to define the distance between

since the signs of the !j and !j in! and ~, respectively,

do not matter to the physical representation of the fields ~ and ~, we can

change these signs at will until ORIEN(!,~) is a minimum. This minimum is

what we would naturally think of as the (distance)2 between the two frames.*

By contrast to this convention, there is another way of fixing the signs

of the e., and f.: by making the first components of the e. and f. nonnegative
-J -J -J -J

(the "hemispheric" condition). It is clear tht this generally would uniquely

fix the 8's, but not at the minimum possible ORIEN. (The chirality condition

would of course have to be retained.) We haven't made the experiment to see

* This is in analogy to the definition of distance between two arbitrary
sets A,B in E: let d(a,b) be the distance between any point a in A and

p
b in B. Then let a,b vary over their respective sets. The minimum of
d(a,b) so found is the distance between A and B. This is also the sensible
way to define the distance between two islands A,B on the ocean, e.g.
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if the 6-distribution is uniform over [O,n] with this "hemispheric" condition;

we would conjecture that it is. If it were, then STAGE II could be eliminated,

and a new version of the S-Phase test constructed. The loss of the minimum

ORIEN (the octant) condition may be compensated for by a simpler and quicker

S-Phase computer program.

There was ample opportunity to explore the possibilities inherent in the

hemispheric condition prior to writing this report. However, we felt the

matter was of secondary importance since the null hypothesis implicitly used

in STAGE II's present form deals with a rather special population from which

the D(i) M(i) are drawn, namely N (0,1). A more realistic population would
- '- P - -p

be N (O,I) for some non-isotropic covariance matrix I. The reference distributionp --

of 6.'s for this I is most conveniently found by Monte Carlo methods. Moreover,
J -

estimating I from real data would lend a new dimension of reality to the test;

also a new dimension of expense. Therefore we leave the matter of STAGE II

here for the present. Its generalization to the case of ~ can be very simply

made whenever there is a reason to do so (it will affect only Step 1).

STAGE III (Discussion)

The theory of construction of the bases involving the eigenvectors x.,v.
-1 £.1

is fully covered in Appendix C. We call these bases "rotation platforms"

because they are the scaffoldings from which the homogeneous spatial rotations

of D are made. These rotation platforms are represented by the matrices ~ in

(C2.22) and (C2.24). For Step 1, one may, e.g., construct these ~'s by repeating

Steps 1-4 of STAGE II and extracting the ~-matrices from the ~(i) of Step 4.

Alternatively, one may select a pXp matrix ~' randomly from Np(Q,!P).

columns of W' are linearly independent with probability 1. Then orthonormalize
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these columns using the Gram-Schmidt procedure to find ~(i). Let Wei) be the

ith such random rotation platform obtained, i = l, ... ,r, in one of these ways.

(In our work we set r = 100.) We then rotate the given centered D matrix via

the formula:

where

o s e S n
i=l, ... ,r.

o ~ e S n
i=l, ... ,r

(5.1)

(5.2)

Here ~(e) is as defined in (C2.l9) or (C2.23) and with all e the same.

This is what is meant by an homogeneous rotation. By applying [~(i)(e)]T in

this way, we are in effect rotating ~(i),s ~ frame:

~[~(i)(e)]T = ~' !~T [~(i)(e)]T

= ~'!\ [~(i)(e)~]T o ~ e ~ n
i=l, ... ,r. (5.3)

Thus we induce changes in ~ via spatial rotations only; variance (via !\)

and temporal evolution (via ~) remain unaffected, as well as location (via

D). Let d(i)(t,x;e) be the tx element of ~(i)(e), t = l, ..• ,n; x = l, ... ,p,
-0

i = l, ... ,r. Let d(t,x) be the tx element of the original centered matrix D.

Then for each t,x,e and i, form the quantity

f(i)(t,x;e) /d(i)(t,x;e)-d(t,X) I
- a'

D

where

[ n
p

[d(t,Xl -do(Xl]2] \a' = -l I I
D - np t=l x=l

(5.4)

(5.5)
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Form the average

1 ~ i f(i)(t,x;8)
np t=l x=l

(5.6)

i=l, ... ,r

Average once again to find

° :lii 8 ~ n,

f(8) (5.7)

where f is the maximum of the numerator over the domain [O,n). f invariablymax max

occurs at 8 =7t. Hence °:lii f(8) ~ 1; ° ~ 8 ~ 7t.

From these constructions we see that f(8) gives the average fractional

change of the original ~-field induced by an homogeneous rotation of 8 radians.

As 8 increases over [O,n), our experience is that f(8) increases nearly linearly

with 8. In all cases the rise should be monotonic over the entire range.

STAGE IV (Discussion)

The acceptance angle 8 of Step 1 defines a proper subinterval [0,8 ) of
a a

[0,7t) in which we keep watch for the occurrence of canonic rotation angles 8.,
J

j=l, ... ,Jl.. It is intuitively clear that, no matter what 8 is or how it is
a

obtained, the more 8. that fall in [0,8 ), the better is the fit between E and
J a

!, i.e., the smaller is the norm 1I!-!11 2 • This is the basis for the significant1y-

close decision in step 5. On the other hand, too few 8. falling in [0,8 )
J a

raises the possibility that E and F are significantly distant from each other.

The key word in each of these decisions is "significantly." This entails

associating to [0,8 ) a probability of a 8. falling in [0,8). This is done
a J a
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by means of the reference distribution of Step 6, STAGE II. Moreover ea

itself is chosen using fee) in an attempt to connect up this probability with

the field values of D. The smaller the £ we choose, the smaller is the
a

resulting ea , and hence Pa' and so the more stringent we are intending the

test to be for the significantly-close option; and the less stringent for the

significantly-distant option.

What option in Step 5 is chosen is largely a function of who is doing the

test. A GCM developer who is in the first stages of developing his model

would likely choose the significantly-distant option. In the resultant S-Phase

test for moderate choices of £ and a, unless the model is really bad in its F
a

frame match to the data ~-frame, the number a of accepted e, will not be less
J

than a(distant). In the final stages of development of a GCM that appears to

have promise in its spatial pattern simulations of real data, the modeler may

wish to test whether ~ is significantly close to E. Our experience is that

the significantly-close test is a very demanding one (say for £ =0.1, a =0.1)a

in contrast to the significantly-distant test which is relatively forgiving.

Whether one chooses this or that option, he still has the ability to vary f
a

and a.

The details for finding a(close) and a(distant), which are instrumental

in reaching these decisions, are as follows. On the assumption that the e.
J

are pairwise independent (which by experiment seems largely so) we can compute

the probability P(j) that precisely j of the 1 canonic rotation angles are in

[O,e ]:a

l' 1-'P(j) = (.) pJ(l-p) J
J a a

j =1, ... ,1. (5.8)

For the significantly-close decision, find that a for which
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l.
I P(j) =a (5.9)

j=a+1

and call the value "a(close)." The critical region is [a(close)+l, ..• ,l.].

For the significantly-distant decision, find that a for which

l.
I P(j) = I-a

j=a+1
(5.10)

and call the value tta(distant)." The critical region is [O, ... ,a(distant)].

In our work we most often used a = 0.1.

c. Some Preliminary Studies of the S-Phase Test

The feature of the S-Phase test that makes it particularly interesting

from the physical point of view is STAGE III, wherein the changes in ~ induced

by rotating the ! frame of D are connected to the homogeneous rotation angles

e. The quantities fee) and £ summarize these connections, where £ is aa a

choosable parameter. In this paragraph we examine the effect, of changing £ ,a

on the decision concerning the proximity of the! and ~ frames. Specifically,

on the one hand, we are interested in seeing the S-Phase test continuing to

frames are indeed distant. On the other hand, !,~ frames that have been

deliberately built close together should be declared by the S-Phase test to be

significantly close under a wide range of decreasing-£ conditions (startinga

from £ = 1.0). It turns out that these two situations are more or less
a

symmetrical within the S-Phase formalism, and so we will illustrate only one
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of them. We consider the significantly-distant case, and set up some test

cases as follows.

We choose an nXp data matrix D_ and produce four rotated versions M. of
-1

it, i = 1,2,3,4. We apply the S-Phase test to each pair(D,M.) to see if it
- -1

will detect our attempts to make the E frame of D and the F. frame of M. close
-1 -1

or distant. The choices of the rotation angles between E and F. are shown in
- -1

Fig. 5.1. In part (a) we display 12 rotation angles uniformly distributed

over [O,\n] to simulate a random rotation between two 24x24 matrices ~ and !1.

In part (b) the rotation angles are crowded around 0 to simulate relatively

close frames ~ and !2, while in (c) the reverse is true for ~ and !3. Case

(d) is intermediate between cases (b) and (c), and it was this case that

produced a surprising result, which we shall discuss presently.

To begin the intercomparisons we constructed a 36x24 (= nXp) matrix ~ by

drawing its 864 entries randomly from the normal population N(O,l). We then

used (C2.21) with ~ =!24 to rotate D spatially (cf. (5.3)) via g =~, where

the 8. in L are specified as in (a)-(d) of Fig. 5.1. The result was M.,
J - -1

i =1, ... ,4. The analytic forms of the 8., j =1, ... ,12, in these cases are
J

given below:

case (a): 8. = 90° (j/12) , uniform on [0°,90°]
J

case (b) : 8. = 90° ((j-1)/12)3 packed toward 0°
J

case (c): 8. = 90° (l-((j-1)/12)3) packed toward 90°
J

case (d): 8. = 90° (1+ (j -6) /40) , packed around 90°
J

Once we had a data matrix pair D,M., we found the frames E and F. and
- -1 -1

then applied the S-Phase test to this pair of frames. For all four test cases

we had fixed a at 0.10, and made various choices of f. These choices and thea

salient results of the S-Phase test are shown in Table 5.1. In cases (a)-(c)
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FOUR DIFFERENT MODES OF E, EFRAME SEPARATION
FOR CHECKING S-PHASE TEST

CASE (0)

o 10 20 30 40 50 60 70 80 90 8j

o 10 20 30 40 50 60 70 80 908j

CASE(c)

o 10 20 30 40 50 60 70 80 90 8j

CASE (d)

J I II ~I I I I
o 20 40 60 80 100 120 140 160 180 8j

CASE (e)

CASE (d) AS RECOVERED BY
STAGE-I, S-PHASE TEST

r4J I I ~I I I I I ~
o 20 40 60 80 100 120 140 160 1808j

Fig. 5.1
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TABLE 5.1

The results of the S-Phase Test on four different modes
of !,!-frame separation. Significantly-Distant Option.

{no. of 8. in [0,8 ]}/a(distant)
J a

Case f 8° Pa Accept or Reject H if fraction is 1 or less.a a 0

Reject Rejected H means signific.-distant
0

H frames.
0

(a) 0.10 11.6 0.095 R 1/1

0.99 168.5 0.94 A 12/11

(b) 0.10 11.6 0.095 A 7/1

0.99 168.5 0.94 A 12/11

(c) 0.10 11.6 0.095 R 0/1

0.20 24.0 0.22 R 1/2

0.55 67.5 0.48 R 4/5

0.60 74.6 0.52 R 5/5

0.99 168.5 0.94 A 12/11

(d) 0.10 11.6 0.095 R 1/1

0.80 108.0 0.69 A 10/7

0.99 168.5 0.94 R 11/11

the 8. were recovered exactly in STAGE I of the test. In case (d), the recovered
J

8. are shown in case (e) of Fig. 5.1.
J

The case we were initially most interested in was case (c), and we shall

discuss this first. The rotation angles were deliberately selected to be

large, crowding around 90° from below 90°, as can be seen from Fig. 5.1. We
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set a =0.10 and chose the acceptance fraction f to be 0.10. The Monte Carlo
a

runs in STAGE III produced an £(a) curve which associated to f =0.10 the
a

acceptance angle a of 11.6°. This angle in turn, via the reference distribution
a

of STAGE II, yielded up the acceptance probability p = 0.095. This p defined,
a a

via (5.10), a critical acceptance number a(distant) =1. When the program

I, it was found that none

Since we needed 0 or 1 of the a.'s in
J

[0,11.6°] for rejection of H , the null hypothesis H (Step 5, STAGE IV) was
o 0

computed the a. for D and Ms , as described in STAGE
J - -

of the 12 a. was in [O,a ] = [0,11.6°].
J a

accordingly rejected. We conclude, for this level of £ , that E and F1 area - -

significantly distant. This was what we designed case (c) for and what we

wanted, intuitively, the S-Phase to declare. We then raised £ to 0.20 and
a

still obtained rejection of H. H was rejected because 1 canonic rotationo 0

angle was found in [0, 24.0°] while a(distant) in this case was 2. At

f = 0.60 we we obtained the final rejection of H , and at £ = 0.99, H was
a 0 a 0

accepted. Therefore, at about £ =0.60 we have the acceptance/rejection
a

threshold of H on the 90% (= (1-a)100%) confidence level. The reader willo

now see that, in case (c), had we crowded the a. more closely toward 90°, we
J

could have raised f somewhere beyond 0.60 and perhaps still have had rejection
a

of H , i.e. the test would have continued to declare the! and ~s frames
o

significantly distant.*

* The dual result for this case (c) would occur in the significantly-close

option using case (b): Starting with (say) £ =0-9, the S-Phase test
a

would reject H and declare E and ~s significantly close. This rejection
o

of H would continue until £ was decreased to around 0.50 or somewhat
o a

below, where there would occur an accept~nce/rejectionthreshold. For fa
smaller than the threshold, H would be accepted. For a given a, the

o
smaller £ is before acceptance of H , the closer are the E and F frames.

a 0
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In practice, i.e., with real data, this sweep of the S-Phase test parameter

f over (0,1) starting near 0 would, for given a, give a succession of acceptances
a

and rejections of H. The user of the S-Phase test would then receive an
o

impression of the proximity of an ! and! frame which would be a much more

detailed impression than had he selected just one f and arrived at a single
a

acceptance or rejection of H. In the significantly-distant option, and for a
o

given a, the larger f is before acceptance of H , the more distant are the Ea 0

and F frames. This many-look situation is similar to that in the APP (auto-cross

permutation procedure) of DIT(II) where many looks at a statistic, such as

SITES or SPRED, were made before declaring that the data sets were significantly

separated or not in the sense of SITES or SPRED, respectively.

In case (a) we obtained acceptance of H all across the f range, excepto a

at f = 0.10, indicating that, as far as the S-Phase tests analysis was concerned,
a

the E and !1 frames could have been obtained from two samples drawn randomly

out of N24 (Q,!24)'

In case (b) we obtained acceptance of H all across the f range. This
o a

is a reasonable result ~or the present option, and since we know, by construction,

that! and !2 are relatively close, this suggests that a user of the S-Phase

test would do well to try both options in Step 5, STAGE IV on a given pair of

data sets. In the present case, the result of applying the significantly-close

option is anticipated in the preceding footnote. As a user's experience with

the S-Phase test grows, and a history of results accumulates using both options

and a small set of a values, the proximity analysis of two new! and! frames

would be viewable against the accumulated results of earlier tests and more

than just an objective conclusion would result.

We turn finally to case (d). This case differs from the others because

we have allowed the angles a. to spillover the 90° threshold in (0,180°).
J
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After we produced ~4 by rotating ~ the indicated amount, we sent ~ and ~4 off

to S-Phase test and observed the following: In STAGE I of the test an

independent determination of the canonic rotation angles between ~ and ~4 was

made. The result is shown in Figure 5.1 (e) which we call the recovered

angles. Unlike cases (a), (b), and (c), wherein the 8. distribution was in
J

each case recovered exactly, we obtained the distinctly different distribution

shown in (e) when we started with that in (d). When this result appeared, we

were momentarily puzzled. It eventually became clear what was happening: the

program was correct; the octant condition was doing what it was designed to

do, namely to flip the e. vectors of the D matrix until E was changed to some
~ - -

new ~' such that ORIEN(~' '~4) is a minimum (cf. §5, Appendix C, and the

discussion of STAGE II in par. B, above). It turned out that this minimum was

below the ORIEN(~'~4) value for the original~. The net result is that, for

f =0.10, the test rejected H , on the grounds of the presence of the singlea 0

recovered angle of size 6.94° in [0,11.6°]. This angle, near 7°, can be seen

in Fig. 5.1(e). Clearly the 1/1 fraction in Table 5.1 for this case is a

borderline decision. As we continued to raise f we obtained a strong acceptance
a

at f =0.80. Continuing on to f =0.99, we obtained a final (borderline)a a

rejection of H. Recall that, in the significantly distant option, a rejectiono

of H means the frames are significantly distant. Hence, in our sweep througho

the range of f values, we see the ~'~4 frames first as distant, then close,
a

and then distant. Closer examination of all these results shows that, while

at first puzzling, they are nevertheless reasonable: by rotating ~ out past

the 90 0 threshold of rotation angles, we produced an ~4 frame that could be

transformed, via successive sign changes on its vectors f., to a new frame F_4,
-J

of equivalent physical validity for representing ~4' that was definitely
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closer* to ~ than !4. However, the distribution of the recovered angles,

although distinctly new, was still qualitatively like the original: concentrated

around 90°, sparse near 0° and l800 .t

Despite this rationalized reasonableness of the result of the S-Phase

test in case (d), we are left with a sense of overall disappointment in the

test. For one thing, we have discovered that, under the octant condition, a

continuous rotational transformation of a data matrix D can induce a discontinuous

transformation of the canonic rotation angles 8 .. This is illustrated by the
J

8. distributions in Fig. S.l(d), (e). This is a property, however, that can
J

be tolerated until something better is devised. (A possible remedy for this

weakness of the test is to drop the octant condition and explore other ways of

keeping the frames ~,! uniquely defined. One such possibility is the "hemispheric"

condition discussed in par. B above.)

While the S-Phase test seems to have the general configuration of a

potentially good research tool, it is clear that its interpretation is somewhat

complex, and not unlike reading tea leaves. Thus, it probably can be handled

*

t

Since ORIEN(E,F) is symmetric in E,F, the m1n1mum ORIEN condition can be
attained by acting on either Els or-Fls vectors.

Nevertheless, observe that, in the process of continuously rotating D out
past 90°, we encounter an abrupt change in the recovered canonic rotation
angles of STAGE I. It might be noted that we could avoid the discontinuity
of the recovered 8.'s by defining an equivalent homogeneous canonic rotation

J i
angle 8 such that (on the basis of (C4.4)) 4(l-cos8 ) :: (4/p) I (I-cos8k).

e e ~l

8 varies continuously as E is rotated continuously. However, such a tactic
e

returns us to the single number description of distance, and this is what
the S-Phase test was intended to avoid in the first place.
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by researchers with a bent for statistical niceties; but it is not for the

researcher wanting a rough and ready "cook-book" answer to his data intercomparison

problem. Perhaps some future research will take the basic ideas here and

rework them into something more practicable.

6. T-Phase Test

We consider next the T-Phase test, which is designed to tell whether the

A' and B' frames of the given data/model pair ~,~ (and hence their temporal

evolution) are significantly close or distant, as the case may be. The central

concept used in the test is the set of canonic correlation angles between ~'

and B'. The theory of these angles is given in Appendix D, and how they enter

the T-Phase test will be described in the discussion following the statement

of the test. The general features of the T-Phase test have been made as close

to those of the S-Phase test as their inherent difference allows. The inherent

difference is in the dimensionalities of ~' ,~' vis a vis those of ~,!. The

latter matrices are pXp, while the former are nxp. E and F therefore can be

connected uniquely by a rotation in E whenever n-l ~ p. Rotations in E ,p n

when n-l ~ p, can always connect ~' ,~', but the rotations are not unique.

Thus, a unique set of canonic rotation angles linking ~',~' is impossible

whenever n-l ~ p, a case which often occurs in practice, and the case on which

the S-Phase test was built. When n-l < p, it is possible to make a unique

rotational connection between~',~'. In this case the formalism of the S-Phase

test can be adopted once any n-l of the linearly independent p columns in ~'

and any n-l of the linearly independent p columns in ~' are chosen as bases

for E l' the common space for these bases.* In view of this fact we willn-

* That the columns of ~',~' are vectors in a common En- 1 is demonstrated in

Appendix D. See (D6.4), (D6.5).
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dwell exclusively in this section on the more difficult of the two cases for

the T-Phase test namely where n-l ~ p. As noted above, the central concept

needed in this case is the canonic correlation angle. In par. C below, we

shall give an overview of the S-Phase and T-Phase tests.

A. T-Phase Test Stages

STAGE I (Canonic Correlation Angles)

1. Given: two nxp matr1·ces ~',~'. Cente them 1"n t obta1"n D Mr space 0 _,_,

respectively.

2.

3.

4.

Find the A' and B' frames of ~,~, repectively.

Construct ~ = ~,~,T and ~fJ = ~,~,T, and then ~~fJ.

Find the canonic correlation angles ~1' ... '~ of P PA •
P -a-p

STAGE II (Reference Distributions for Canonic Rotation and Correlation Angles)

1. Construct pairs !(i) ,~(i) of orthonormal frames in E , of same chirality,
n

2.

~ =1, ... ,r. (See also Step 3).

e (i) e(i) between N(i) p(i)Find canonic rotation angles 1 , ... , [\n] _,_, ~ =
Pool all [\n]r angles; form a reference distribution from them.

1, ... ,r.

3. During process in Step 1, select the first p orthonormal vectors from

N(i) and from p(i) for each i =1, ... ,r, resulting in nxp frames ~(i),

~(i), respectively. Find canonic correlation angles between ~(i) ,~(i),

(i) (i)
namely ~1 ' ••• '~t ' t =p-max[O,2p-(n-l)]. Pool all tr correlation

angles; form a reference distribution from them.
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STAGE III (Connecting temporal rotations with ~-field changes)

1. Construct rotation platform bases {!fi)~fi) t ... t~i)~i)} for the case

{ (i) (i) (i) (i) (i)} .
n =2m or !1 ~1 t ... t!m t~ t!m+1 for the case n =2m+1 t 1 =1t ··· t r.

2. Produce £(i)(e) vs e t i =1t ... t r t via homogeneous temporal rotations of

data set ~ using the ith rotation platform.

3. Average the £(i)(e) over the i = 1t ... t r to obtain fee).

STAGE IV (Deciding whether ~' t~' are significantl~ close or distant)

1. Choose an £ value t 0 ~ £ ~ 1. Using fee) of STAGE lIlt find that eaa a

which solves fee) =£a

the acceptance fraction.

ea is the acceptance rotation angle t and £a is

2. Use the reference distribution in Step 2 t STAGE II to find p that pairsa

with ea' Pa is the acceptance probability.

3. Use the reference distribution in Step 3, STAGE II to determine acceptance

correlation angle ~ from p .a a

4. Choose confidence level 1-a of test t a is the size of the test.

5. Compute from p and a the critical acceptance number a(close) or a(distant)ta

as the case may be.

6. A' is significantly close (significantly distant from) ~' if the number a

of canonic correlation angles ~l""'~P (of Step 4 t STAGE I) in [Ot~a] is

greater than a(close) (is less than or equal to a(distant)). In each

case a decision results in the rejection of the null hypothesis H thato

the ~' t~' frames of ~,~ in STAGE I are drawn from the same population as

the A(i) B(i) frames in STAGE II._ t_

42



§6

B. Discussion of T-Phase Test Stages

STAGE I (Discussion)

The theory of singular value decompositions of data sets, used to find ~'

and !', is as described in Appendix B. The canonic correlation angle theory

is given in Appendix D. A standard IMSL eigenvalue routine will find the

eigenvalues of ~~~, and from these a simple algorithm finds the corresponding

correlation angles.

STAGE II (Discussion)

This stage differs from that in the S-Phase test by going directly to

orthonormal frames in E , rather than mimicking D(i) ,M(i) (as in S-Phase), to
n - -

find the nxp ~(i) ,!(i) frames. This is apparently an unavoidable step, and

its role in the T-Phase test will be clear once STAGE IV has been discussed.

We note, in passing this point, that we could modify STAGE II of S-Phase to

look like Step 1 of this stage without any loss of generality to S-Phase. In

this way the two tests, in STAGE II at any rate, can be structured more closely.

STAGE III (Discussion)

This stage is similar, in all details, to STAGE III of the S-Phase test.

Now, of course, we use the nXn temporal rotation ~(i)(e) to map D: ~(i)(e)~ =
~(i)(e) = [~(i)(e)~,]~~T. The ~(i)(e) are now processed just as in the

S-Phase test.

STAGE IV (Discussion)

The use of the three distributions in this stage can be seen in Figure 6.1.

By means of the STAGE III homogeneous temporal rotations in E we find then
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FIXING eo, Po' AND \jIo IN THE T-PHASE TEST

1'max

a

c

1.0 ~._-

b

Po r---~-I""""""""""""""'" 'Po' .

1.0 .

Fig. 6.1
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Choosing f then fixes e. This e in turn fixes pa a a a

via the curve in Fig. 6.1(b), coming from Step 2, STAGE II. This p is then
a

used to find ~ in Fig. 6.1(c), using the curve obtained in Step 3, STAGE II.
a

This roundabout way to link p with ~ is unavoidable because we have rotationsa a

in E that must generate fee). Somehow, then, these e have to be linked withn

~, and that is the task of the (p ,e ) in Fig. 6.1(b). Of course it is ina a

principle easy to think up ways to link Pa and ~a directly: imagine a data

set available for use in which a goodly supply of n-samples of p-variate

fields can be obtained. The resultant ~' ,~' sets from each sample will then

collectively produce a reference distribution of canonic correlation angles.

and the number of these angles in

From this an acceptance interval [O'~a]

then be tested for membership in [O'~a]

can be produced. The ~. of D,H can
J - -

[O,~ ] can be gauged for significance (in either the close or distant option).a

What has made this attractively direct procedure possible is, of course, an

adequate data setting (cf. DIT(II». What we are struggling with (by choice)

in the present version of T-Phase is an inadequate data setting (cf. DIT(II»,

to show how one can do something along the line of a T-Phase test in the

poorest of settings. a(close), a(distant) in the T-Phase test are reckoned as

in (5.8), (5.9), (5.10).

C. Overview of S-Phase and T-Phase Tests

In the present study, we have introduced the S-Phase and T-Phase tests in

specific physical contexts and perhaps have thereby given the impression that

one test should always be used to tell if spatial patterns are close or distant

and the other to tell if the temporal evolutions of data sets are close or

distant. In this paragraph we will try to dispel any such impressions and

point out the dual structure of these tests, and the general nature of each,
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but with a minimum of mathematics. If at some later time these tests will

have proven to be useful, then perhaps it will be worthwhile for a general mathe-

matical formalism to be developed to free each test from its specific origins.

The first hint that each of the two tests is not restricted to just

spatial or just temporal patterns occurs in the introduction to each test.

The S-Phase and T-Phase tests were each stated for the case n-l ~ p, and hints

were made as to the treatment of the complementary case n-l < p. The reader,

having perused Appendix B, will then have discerned that the relative sizes of

n-l and p are critical to the matters of degenerate eigenvalues and to non-unique

eigenvectors in the singular value decomposition of an nxp data matrix D.

These matters directly concern the conduct of each test. When n-l ~ p and n

pertains to time samples and p to spatial points at which the samples are

taken, then it is natural to call this the nondegenerate case, while n-l < p

denotes the degenerate case. The S-Phase and T-Phase tests above are written

for the nondegenerate case.

In the degenerate case, the S-Phase test is to be conducted along the

lines of the nondegenerate-setting T-Phase test: select from the p columns of

E and ~ n-l linearly independent columns, and these will now be treated as if

they were ~' and B' frames. Dually, in the degenerate case, the T-Phase test

is conducted along the lines of the nondegenerate-setting S-Phase test:

select from the p columns of A' and ~' n-l linearly independent columns and

these will now be treated as if they were E and F frames.

Out of these observations comes the realization that the essence of an

S-Phase test is testing the closeness of two p-member orthonormal frames in

some p-dimensional space E , while the essence of a T-Phase test is testing
p

the closeness of two p-member orthonormal frames in some q-dimensional space

E , where p < q. It doesn't matter to these tests whether the interpretation
q
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of a vector in the frame at hand is that of a principal component time series

or a principal spatial vector (empirical orthogonal function) of a data set.

7. Some Research Problems

Our findings in §4 indicate that comparison techniques for high-dimensional

multivariate data sets require multiparameter structure; nothing less will

serve as a reliable research tool. The lesson of §4 was that a single parameter

test (e.g., via correlations or norms) simply lost too much of the multivariate

information being fed into it for the results to be fully informative. This

does not mean we advocate discarding correlation- or norm-type statistics in

the multivariate setting. We shall continue to use them and draw inferences

by means of them; but we intend to continue the search for multiparameter

tests such as the S-Phase and T-Phase tests of §§5, 6, and beyond. In this

section we outline some potentially powerful multivariate tests especially

concerned with tests of significance of differences between principal component

time series, eigenvalue sequences, and principal vectors (EOF's); that is,

statistical significance tests for intercomparisons of the three main classes

of objects arising from a singular value decomposition of data sets.

A. Intercomparing factors ~',!\,! and ~',~\,~

The SVD decomposition of nxp data sets ~ and ~ results in comparable

objects such as ~',~' and !\,~\, and !,~ (see Appendix B). Their intercomparisons

by means of inner products (correlations) are summarized in Table 2.1. Besides

this form, we can compare these objects in more detail, as summarized in the

following list.
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(i) Intercomparison of the normalized principal components in~' = [~1 ...

~] and~' = [1!1""'~]' Specifically, compare the n values a j (l),

a.(2), ... ,a.(n) of a. with those R., Le., R.(l), R.(2), ... ,~.(n).J J -J ~J ~J ~J J

(ii) Intercomparison of normalized eigenvalues Kl, ... ,K of K with the normalized
p

eigenvalues Al, ... ,A of L.
p

(iii) Intercomparison of the principal vectors in E = [el ... e ] and F =
- - -p -

[!1 ... !pl. Specifically, compare the p values e
j
(l), e

j
(2), ... ,ej (p)

of e. with those of f., i.e., f.(l), f.(2), ... ,f.(p).
-J -J J J J

One possible useful method of intercomparison is the r-tile method, which

we now turn to consider.

B. Intercomparisons by r-tiles Using Various Procedures for Reference Distribution

We shall illustrate one method of data intercomparison which is based on

the r-tile classification of the range of values of each of the variates in

the object of interest. To be specific, suppose we are to compare a p-dimensional

unit vector e with another p-dimensional unit vector !, when both are measured

within a natural-basis frame defined by {Ul""'U }, i.e.,
- -p

p
e = I

j=l
(7.1)

P
f = I

j=l
(7.2)

It is shown in Appendix E that e. is distributed
J

on [-1,1] in accordance with the probability density function described in

Imagine the components e. of e to be formed from variates randomly drawn from
J

N(O,l) and then normalized.
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(E2.6). This density is the same for all p components of e. Moreover, if !

is constructed in the same way, then its components, too, will be distributed

as defined in (E2.6). It is therefore possible to partition the common range

[-1,1] of these components into r subintervals [-I,Xl],[Xl,X2], ... ,[xr _1,1],

so that the probability of a component falling in anyone of these subintervals

is l/r. The right boundary x. of the jth subinterval is defined by
J

x.
fJ q(x)dx = j/r
-1

j = 1, ... , r-l (7.3)

where q(x) is defined in (E2.6). The r classification subintervals so defined

form the basis for the r-tile intercomparison method.

There are five broad procedures we may now use to apply the r-tile method.

These methods supply the requisite reference distributions for various statistics

arising in the r-tile method. These procedures are defined in DIT(II) as:

lOP: Ideal observation procedure

EOP: Empirical observation procedure

APP: Auto-cross permutation procedure

PPP: Pool-permutation procedure

CIP: Classic intercomparison procedure

We shall briefly consider these in turn.

(i) In lOP we would have available for our reference distribution constructions

d d t b · ff·· 1 . h 11 t· D(i) M(i). 1 Nan a equate a a ase, 1.e., a su 1C1ent y r1C co ec 10n _ ,_ 1 = ,... ,
of comparable nxp data matrices. From each pair ~(i) ,~(i) we would find E(i)

and !(i), and in particular we would choose for intercomparison two vectors

e(i) and f(i). The first component e~i) of e(i) would then fall in one of the

(i)
r-tile subintervals defined via (7.3), the second component e2 will fall in
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one of the r-tile subintervals, and so on. All p components of e(i) will be

classified in this way. Similarly, the p components of f(i) will be classifiable.

F ' 7 1 ( ) h th It f I "f' t' f ~(i) .!.(i) for the case19. . upper sows e resu soc aSS1 1ca 10n 0 ,

of r = 3, p = 7, and Fig. 7.1 (lower) shows another example for the case of

r =5, p =7.

When both vectors' components are plotted in a common r-tile setting, as

in Fig. 7.1 (upper), e.g., then we can tally the r-class errors they subtend.

The O-class error Uo associated with Fig. 7.1 (upper) is 2, since two times out

of the seven the components e.,f. landed in the same subinterval of [-1,1].
J J

The I-class error in (a) is ul = 3 since there are three occasions where e.,f.
J J

are one class apart; and the 2-class error U2 =2. The sum of these errors is

UO+UI+U2 =2+3+2 =7 =p. In case of Fig. 7.1 (lower), we can tally the

r-tile errors similarly. Thus Uo =2, ul =2, u2 = 1, Ug = 1, u4 =1. In

general for an r-tile classification, the r-tile errors are UO,UI,""Ur _1,

and these add up to p.

In an adequate (i.e., lOP) data setting, such as the present one, it is a

straightforward matter to estimate the probability distribution functions of

th . I L t (i) b th . 1 f ~(i) .!.(i) assoc1'atede J-C ass errors u.. e u. e e J-c ass error 0 ,
J J

with the ith sample ~(i) ,~(i) from the data collection. Then, for fixed j we

would arrange the u~i) in ascending order (after relabeling):
J

(1) < (2)u. u,
J J

< ••• < (r)u.
J

r = 100 usually,
j = 1, ... ,r-!

(7.4)

This would define the 05% and 95% critical values u~05) ,u~95), say, if r =100
J J

(the usual value chosen in adequate settings). From these we could make r

inferences about any unit vectors such as ~',!.' that would subsequently come

up for comparison. Thus we would find the j-class errors u6, ... ,u;_1 subtended

, , ld ' . h (05) (95)by ~,!. in the manner explained above. Then we wou compare Uo W1t Uo ,uo ,
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§7

and decide if ~',!' were significantly distant or close. For example, if

u~95) < uo, then we would say with confidence 95% that ~',!' are significantlg

(05) ._close on the O-class level. Furthennore, if u~ < u. , J - 1, ... ,r-1, then
J J

~',!' are with confidence 95% significantlg close on the j-class level. The

more j-class levels on which ~',!' are significantly close, then the greater

is the belief that ~',!' are indeed close. The greatest significantly-close-type

score achievable in an r-tile test is Uo =P and u. =0 for j =1, ... ,r-1.
J

When deciding on the significantlg-distant option, we of course would

want u~ < u~05), and uj95) < uj, j =1, ... ,r-1 and the greatest significantly

distant-type score would be u. =0, j =0, .•. ,r-2; and u 1 =p.
J r-

A measure of distance, natural to the r-tile method, is the moment

m =
r-1
I jU

J
.

j=l
(7.5)

This gives the linear distance* between e and f. When estimating the distribution

functions for the u., that for the moment m should also be estimated. Clearly
J

the smaller m is, the closer are the unit vectors ~,!. Hence for statistically-

close tests we would use the left tail of m's distribution.

If we had to choose only two measures of distance to gauge the closeness

of ~,! when r > 3, then these would be Uo and m. For r = 3, we would choose

Uo and m or ul and m.t One chooses r in accordance with available data (generally

the more data available (i.e., the larger N is) the larger r can be when

* For r =3, the idea of m can be obtained by thinking of distance between
two corners in a rectangular street network where north-south blocks are
twice the length of east-west blocks.

t For examples of the case r = 3 (terciles), see Preisendorfer and Mobley
(1982), and Preisendorfer (1977).
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compiling the distributions). Given enough data, one chooses r also on the

basis of how finely the range I-1,1] is to be subdivided, and on how adept the

researcher is in visualizing and making use of multiparameter measures of

distance.

(ii) In EOP, APP, PPP, the data matrices ~(i) ,~(i), i =1, ... ,r are handled in

the manners described in DIT(II). In each procedure the j-class errors and moment

m for a given data/model pair ~,~ can be determined. The end result in each
r-1

procedure is a reference distribution for u., j =O, ... ,r-1, and moment m = I ju .•
J j=l J

These reference distributions can then be applied to the problem of judging

whether or not two given unit vectors ~',!' in the !,! frames of ~,~, respectively,

are significantly distant or close. This decision process was described in

detail in (i), just above. The reader can now see the rather large set of

possibilities he may resort to in his quest for a reference background for the

j-class errors u. and moment m.
J

(iii) We consider finally the Classical Intercomparison Procedure. There are

several possibilities here, too, that would be of interest to pursue in future

research.

First of all for the purpose of finding the reference distributions of

the uj and m, one can postulate the Stochaster: a person or device that

places a marker randomly in some r-tile slot for each of the p component

indexes. Thus, in Fig. 7.1 (upper), the Stochaster will randomly place a

point in one of the three classes above index 1. Then quite independently of

that action the Stochaster would randomly place a point in one of the three

classes above index 2, and so on, for all p indexes. The probability of the

point falling in anyone of the classes above each index is, by definition of
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the Stochaster, l/r. It then follows that the joint probability for a set

(uo, .. ·,u 1) of j-class errors subtended by two p-sets of marks placed by ther-

Stochaster is*

(7.6)

where

ao = l/r

a. = 2(r-j )/r2 j = 1, ... , r-1
J

r-1 r-1
I a. = 1 I u. = p

j=o J j=o J

Therefore, by adopting the eIP, we completely open up the analytic possibilities

regarding reference distributions for the u .. In particular the distribution
J

for u. is:
J

P(u.)
J

= p!
u.! (p-u.)!

J J

u. p-u.
a.JO-a.) J

J J
(7.7)

j=O, ... ,r-l.

The distributions for u., so laboriously obtained by the other four
J

procedures, as sketched above, are now generously supplied by classical statistical

procedures, providing one can justify the underlying assumptions giving rise

to (7.6), (7.7). In the present study this means asking whether the ith and

jth components of randomly produced unit vectors (as in Appendix E) are statistically

independent. For it is the hypothesized statistical independence of the

* See e.g. Preisendorfer (1977), p. 10.
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Stochaster's component-to-component actions that allows (7.6) or (7.7) to be

derived. Are the components of randomly-produced unit vectors pairwise independent?

The answer clearly is "no," as a perusal of (E2.2) will immediately show.

Here, then, we are looking into the degree of statistical dependence of the

components of ~ (or of f). If this degree is sufficiently small, then (7.6)

and (7.7) may be nearly correct and descriptions of the u. distributions
J

therefore may be usefully applied to the unit vector intercomparison problem.

Of course, we may simply use (as has already been done, e.g., in Preisendorfer

and Mobley (1982)) the Stochaster's reference background supplied by (7.6)

(for r =3) to gauge the significance of separation of spatial patterns in

general--patterns that themselves have nonzero spatial correlations within

them. These observations thus lead us to the following list of research

questions concerning reference distributions.

C. Research on Reference Distributions

Let two random unit vectors ~,f be generated by the method of §2 in

Appendix E. Thus their components are generated by means of random samplings

of N(O,!).

(i) What is the joint probability density of the jth and kth components

of e?

(ii) What is the probability density function for the jth canonic direction

angle ~. of e? (§7 of Appendix C)
J

(iii) Are the jth and kth canonic direction angles ~j'~k of e statistically

independent?

(iv) What is the probability density function of ~k-~k where ~k'~k are

the kth canonic direction angles of ~,f, respectively? (See discussion

below Table C7.1 in Appendix C.)
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(v) How well can the distributions in (i) be represented by normal

distributions (of one or two variates, respectively)?

These questions may be sought analytically or numerically. We conjecture that

in (ii) the distribution is uniform, and that the ~. are independent of one
J

another in (iii). The questions may be extended to normalized principal

component vectors ~,~, and to eigenvalue vectors ~,~ (Table 2.1 and (2.12)).

Suitably phrased, these questions may be extended to pxp orthonormal frames of

vectors represented either by vector components or by the ~(p-1) canonic

direction angles (Appendix C). The reader will observe that the main thrust

of the questions is toward the canonic direction angles. In the likely event

of an affirmative answer to question (iii), the theory of the Stochaster,

embodied in (7.6), would be rigorously applicable, resulting in practical

intercomparison tests for EOF's, their principal components, and even their

normalized eigenvalue vectors K and A.
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APPENDIX A

Inner Products and Norms of Data Sets

1. Introduction

In this Appendix we outline the theory of inner products and norms of

data sets, concepts which lie at the base of (euclidean-space) data intercomparison

theory. In the view of the present Appendix, a pair of nxp data sets D and M

in matrix form is visualizable as two vectors in E , which therefore have annp

inner product between them, and also their difference D-M has an associated

distance or norm. Inner product is intimately related to correlation, and one

of the main conclusions the machinery of the present Appendix allows us to

reach (cf. §3 of the main text) is that the SHAPE statistic and its descendants

are analyzable into various forms of the correlation statistic. The latter

has a well-established statistical-inferencial procedure, and so data inter-

comparison problems centering on the SHAPE-like statistics of data sets can be

reduced to significance decisions about correlations (cf §§4,7 of the main

text) .

2. Inner Product

Let !,! be two nxp matrices. Let us write

where

p n
I(!,!)' for I I x(i,j)y(i,j)

j=1 i=1

X = {x(i,j): i = 1, ... ,n; j = 1, ... ,p}

Y = {y(i,j): i = 1, ... ,n; j = 1, ... ,p}
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The number (X,Y) is the inner product of ~ and!. It is the direct

generalization of the inner product of two nXl matrices (vectors) ~,!:

n
= I u(i)v(i) =

i=l

Tu v (A2.2)

The last equality uses the customary notation for (~,!) when we work with

vectors. Equation (A2.1) can be placed into this classical form ~T! provided

we write

p
'trace A' for I a(i,i)

i=l
(A2.3)

where A is any pXp matrix {a(i,j): i,j = l, ... ,p}. Then we can write (A2.1)

as

(A2.4)

where "T" as usual denotes the transpose operator. By direct computation we

observe that:

T Ttrace X Y = trace X Y

= trace Y XT = trace yTX (A2.5)

Hence (A2.4) is independent of the order of X and Y and of whether the transpose

operation "T" is taken on X or Y.

Either from the basic form (A2.1) or from (A2.4), we can prove the following

properties enjoyed by inner products of data sets: let ~,!,~ be nXp data

sets, and a an arbitrary real number. Then

(A2.6)
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(a~,!) = a (~,!)

(~+!,~) = (!,~) + (!,~)

(A2.7)

(A2.8)

The norm 1\!11 2 is defined as

1I!1I 2 :: (!,!) (A2.9)

We may think of II!II as the length of!. The basic properties of inner product

and length as we know them from Es and ordinary vectors in En hold also in

Enp

(triangle inequality)

(Schwarz inequality)

II!II = 0 if and only if ! =Q

II a ~II = la/ II!II , for any real number a

II!+!II ~ II!II + II!"

I(!,!)I ~ II!II 1I!1I

1I!-!1I2 = 1I!1I 2 + 1I!1I 2 - 2(X,Y)

(A2.10)

(A2.1l)

(A2.12)

(A2.13)

(A2.14)

If II!II = II!'I =1, then

o ~ 1I!_!~2 =2[1-(!,!)] ~ 4

This implies (consistently with (A2.13)) that for unit length !,!,

(A2.15)

(A2.16)

Therefore if !,! have unit length we can assign a real angle Bxy between them,

o ~ Bxy ~ n, such that

(A2.17)

In general, (A2.14) may be written

(A2.18)
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where cosOxy is (!/II!II, !/II!lp. Also, (A2.15) becomes, for unit length !,!,

T T= 2[1-trace!!] = 2[1-trace! ! ]

= 2[1-(!,!)] = 2[1-cosOxy]

(A2.19)

This formula is characteristic of the norm of !-! for two unit vectors !,! in

E It is the direct generalization of the norm of u-v of two nX1 unitnp

vectors in E :
n

T T= 2[1-~ !] = 2[1-trace ~ ! ]

= 2[1-(u,v)] = 2[1-cosO ]- - uv

(A2.20)

The correlation coefficient of two average-centered* data sets u = {u(i):

i = 1, ... ,n}, ! = {veil: i = 1, ... ,n} is:

n
I u(i)v(i)

i=l
r(~,!) =-----------

n n
( I u2(i»~ ( I v2(i»~
i=l i=l

(A2.21)

and is therefore seen to be simply ~! = (~,!), where ~'! are the unit vectors

associated with ~,!, respectively. Thus norm, inner product, and correlation

are intimately connected in (A2.19) and (A2.20).

Finally, we observe that if the qXn matrix !! is T andsuch that B B = I ,- - -n

the pXq matrix f is such that C CT = I , then for all nxp matrices !,!,-p

(!! !, !! !) = (!,!)

(! f, ! f) = (!,!)

n n

* i.e. I u(i) = 0 I veil = o.
i=l i=l
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(A2.24)

APPENDIX A

These formulas follow at once from (A2.4), and amount to the assertions that

inner products and norms are invariant under change of bases or rotations in

data spaces. It is worth noting that these relations hold also for ordinary

vectors. Thus, e.g., if R is a pxp matrix such that RTR =I (i.e., if R is a
-- -p

rotation) and u,v are vectors in E , then (A2.22), (A2.23) become
-- p

(~ ~)T(~ ~) =uTv

T T T T
trace(~~) (~~) = u v

A general related result, that is often useful, is:

trace BTX B =trace B X BT =trace X

for any pxp matrix X and any pxp matrix B of orthonormal vectors.
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Singular Value Decompositions (SVD) of Data Sets

1. Introduction

The singular value decomposition (SVD) of a space-centered nXp data

matrix ~ = {d(t,x): t = I, ... ,n; x =I, ... ,p} allows us to split the space-time

structure of ~ neatly into three parts ~' ,!\, and ~

D =A'K~T (Bl.I)

which, respectively, describe the temporal evolution of the data set (via ~'),

its variance structure (via !), and the spatial pattern (via ~). The SVD

forms the basis for the various intercomparison statistics described in the

text. In view of the use of (BI.I) in calculating SHAPE, we shall develop the

SVD of D for the case of the standardized form of D (cf. (B2.8)).

2. Standardized Data Sets

Let~' ={d'(t,x): t = I, ... ,n; x =I, ... ,p} be an nXp data matrix in

primitive form. We center D' in space by finding the time averages

n
do(x) - n- 1 I d'(t,x) , x = I, ... ,p

t=I

writing

'~o' for [do(l), ••• , do(p)]T

the centroid of D' and defining the centroid matrix:- ,
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!!o - do(l) do(2) do(p) d T_0

do(l) do(2) do(p) = d T (B2.3)_0

do(l) do (2) do(p)
·T

~o

Then the space-centered* data set D is

D - !!'-!!o

We write

'o~ t for II!!' -!!0112

(B2.4)

(B2.5)

Thus o~ is the norm of !!'-!!o (cf. Appendix A). Alternate forms of o~ are

n
0 2 = I 1I~'(t)-~oIl2D t=l

P n
= I I (d'(t,x)-do(x))2

x=l t=l

where we write:

t~'(t)t for [d'(t,l), ... ,d'(t,p)]T , t = l, ... ,n.

(B2.6)

(B2.7)

o~ is a measure of the scatter, or variance of!!' about ~o, i.e., of the

n-point swarm {~'(t): t = l, ... ,n} about d in E .
-0 P

The standardized form

of D' is defined by writing

* An entirely analogous development can be made for time-centered data
sets, resulting in a generally dual theory of data intercomparison. The
modifications of the present formalism to cover the time-centered case
are readily made. Note that in DIT(II) for simplicity we dropped the
primes from d'(t,x), d'(t) and zeros from do(x), do. Here we need the
primes for the reader-who wants to keep the distinction between centered
and uncentered data.
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3. SVD of Standardized Data Sets

(~' (l)-~o)TlaD

(~' (2) -~o)TlaD

(~' (n)-~o)TlaD

(B2.8)

Let ~ be an nxp data set in standardized form.* Then by the theory of

Appendix A and (B2.8) we have

Let us write

,..., """T"'"1I!!11 2 = trace !! !! = 1. (B3.1)

for
....T....
DD (B3.2)

the pxp scatter matrix of n. Let el, ... ,e be the pXI eigenvectors of ...._S, and
- --p

K¥, ... ,K2 their associated dimensionless eigenvalues, with K. ~ 0, j =I, ... ,p.
P J

Therefore, by definition of e. and K~,
-J J

Writing

j = I, ... ,p (B3.3)

lEI

for diag[K¥, ... ,K2 ]
p

for [el ... e ]
- --p

(pxp)

(B3.4)

(B3.5)

* As in the case of primed symbols, the tilded symbols are kept for readers
who need to distinguish between dimensioned and dimensionless variables.
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where

Te. - [e.(1), ..• ,e.(p)]
-J J J

j = 1, ... ,p (B3.6)

we see that (B3.3) can take the matrix form:

with

In view of (B3.1) and (A2.26),

(B3.7)

(B3.8)

trace K= 1 i.e. ,
P
I

j=1
K~ =1

J
(B3.9)

Because of the space-centering in (B2.4), Dhas at most n-1 independent rows.

Hence the rank of ~, and therefore of S is min[n-1,p] =p. Thus at most p of

the K~ can be non zero. The reader should reflect on the necessity of centering
J

a data set prior to forming the scatter matrix. (What is the interpretation

of the diagonal elements, say, of the scatter matrix of a non-centered data

set?) Also it should be noted that division of the centered data set by aD

affects K but not E. Finally, it should be verified that the eigenvectors

associated with sets of equal eigenvalues (e.g. zero eigenvalues) are not

uniquely determined.
.....

The principal decomposition of D is defined by writing

.....
for D E

and then writing the identity

(nXp)
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as

(B3.12)

Here A is the nXp matrix of principal components (which by standardization are

dimensionless)

On recalling (B2.8), (B3.12) can be written in vector form as

(B3.13)

p ,..,
~'(t) =~o + an I a.(t)~.

j=l J J

or in scalar form as

t=l, ... ,n (B3.14)

p ,..,
d'(t,x) =do(x) + an I a.(t)e.(x)

j=l J J

t =1, ... ,n: x =1, ... ,p.

The SVD of n is obtained by writing*

(B3.15)

so that

I A' I for
,.." ,..,,-\
A K (nXp) (B3.16)

A=A,i(\

* If some K. is zero then replace "K.- 1" by "0" in (B3.16). This defines the
J ~ J,..,

generalized inverse of K and hence of ~.
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A' - (B3.17)

(Observe that ~' is independent of the normalization by an' just as ! is.)

Then (B3.I2) takes the desired SVD form:

where

which follows from (B3.16) and

"""'T......, ......,
A A =K

This in turn is deduced as follows (using (B3.2), (B3.7), (B3.8)):

~~ = (~ !)T(~ !)

= !T(~~)!

=ETS E

T "" ""=EEK=K

The vector and scalar versions of (B3.I8) are

(B3.I8)

(B3.I9)

(B3.20)

p
_d'(t) =_do + an I K.a.(t)e.

j=1 J J -J
t=I, ... ,n (B3.2I)

d'(t,x)
p

=do(x) + an I K.a.(t)e.(x)
j=1 J J J

(B3.22)

t = I, ... ,n x = 1, ... ,p.
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n
Because of space-centering (as in (B2.4)), I a.(t) = 0, and so the

t=l J
are confined to at most an n-l dimensional subspace of E , i.e., to

n

p = min[n-l ,p] .

1, ... ,p

4. Connections Between Standardized Sets and Non Standardized Sets

We summarize here some of the connections between D and its standardized

form ~ that may be useful in practice.

By (B2.4) and (B2.8) we have

D=aD- n::

The scatter matrix S of D is by definition

and so by (B4.1), (B4.2) and (B3.2), we have

(B4.l)

(B4.2)

(B4.3)

If t., j = l, ... ,p are the eigenvalues of ~, and K~, j = l, ... ,p, are those of
J J

~, then

t. = afiKj , j = 1, ... ,p
J

and conversely

K. =a~lt} , j = 1, ... ,p
J

Hence
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and (B3.7) for D becomes via (B4.3), (B4.6),

S E =E L

Thus Sand S share the same eigenvectors.

(B4.7)

The total scatter of the space-centered set D is given in the following

equivalent forms:

p n T
I I d2 (t,x) = (~,~) = 1\~1I2 = trace D D

x=I t=I

P
= trace S = I Jl. = (12 (B4.8)

j=I J D

The first equality comes from (A2.I), the second from (A2.9), the third from

(A2.4), the fourth from (B4.2), the fifth from (B4.7) via:

(B4.9)

and (A2.26). The sixth equality in (B4.8) comes from (B3.9) and (B4.6).
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Canonic Rotation Angles Between Orthonormal Vector Frames

1. Introduction

The canonic rotation angles allow a reduction of the number of parameters

in ORIEN (cf. §2 of the main text) by a factor of two. We now present some

introductory comments on the theory of canonic rotation angles.

The SVD (B3.18) of an nxp data set ~ produces a pXp matrix E of eigenvectors:

E = [el ... e ] (C1.1)- - -p

which summarize the spatial patterns of the data set. If we had another nxp
....

data set M of SVD:

(Cl. 2)

then it may be of interest to compare E and the pXp matrix F for similarities,

where

F = [f1 ••. f ] .- - -p (Cl. 3)

A natural measure of distance between E and F is attained through the rotation

transformation R that maps E into F:

= [!1 ... f ]
-p

T
~1

·T
e-p
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This R has the property that it maps
~k into !k:

p T P T
~ ~k = (I f.e. )ek = I f.(e.ek) = f

j=l -J-J - j=l -J -J- -k (Cl.S)

for

k = l, ... ,p

The norm between ~k and !k is

(C1.6)

k = l, ... ,p

and the norm between the frames !,~ is

T
= trace(!-~) (!-~)

T
= 2(I-trace! ~)

(Cl. 7)

This, except for a normalizing factor (coming from SHAPE), is what in §3 we

have called "ORIEN." Hence ORIEN is a natural measure of distance between the

Ttwo frames, involving the p inner products e.f., j = l, ... ,p. These p parameters
-J-J

can be used individually (as in (Cl.6)) or collectively (as in (Cl.7)) to

measure the separations of interest. In the case of (Cl.7) it is possible to

reduce the numbers of parameters by half if we introduce the notion of a

canonic rotation angle.

The remainder of this Appendix is devoted to the subject of canonic

rotation angles between two orthonormal bases !,~ of E. These angles are
p

Tclosely related to the eigenvalues of R = FE.
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2. Basic Properties of Rotations in E .
P

Matrices of the form ~ = ~ ~T, where ~ and ~ are pXp matrices of orthonormal

Tvectors, are called rotations. They are characterized by the property ~ ~ =

R RT = I. We examine the structure of the pX1 eigenvectors wand associated-p

eigenvalues A of a rotation R. Thus, by definition ~,~, and A are such that:

R w = AW (C2.1)

We know from (C1.5) that ~ preserves the length of ~ (cf. also (A2.24)).

Hence (C2.1) cannot hold in general unless both A and ~ are complex valued.

(What must II~II be if ~ and A in (C2.1) are real valued and A = I?) To prepare

for such a possibility, we generalize the notion of inner product and norm to

complex valued vector components:

(C2.2)

Hence '*' means: take the complex conjugate (denoted by an overbar) as well

as the transpose. In detail, if

T Tw = [Wl'···'W] , V = [Vl'···'V]- P P

then

w* = [WI, ... ,W]p

and

p p
w*v = L W.V. 1I~1I2 = L Iw.1 2

j=l J J j=l J

(C2.3)

(C2.4)

(C2.5)

Suppose ~ ~ Q is an eigenvector of ~ with R's entries real valued as usual.

Now, evaluate (~ ~)*(~ ~) two ways:
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once directly via: (~~)*(~~) =~~*~ ~ = 1I~112

once indirectly via (C2.I): (A~)*(A~) = IAI 2 1I~1I2

Since these two values are equal, we conclude

Therefore:

(C2.6)

(C2.7)

(C2.B)

A. i8The eigenvalues A of R are of the form A =e ,0 ~ 8 < 2n.

Observe that not only ~,A satisfy (C2.I), but also the pair ~,X.

Therefore:

B. The eigenvalues A and their eigenvectors w come in distinct complex

conjugate pairs when IAI ~ 1.

Suppose now that ~1,A1 and ~2,A2 are eigen pairs of ~ with ~1 ~ Q, ~2 ~ Q,

d ~ ~ ~ 8 ~ 8 . ~ i8. J. -- 1 2 W 1 (R )*(R )an ~ ~ h ,so r 1n h. = e J. ,. e now eva uate _!1 _!2
1 2 1 2 J

two ways:

once directly via: (~!1)*(~ ~2) =~1*~2

once indirectly via: (A1!1)*(A2~2) =X1A2 ~1*~2

Since these two values are equal, we conclude

Since 8 1 ~ 82, and their difference lies strictly in (-2n,2n), it follows that

C. Eigenvectors of ~ belonging to distinct eigenvalues are orthogonal.

In working with real data sets, the probability of encountering equal

eigenvalues or real eigenvalues of ~ is practically zero. Therefore it is

practically certain that, under real working conditions, a pxp rotation

matrix with p complex, unit-magnitude eigenvalues will have a set of p
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pairwise orthogonal eigenvectors. In order to simplify the present exposition

we will work under this assumption unless otherwise noted.

We now examine the real and imaginary parts of the eigenvectors w of R.

Let

w =x + i~

.Here !,~ are pXl vectors with real components. Let wl,w2 belong respectively

to eigenvalues Al,A2 such that Al * A2 and Al * X2. Then for Al,A2

o =!l*!2 = (!l+i~l)*(!2+i~2)

= (!i-i~i)(!2+i~2)
T T . T T

= (!l!2+~l~2) + 1(!l~2-!2~l)

On the other hand, for Al,X2

The real and imaginary parts of (C2.9), (C2.10) are separately zero.

these we conclude

(C2.9)

(C2.10)

From

T
!l!2 =0

T
!l~2 =0

T
~l~2 =0

T
!2~2 =0

(C2.11)

(C2.12)

Also, for any j, if w. w. belong to A. ,X. and A. * X. then
-J -J J J J J

0 w.*w. T T 2i(X:~. )= = (x. x . -~. ~. )
-J -J -J-J J J -J J

whence

T=~.~.
J J
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(C2.14)

Condition (C2.13) allows us to make all !j'~j of unit length. (Since 1I~1I2 =

1I!1I 2 + 1I~1I2 =211!1I 2 = 211~1I2, in (C2.1), divide through by ~1I~1I2.) The argument

leading to (C2.11), (C2.12) also holds for general indexes j,k on the A. Thus

the interesting eigenvalues A. of a rotation are those that are non real, so
J

that we have (C2.13), (C2.14); and those pairs Aj,Ak of eigenvalues that are

distinct (Aj *Ak) and nonconjugate (Aj *Xk), so that we have (C2.11), (C2.12).

The real eigenvalues of ~ can only be 1 or -1, resulting in identity rotations

or reflections, respectively.

Summarizing:

D. If A.,w. is an eigen pair of R with w. :: x .+iu., then for an" two non) _) - _) _) J-) :I

conjugate distinct eigenvalues Aj,Ak , (C2.11), (C2.12) hold, and for non

real Aj , (C2.13), (C2.14) hold. In other words, under the above conditions,

!j'!lj are orthogonal for all j; and !j'!k and !lj'!lk are pairwise orthogonal

for j * k. Finally, all X.,u. can be normalized to unit length._) J-)

Writing out (C2.1) in full complex form we find:

R(x.+iv .) = [c.-is.](x.+iv .)
- -J L J J J -J L J

(C2.1S)

where* c. - cose.
J J

s. :: sinS.
J J

Separating real and imaginary parts, we have

R x. =
- -J

R v .. =
- L J

c.x.+s.~.
J-J J J

-s.x.+c.~.
J-J J J

(C2.16)

(C2.17)

* The minus sign convention c.-is. is chosen here and in (C2.19) below to
J J

permit rotation angles from x. to ~. to be positive 900 clockwise, in the
-1. 1.

plane of x.,~. as seen along the direction -x. x ~ ..
-1. 1. -1. 1.
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These may be written as

R [x. ,I.] = [!. ,I.] [Cj -Sj]
- -J J J J s. c.

J J

which is the basis for the required real form of (C2.I).

(C2.IS)

The 6k are the real

versions of the ~ (cf. property A above), and are called canonic rotation

angles.

We can now build up ~ out of pieces like (C2.IS). Thus we have:

E. Let R be a rotation in E. If the dimension p of E is even, i.e.,- p p

p =2! for some positive integer!, then there are t pairs of real valued

unit vectors [x.,u.] in E , j =l, .•• ,!, such that all 2! vectors are
-J iLJ P

mutua11g orthogonal, and! angles 6.,0 ~ 6. < 2n, such that
J J

R[x I x I !l] =- -1 1 -2 2 ! !

[x I x ,I ... !l] c1 -s1-1 1 -2 2 ! !
s1 c1

o

o

...

(C2.I9)

i. e., such that

Therefore

R W = W L (C2.20)

(C2.2I)

is the desired representation of the rotation R on E. Here Wis a pXp matrix
p

of eigenvectors of R defined in the context of (C2.I9) such that
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(C2.22)

which follows from property D. We also have, by virtue of property D:

F. Let R be a rotation in E. If the dimension p of E is odd, i.e., p =2!+1
P P

for some positive integer!, then there are ! pairs of real valued unit

o ~ e. < 2n, along with a real valued unit
J

to all 2! others, such that:

vectors [x.,u.] in E , j = l, ... ,! such that all 2! vectors are mutualln
-J iLJ P :I

orthogonal, and! angles e.,
J

vector !!+l in Ep orthogonal

0

C2 -S2

S2 C2 (C2.23)
'"

c! -s!

s! c£
±1

o

!!l!I!1 !2!2 !!!! !!+1]

= [!1!1 !2!2 ••• !£!! !!+1] Cl -SI

SI Cl

i. e. ,

R =WL WT (C2.24)

ieHere !!+1 is a unit eigenvector of ~ associated with eigenvalue ±1 (= e

with e = 0 or n). Note that for the case p =2!+1, the characteristic equation

of R is a polynomial of degree 2£+1. The roots of this equation occur in

conjugate pairs, and all must be of unit magnitude. The odd real root must

therefore be +1 or -1.

This brings us to an important practical matter: that of finding a

unique set of ! canonic rotation angles in (C2.19) or (C2.23). It is quite

possible that two different computer programs, starting with data sets ~,~,

could yield up E,F frames that give two different sets of e., j = 1, ... ,£.
- - J

The following considerations will lead to uniquely defined sets of canonic

angles e., j =1, ... ,[p/2].
J
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3. Chirality of Orthonormal Frames

We shall show that it is possible to connect up orthonormal frames ~ and

!. by a rotation Ronly if the frames have the same "handedness"--i.e., left or

right handedness--or "chirality", for short: a simple example will make this

clear. Let ~,!. be of the form

E =[: -: ] (C3.1)

where a 2+b 2 = 1, 0, b > 0, and c 2+d 2 =1,
Ta > c > 0, d > 0. Hence ~1 = [a,b]

and ~2 = T T T[-b,a] are orthonormal vectors, as also are !1 = [c,d] , !2 = [-d,c] .

Observe that the determinants of E and F are both +1. The rotation matrix

that maps ~ into !. is given by

=

[: -:][-: :]
[
ac + bd -(ad-bC)] - [: a-p]
ad - bc ac + bd p

(C3.2)

The eigenvalues of R are given by the solutions A of

(a - A)2 + 13 2 =°
i. e. ,

(C3.3)

A =a ± iP tie=e (C3.4)

The angle e is zero if and only if 13 =0, and this is the case if and only if

ad =bc i.e., alb = c/d (C3.5)

This is so if and only if a = c, b = d, i.e., the ~,!. frames are identical. A

sketch of ~1,~2 and !1'!2 is:
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~1

The meaning of a is that of a rotation of E into F.

Now suppose we multiply ~2 by -1. Then we obtain a new orthonormal frame

E' = (C3.6)

Observe that

whereas before

Moreover, the rotation matrix is now

R' = ~(~,)T _[c -d] [a b]
- deb -a

= [:: +-::] [::.:-::J
The eigenvalues of ~' are given by the solutions A of

-(Y-A)(Y+A)-62 = 0
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i. e. ,

(C3.11)

The associated A-angles are a =O,n. The diagram associated with ~',~ is:

\
!~

\
\

\

~1

We conclude that there is no rotation ~, with det ~ =+1, in the plane of

A numerical program encountering general pXp frames such as ~',~, i.e.,

frames of different chirality, yields up degenerate angles, i.e., angles only

in the form 0 or n. In reality, however, the associated eigenvector maps for

E' and ~, as usually plotted in data displays, could be visually quite close.

They may only differ by a sign, but that sign difference is immaterial for

most uses of eigenvector plots. The way to prevent the degenerate a case (all

a's are 0 or n) is to make certain, when determining the vector members of ~

and ~, that the determinants of these matrices are both of value +1 or both of

value -1, i.e., that E and F have the same chirality. By simply changing the

sign of one e., or f., the associated determinant's value undergoes a sign
-J -J

change, and no important change in physical properties of e. or f. is made.
-J -J

Now observe that the determinant of R is the product of the eigenvalues of R
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and so is easily reckoned as part of the canonic rotation angle program.

Furthermore, observe, as above, that in general the determinant of an eigenframe

E or F is ±1. Hence, since

(C3.12)

we can insure detR =+1 by merely changing the sign of one vector, ~1 (say),

if necessary. Then, as the simple example above indicates, we would have ~,!

of the same handedness and we would obtain the associated non degenerate

canonic rotation angles. Therefore a true rotation between E and F would be

determinable.*

4. ORlEN via Canonic Rotation Angles

From §2, we have, by definition

for the average norm between pxp eigenframes ~,! of two nxp data sets ~,~,

respectively. By (C1.7) we can write this as

ORlEN(~,!) =
2 P T

(l - I e. f.)
p j=l -J -J

(C4.1)

Assuming ~,K have the same chirality (i.e., they have determinants of like

sign) we wish to express ORlEN(~,K) in terms of the canonic rotation angles e.
J

between the two frames. Towards this end, we compute

* The set of all pXp rotation matrices ~ with detR = +1 forms a group,
while those that have detR = -1, do not. A true rotation is a matrix R
with detR =+1.
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1I~_!1I2 = trace (~_!)T(!_!)

= trace (E-~ ~)T(!_~ !)

= trace ET(I _RT)(I -R)E
-p- -p--

= trace (I _RT) (I -R)
-p- -p-

= trace [21 -(R+RT)]-p --

Here we have used (A2.26) in going from the third to the fourth line. We now

return to (C2.19), (C2.23) and use the representations of ~ given there.

In the case of p = 2t,

trace(~+~T) T T= trace ~(~+~ )~

= trace (~+~T)

t
= 4 I c.

j=l J

Also

trace 21 = 2p = 4t-p

(C4.2)

(C4.3)

Hence

1 4 t
ORIEN(E,F) = - I/E-FII 2 = - I (l-ck)

- - p - - P k=l

4 t
= - I (1-cos6k) , t = [p/2]

P k=l
(C4.4)

which was to be shown. From the point of view of distance measure, we see

that we can work with 6k in the range 0 ~ 6k ~ n, since 1I!-!II2 attains a

maximum when all 6k are n.

In the case of p = 2t+1, since we want a true rotation, we take the

(2t+1)st root in (C2.23) to be +1. On calculating the new counterparts to
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(C4.2), (C4.3), we find (C4.4) once again. Hence (C4.4) holds for all values

of p. This is reflected in the meaning of "[p/2]" in (C4.4) which says:

"take the largest integer in p/2."

5. The Octant (Minimum-ORIEN) Condition

For the purpose of running an S-Phase test (§5 of the main text), one

that can be duplicated by independent investigators using different eigenvalue-

finding routines, we have used the following conventions. The goal of the

conventions is to define two unique ~ and ~ frames belonging to given data

matrices Q,~, which yield up the same set of canonic rotation angles.

A. Suppose, then, the numerical routine has returned two sets of eigenvectors

E = [et ... e ], F = [f t f]. The e. and f. are fixed except for signs.
4> - - 4> -J-J

We use (C4.1), (C4.4) as guides to decide whether or not to change the sign of

a given e .. The idea is to systematically switch the signs of the e. so as to
J J

obtain a minimum distance between the frames E and F. Therefore if some inner

Tproduct in (C4.1) is negative, say e. f. < 0, then change e. to -e .. The end
-J -J -J-J

result of such a systematic procedure is an ORIEN(~,~) of minimum value.

Also, as a result, the e.,f. pairs are each 90 0 or less apart. This is the
-J -J

octant or minimum ORlEN condition.

B. Once the octant condition has been imposed on ~,~, we must check to

see that ~,~ have the same chirality.* If (det~)(det~) > 0, then E and F have

*
TOne can construct an example wherein e.f. > 0, j =l, ... ,p, but where ~,~

-J-Jare of opposite chirality.
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the same chirality and we can go on to find the canonic rotation angles. If

(det~)(det!) < 0, then pick for sign reversal that ~j which will increase

ORIEN(~,~) the least, using (C4.1) as a guide. The end result will be a

unique pair of eigenframes !,! of the same chiralitg and of minimum possible

distance apart. In this wag two independent researchers using the same nxp Q,

~ sets will produce identical sets of canonic rotation angles e., j = l, ..• ,[p/2}.
]

6. Representation of Rotated Vectors

A. Returning to (C2.21) and (C2.24), we convert these matrix statements

into vector form. Thus (C2.21) becomes for p =2!

where

!
R = L

j=l

T T T T[c.(x.x. + v.v.) - s.(x.v. - v.x.)]J -J-J LJL"J J _JLJ LJ _J
(C6.1)

c. - cose.
J J

s. - sine.
J J

j = I, ... ,!

The action of R on the eigenvectors x. ,I. is, for j = 1, •.. ,!
-J J

R x. = c .x. + s.!.- -J J-J J J

R !. = -s.X. + c.!.
- J J-J J J

so that

(C6.2)

(C6.3)

R (x. + i v .)-J L J
-ie.=e J(x. + i v .)-J L J
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For the case of p =2£+1, in (C2.24), set c£+l = 1, s£+1 =0, I£+l =0 and

replace £ by £+1 everywhere in (C6.1). Thus (C2.24) becomes

£ T T T T TR =I [c.(x.x. + v.v.) - s.(x.v . - v.x.)] ± _xn+1_xn+1j=1 J -J-J. LJLJ J _JLJ LJ _J x- x-

(C6.5)

The plus sign is chosen for true rotations.

Now let z be an arbitrary vector. Then the image of z under R for p = 2£+1,

is

w =R z =
£
I [c.(x.~. + v.~.) - s.(x.~. - v.~.)] ± xn+l~n+l

j=1 J -J J LJ J J -J J LJ J -x- x-

where

£
= I [(c.~. - s.~.)x. + (c.~. + s'~·)I·] ± ~£+1~£+1

j=1 J J J J -J J J J J J

(C6.6)

T
~, = z x.

J --J
j = 1, ... ,£ (C6.7)

B.

natural basis of E (i.e., the
p

Then if p = 2£, (C6.1) becomes

For the case of p = 2£, drop the last term in (C6.6).

A special case of (C6.1) or (C6.5) occurs when the vectors x.,v, are
-J LJ

from a natural basis of some E in which we are working. Let {Ul""'U } be a
p - ~

kth element of u. is the Kronecker delta 6k .).
-J J

£ T T T T
R = I [c.(u2 · l u2' 1 + u2 ,u2 ·) - s.(u2 " l u2' - u2 ·u 2' 1)]j=1 J - J - - J - - J- J J - J - - J - J- J-

(C6.8)
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T
If P =2t+l, then add ~2t+l~2t+l to the right side of (C6.8).

From this we see that the action of R on a vector

p
z = I

j=1
(C6.9)

is one of rotations in successive planes formed by adjacent pairs u u of-2j-l '-2j

vectors, j = 1, ... ,t.

C. The rotations in

to adjacent members of the

the natural frame {Ul"'.'U } need not be- -p

basis. A rotation in E within the plane
p

confined

of the

arbitrary vector pair u,u is given by the pxp matrix.-u -v

1.
"1

u c. -so
J J

1
R - (C6.10)-uv

1
v s. c.

J J
1

1

u v

Thus the c.'s occur on the main diagonal at locations u and v, and the s.'s
""J J

occur, as shown, to fill out the rectangle of four symbols. All other entries

of the main diagonal are 1 and all remaining off-diagonal entries are zero,

indicating zero rotation within all other possible coordinate planes. There

are \P(p-l) linearly independent matrices of this structure, and these form

the basis of a vector space of rotations within the frame {Ul' .. "U}. If the
- -p

determinants of these matrices are 1 (choose the + sign of the last diagonal

entry in (C2.23) when p =2t+l) then the vector space is a group under matrix

multiplication (and hence we will have a \P(p-l) dimensional field of rotations).
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7. Canonic Direction Angles of a Unit Vector in E
p

In this section we develop the theory of canonic direction angles of a

unit vector in E. These angles are direct generalizations of the polar
p

coordinate angles of a unit vector in E3. They may be of use in tests of

significance of differences between pairs of unit vectors. Such tests arise,

e.g., in principal vector (EOF) intercomparisons between two data sets.

Suggestions for new tests, based on canonic direction angles, for vectors and

for orthonormal frames, are made in §7 of the main text.

A. Let e = [el, ... ,e ]T be a unit vector in E. Let {Ul' ... 'u } be a- p p - -p

natural basis of E (i.e., u. has Kronecker deltas as components 6k .). For
p ~ J

the purpose of finding the canonic direction angles of ~, we will subject ~ to

a sequence of rotations ~k(~k) of the form (C6.8):

Here

~k(~k) =~(~k'~k+1;~k) + !(~k+2'···'~)

k = 1, ... ,p-1.

(C7.1)

(C7.2)

I(uk+2 ,···,u)- - -p
+ ••• + (C7.3)

(C7.4)

To keep track of successive mappings of ~, let us place a subscript "1"

on it to start the sequence, so: ~l =~. Then in (C7.1) set k =1 and find

(C7.5)
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where

P
!:.1 - I

j=l

The vector ~2 may be written as:

(C7.6)

(C7.7)

We want to find that value of ~1 in (C7.7) which will make the coefficient of

~1 zero. Thus we require

(C7.B)

It follows that

(C7.9)

where

(C7.10)

Using the principal branch (-~, ,n) of the arctan(x) function where x is in

3the range (-=,=), we have ~1 defined in the range, -,n ~ ~1 < 2n:
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el > 0, e2 ~ 0
\n - arctan (e2/el) when or

el > 0, e2 < 0

0 el =0, e2 > 0

eIll = 0 when el =0, e2 = 0 (C7.11)

n el = 0, e2 < 0

when lor el < 0, e2 =r; 0
-\n - arctan (e2/el)

el < 0, e2 > 0

Using this value of eIll in (C7.7), we obtain

(C7.12)

Setting k =2 in (C7.1), then we have

(C7.13)

Using the representation of ~2(eIl2) we find

(C7.14)

We require the coefficient of ~2 in (C7.14) to vanish. Thus we require

(C7.15)

It follows that

(C7.16)

where

(C7.17)
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From (C7.16) we require

arc cos(es/ys)
eIl2 =

o

so that eIl2 is in the range 0 ~ eIl2 ~ n.

Ys > 0

Ys =0

(C7.18)

The choices of the zero eIll,eIl2 values, when Y2 =0, Ys =0, respectively,

in (C7.11) and (C7.18), are made on the common-sense basis that no rotation is

needed when no component of finite size of the current e. falls on the current
-J

u. basis vector.
-J

If we go through the stage once more, now finding ells, ~s(eIls) and~4' we

see that the case just completed for k = 2 is repeated in all essential steps.

Hence the kth stage yields eIlk , ~k(eIlk) and ~k+1 of the form:

k = 1, ... ,p-1 with ~1 =~ given (C7.19)

~k(eIlk) = ~(~k'~k+1;eIlk) + !(~k+2'···'~p)' as in (C7.2),

(C7.3), (C7.4) (C7.20)

arc cos[ek+1/yk+1], Yk+1

o Yk+1 =0

= [e¥+ •••+e~+l]~ , k =2, ... ,p-1,

(C7.21)

eIll as in (C7 . 11) (C7.22)

P

~k =Y u + I e.u. k = 1, ... ,p-1 (C7.23)
k-k j=k+1 J-J

e = u (C7.24)
-p 1>

The angles eIlk , k =1, ... ,p-1, are the desired canonic direction angles associated

with the unit vector e in E .
p
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B. The process of finding the ~k is shown schematically in Fig. C7.1. The

amounts of rotation required to reduce the ~k-component of ~k and its two

successors to zero is shown in parts (a), (b), (c) of the figure. The final

three stages of rotation are shown in parts (d), (e), (f). The vector e has

therefore been subject to p-1 successive rotations (some possibly of zero

degrees) which eventually place ~'s image along~. The p-1 numbers ~k'

k = 1, ... ,p-1 associated to ~ in this way constitute a form of address of ~k

with respect to the natural basis {Ul' ... 'U}. Therefore, like the components- -p

ej of ~, the ~k may change from one basis to another. However, if we have two

vectors ~,!. that are close in the sense of the norm 1I~_!.1I2, then the two sets

of angles ~l, ... ,~ 1 and ~1, ... ,~' 1 associated with them, with respect to ap- p-

fixed natural basis, will generally have the p-1 values ~k-~k small and be

directly comparable. The matter is not quite this simple, but perhaps some

form of systematic comparison of ~k and ~k' k =1, ... ,p-1 for a fixed natural

basis will lead to a method of judging whether two unit vectors are significantly

close or distant, resulting in a method that is more powerful (in the technical

sense) than one based on simple one-number indexes such as correlations or

norms.

C. If we apply the formulas (C7.21), (C7.22) to the individual natural basis

elements we may find their canonic direction angles. For example let

~l = (1, ... ,0) be substituted in place of the general vector e used to develop

the theory. In terms of the ~-components we have el =1, e2 =O, ... ,e =0.p

From (C7.1l) and these values of e., we find ~l =~. From (C7.21), ~2 = =
J

~ 1 =\n. Going next to ~2 = (0,1, ... ,0), we have el =0, e2 =1, ... ,ep =0,p-

and find ~l =0, ~2 = ... =~p-1 =~. Table C7.1 summarizes the canonic

direction angles, so found, for all the basis elements.
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CANONIC DIRECTION ANGLES FOR A UNIT VECTOR
IN Ep.STAGES k, ktl, k+2, ... , p-2, p-I,p

Y.k+2

~
~

!!k+1

!!.k+2

!!p-2

... r> ...

!!p-I

Fig. C7.1
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Table C7.1

Canonic Direction Angles of Natural Basis Vectors u.
-J

Angle Index

Basis
Vector

1 2 3 ·.. t··· p-2 p-l

!!l \n \n \n ·.. \n \n

U2 0 \n \n ·.. \n \n

· · · · · ·· · · · · ·· · · · · ·
!!k 0 0 0 ·.. \n ·.. \n \n

· · · · · ·· · · ·· · · · · ·
u 0 0 0 ·.. 0 ·.. 0 \n-p-l

u 0 0 0 ·.. 0 ·.. 0 0-p

A study of this table, with an eye toward learning to gauge "distance"

between two unit vectors in terms of canonic directions, reveals the following

possibilities. We know that lI:!!j-:!!kIl2 = 20-!!I:!!k) = 2 for all j,k = l, ... ,p.

Therefore each !!j is the same distance from another !!k' namely 2\. Moreover,

every distinct pair :!!j':!!k subtends the same angle, namely \no In particular :!!l

and _u2 subtend the same angle, namely \n, as subtended by ul,u. On comparing
- -p

the canonic direction angles of !!1,:!!2, we see they differ in the first angle

by an amount \no They do not differ in the other angles following the first.

On comparing ul,u , we see they differ in all angles. But yet the equations
- l'

1I:!!1-!!pIl2 =2 = 1I!!1-!!211 2 say that the distances between !!l,:!!p and !!,!!2 in terms

of canonic direction should be the same. If we are to use the canonic

direction angles as measures of distance, then for a given pair of unit

vectors we may proceed along the set of angle indexes of their canonic

direction angles taking differences of the angles and tallging the amounts and
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number of new differences encountered. In this way, every pair of basis

elements differ by the fixed amount \no More generally, if ~l""'~p-l and

~i""'~~-l are the canonic direction angles of unit vectors ~ and!, then we

would form the p-l differences: ~l-~i, ~2-~2' ~3-~3"'" ~p-l-~~-l' If

~l-~i * ~2-~2' then we retain ~1-~2 for later use. If ~l-~i =~2-~2 then we

later use. However, if ~2-~2 =~3-~3' we discard ~2-~2' and go on to compare

~3-~3 with ~4-~4' and so on down the line. The number of these retained

differences and their amounts may be r-tile classified, as suggested in §7 of the

main text, and used as multiparameter gauges of separation of the unit vectors

e and f.

D. We now establish the reverse connection between the canonic direction

angles ~k and the components e 1 , •.. ,ep of the given vector~. The direct

connection is given in (C7.21),(C7.22), going from the e j to the ~k' We will

show how the e j are obtained from the ~k'

From (C7.19) we have

k = l, ... ,p-l (C7.25)

where

Hence in (C7.2)

(C7.26)

T T=ck[~k~k + ~k+l~k+l]

+ !(~k+2'''' ,~) (C7.27)

Starting with k =p-l, since e =u (cf. (C7.24)), we find
-p -p
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=c l[u lu
T

+ u uT]u + S I [u u
T

- u u
T

l]up- -p- -p-l -p-p -p p- -p-I-p -p-p- -p

whence

e =c u + S u-p-l p-I-p p-I-p-l

Next,

Te - R (~ )e-p-2 - -p-2 'I'p-2 -p-l

(C7.28)

(C7.29)

=c [u uT + u uT ] e + S [u uT - u uT ]ep-2 -p-2-p-2 -p-I-p-l -p-l p-2 -p-2-p-1 -p-I-p-2 -p-l

=c S u + S S u (C7 30)p-2 p-I-p-l p-l p-2-p-2 .

From this pattern we generally expect, for j = l, ... ,p-l,

e =c s s ···S U +s S ···S U-p-j p-j p-l p-2 p-(j-l)-p-(j-l) p-l p-2 p-j-p-j

(C7.31)

In particular, on setting j = p-3, j = p-2 and j = p-l, we find

.!::g = CgS S s4!!.4 + S s Sg!!.gp-l p-2 p-l p-2

.!::2 = c2s s Sg!!.g + S S S2!!.2p-l p-2 p-l p-2

.!::1 = c1s S s2!!.2 + S 5 51!!.1p-l p-2 p-l p-2

We may tabulate these results:

(C7.33)

(C7.34)

(C7.35)
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Table C7.2

Components of a Unit Vector e in E in terms of its Canonic Direction Angles
p

Basis Vector

u
-p

u
-p-l

u-p-2

Component of e along u.
-J

e = cos~ 1
P p-

e = sin~ 1 cos~ 2p-l p- p-

e = sin~ 1 sin~ 2 cos~ 3p-2 p- p- p-

e . =sin~ 1 sin~ 2 ••• sin~ . cos~ (. 1)P-J p- p- P-J P- J-

e3 = sin~ 1 sin~ 2 ·.. sin~3 COS~2P- P-

e2 = sin~ 1 sin~ 2 ·.. sin~3 sin~2 cos~lp- p-

el = sin~ 1 sin~ 2 ·.. sin~3 sin~2 sin~lp- p-

The canonic direction angles of a unit vector e in E are therefore the
p

generalizations to E of the polar coordinates of a unit vector in E3 . Here
p

the range of ~l is -\n ~ ~l < ~n and 0 ~ ~k ~ n k =2, ... ,p-l.

E. It is easy to check, from Table C7.2, that e~+ •••+e~ = 1. This indicates

that the p components of the unit vector ~ may be arbitrarily chosen subject

only to the unit length constraint. A practical way to do this is to select p

numbers e j from (-~,~) according to some rule, and then set ej =ej/(e~+ ...+e~)\,

for j =1, ... ,p. One such rule, the normal-distribution rule (pick the e.
J

randomly from N(O,I)) is discussed in Appendix E, along with the distribution

of e. it induces. On the other hand, if we choose the canonic directions ~.
J J
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arbitrarily from their respective domains, then each choice will result in a

unit vector e, using Table C7.2 to find the e. from the ~.. It is plausible
- J J

that if the components e. are generated using the normal-distribution rule,
J

then each canonic direction angle ~. is uniformlg distributed over its range
J

and independently of the other ~j' Conversely, by constructing ~ via independent

random selections of ~. from a uniformlg distributed population of angles over
J

their ranges, the components of ~ will be distributed as if they were generated

from the normal-distribution rule. (It would then appear that the normal-

distribution rule is a sufficient but not necessary rule to generate uniformly

distributed canonic rotation angles.) We will not seek proofs here of all

these intuitively plausible assertions (see §7C).

8. Canonic Direction Angles of an Orthonormal Frame in E
p

We come now to the final main topic of this Appendix, namely the assignment

of canonic direction angles to each member of an orthonormal frame in E ,
P

where E has some chosen fixed natural basis to be used to find the angles.
p

The purpose of these angles is to provide another gauge of distance between

two pXp orthonormal frames E,F, within the given E , a gauge that does not
-- p

compress the \P(p-I) pieces of information inherent in each frame into a

single number, as does the ORIEN statistic. However, the utility of these

angles will not be explored much beyond their derivation, which is included

here for future reference.

A. Let E = [ele2 ••• e ] be an orthonormal frame in E relative to a given
- -- -p p

natural basis. For the present purpose, let us relabel these as ~11'~12,· .. ,eIp

to designate the first step in a sequence of p-I steps. Starting with ~11 and

using (C7.21), (C7.22), find ~ll'S canonic direction angles: ~11'~12""'~I,P_I'
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Also, by means of CC7.20) and using these angles, find ~lkC~lk)' k =1, ... ,p-1.

Then form the matrix product Sl =R1 1C~ 1) ••• RllC~l). This matrix, by- ,p- p- -

~2 k-1 =,
~l ~l,k' k = 2, ... ,p which are all in the p-1 dimensional subspace spanned by

our constructions in par A, maps ell into u. Moreover, _Sl maps the remaining
- -p

p-1 elements e12' ... '~lp of the frame ~ into new p-1 vectors:

Ul'···'U 1.- -p-

B. We now may start over with the p-1 vectors ~2,k' k =1, ... ,p-1 in the p-1

space of the u.1s, j =1, ... ,p-1. Thus, using CC7.21), CC7.22), find e2l's
-J

canonic direction angles: ~2l'~22' ... '~2,p_2. Also, by means of CC7.20), and

using these angles, find ~2kC~2k)' k =1, ... ,p-2. Then form the matrix product

~2 =R2,P-2C~2,p-2) ••• ~2lC~2l)· This matrix maps ~2l into ~-1 and it maps

the remaining p-2 elements ~22' .. ·'~2,p-1 into new elements: ~3,k-1 =~2~2,k'

k =2, ... ,p-1 in a subspace spanned by ul,···'u 2.- -p-

contained

The general jth step, j =1, ... ,p-1, starts with e· 1 ,e· 2,···,e. C' 1)·-J -J -J ,p- J-

Using these p-j angles, we construct

C.

S. by construction maps e' l into u C' 1)' and we define a new set
-J -J -p- J-

transformed basis elements via e'+l k 1 =S.e· k , k =2, ... ,p-Cj-1)-J , - -J-J

in the subspace spanned by Ul, .. "U ..
- -P-J

From e' l we find ~'1'~'2' ... '~' .,-J J J J,P-J

R'kC~'k)' k = 1, ... ,p-j. Then form the product S. =R. .C~. .) ••• R'lC~'l).
-J J -J -J ,P-J J ,P-J -J J

of p-j

D. The results of these p-1 steps are summarized in Table C8.1.
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Table C8.1

Canonic Direction Angles of a pxp Orthonormal Frame let ... e ]- -p

(C8.1)

If

These angles, as in the individual-vector case of §7 of this Appendix, are

dependent on the chosen, fixed natural basis {ul' .. "u } of E. However, in a- -p p

given basis, two orthonormal frames !,~ will have a uniquely assigned ordered

set ~ of \P(p-1) canonic direction angles that may be intercompared row by

corresponding row and index by corresponding index, much as in the vector case

of §7 of this Appendix. In this way we can develop a multiparameter gauge of

the closeness of two frames ~,~ of a different character than ORIEN. Under

random sampling from N(O,l) to generate an nxp data set ~, we would expect the

~jk in (C8.1) to be uniformly distributed over their respective ranges.

this is so, then the r-tile method of intercomparing vectors in E (§7 of thep

main text) would be extendable to intercomparisons of ! and ~.
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Canonic Correlation Angles Between Orthonormal Vector Frames

1. Introduction

The canonic correlation angles do for principal components what the

canonic rotation angles do for principal vectors: they provide an economical

description of the separation of the sets of principal component time series.

We now present some introductory comments on the theory of canonic correlation

angles.

The SVD (B3.18) of an nXp data set ~ produces an nXp matrix A' of principal

components

A' = [at ... a ]- -p (Dl.!)

which summarize the temporal evolution of the data set. If we had another nXp

data set ff, of SVD as in (Cl.2), then it may be of interest to compare A' and

the nXp matrix B' for similarities, where

B' = [j!t ... l!p] . (Dl.2)

A natural measure of distance between the frames A' and B' is COREL, as defined

in §2 of the main text:

COREL = 1 1I~'_!!'1I2
P

2 P T=-(1- I a.l!.)
p j=1 -J J

(Dl. 3)

In view of the developments in Appendix C, one is led to inquire whether we

can have something here analogous to the canonic rotation angle 9k . In Appendix C

we had eigenframes !,~ of ~ and Mand the required rotation was R =~ !T,

whence the canonic rotation angles 9
k

. In analogy to ~, one is tempted to
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define a new rotation S of E into E in the present setting by simply writing
n n

"s" for B'A,T. However, when we test this for the rotational property:

STS =S ST =In' we obtain STS =~,~,T, which is generally not !n (cf. ~,T~, =
!p' by (B3.19)). We also obtain S ST = ~,~,T, which again is generally

not In (cf. ~,T~, =lp)' Some investigating shows that there is generally no

unique rotation in E that maps the orthonormal set A' into B'. This isn - -

because generally we require n-1 ~ p for non-degenerate eigenvalue structures*

in the SVD.

Suppose, however, that we remain within the subspace of E spanned by A'
n -

and that spanned by ~'. We then rotate A' within the subspace spanned by the

vectors of A'. At the same time we rotate~' within the subspace spanned by

B'. All the while these rotations are going on we monitor COREL in (D1.3),

where the a. and R. are now elements of the rotated A' and rotated B'. There
-J ~J

will generally exist an orientation of A' and an orientation of B' within

their respective subspaces that together will minimize COREL. For data inter-

comparison purposes this minimum COREL will give a measure of the closeness of

the subspaces spanned by ~' and ~' an hence the closeness of the temporal

evolutions of Dand M. We now proceed to find this minimum COREL.

2. Minimizing COREL

Following the program outlined above, let ~,~ be nXn rotation matrices

such that

j = 1, ... ,p (D2.1)

* Thus it follows that the space E is generally too big for the two
n

orthonormal frames A' = [a1 ••• a ] and B' = [R1 ••• ~ ] individually to
- - ~ - ~ p

span it, leaving many ways in which each of these frames can be extended

to bases for E. For each extension there is a generally different
n

rotation between the extended bases.
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where!j is in the subspace of En spanned by [~1' ... '~]' and ~j is in the

span of the [1!1' ... '~]. The latter sets are defined in Appendix B. Thus, we

require that a.,b. be linear combinations of the a.,R., respectively. Thus,
-J -J -J ~J

for suitable numbers r jk , and Sjk' we have:

b. =S R.
-J - ~J

p
= I r

J
' k ~k

k=l

p

= I sJ·k 1!k
k=l

j = 1, ... ,p

j = 1, ... ,p

(D2.2)

Moreover, we explicitly require that ~,~ do not change the lengths of the

~j'~j when the latter are rotated. Thus we require of rjk,sjk' that

P
I r

J
\

k=l
(D2.3)

p

= I sJ\
k=l

j = 1, ... ,p . (D2.4)

Hence for the two rotated sets A = [al, ... ,a ], B = [b1, ... ,b ],- -p - -p

COREL (~,!!) =! 1I~_!!1I2
P

2 P T=- I (I-a.b.)
p j=l -J-J

2 P P T P=- I [1-( I r.t~t) (I s.~)]
P j=l t=1 J m=l J

2 P P P T=- I [1- I I r·ns. at~]
p j=l t=l m=l J~ Jm -
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Equation (D2.5) shows that COREL(~,~), for fixed ~R.'~' may be considered as a

function of the r. n and s .. We seek a minimum of COREL(r.n,s. ) subject to
J"'" Jm J"'" Jm

the conditions (D2.3), (D2.4). These conditions can be written as

p P
I I rjR. = p

j=l R.=1

P P
I I s~ = P

j=l Jl.=1 Jm

(D2.6)

(D2.7)

Hence, if A,~ are appropriate Lagrangian multipliers, we wish to simultaneously

minimize the set of numbers:

p p p p
~(r.R.'s. ) = COREL(r.R.'s. ) + A I I rJ~R. + ~ I I s2.

J Jm J Jm j=l Jl.=1 j=l Jl.=1 Jm

j ,R., m = 1, ... ,P

A necessary condition for this minimization is

(D2.8)

a~ (r .R.' s. )J Jm = 0 j,R., m = 1, ... ,p (D2.9)
arj R.

a~ (r .R.' s. )J Jm = 0 j ,R., m = 1, ... ,p (D2.10)as.
Jm

Applying these operations to (D2.8) we find, for j,R., m = 1, ... ,p,

~- 2 P T 2
I Sj~R.~ + - A r.R. = 0 (D2.11)

arjR. - p m=l p J

~ 2 P T 2
= I rjR.~R.~ + - ~ s. = 0 (D2.12)

as. p Jl.=1 P JmJm
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Using (D2.2) we can reduce the summations to:

j ,R.,m = 1, ... ,p
(D2.13)

T
~j = ~ s.

Jm
(D2.14)

Multiplying (D2.13) by ~R. and (D2.14) by ~, summing over R.,m, respectively,

and using (D2.2), we find: for j = 1, ... ,p,

P T
b. A.a.(I ~R.~.e) =

R.=1 -J J-J

j = 1, ... ,p
p
~~)( I a. = ~.b.

m=l -J J-J

(D2.15)

(D2.16)

Here we have added subscripts to the ~,A, as suggested by the algebra. Write

P T (= ~,~,T)'p , for I ~R.~R. (nxn)-a R.=1
j = 1, ... ,p

p

~ (= !!,!!,T)'p , for I (nxn)-p m=l

(D2.17)

(D2.18)

Then (D2.15), (D2.16) become

(D2.19)

(D2.20)

These are the required equations governing a.,b .. They form a pair of
-J -J

simultaneous eigenvalue problems for the a.,b., A. and u .. The a.,b.
-J -J J J -J -J

satisfying these equations minimize COREL[A,B].
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3. Canonic Correlation Angles

A. To prepare for the numerical solution of (D2.19), (D2.20) and some

interpretations, observe that ~,~ are projections* on the spaces spanned by

the a's and ~'s respectively.

That is:

and in particular

and so, also,

j = 1, ... ,p

j = 1, ... ,p

(D3.1)

(D3.2)

(D3.3)

From these properties it follows that, by operating on (D2.19) with a: and
J

recalling (D2.3),

j = 1, ... ,p

Similarly, operating on (D2.20) with b: and recalling (D2.4),
-J

j = 1, ... ,p

The left sides of these equations simplify by (D3.3) and are clearly equal to

Ta.b. so that we find
-J-J

j = 1, ... ,p (D3.4)

* In our introductory remarks we encountered ~ =~,~,T and ~p = B'B,T in

our search for rotations in E. We now see the true nature of these
n

matrices, i.e., they are projections and not rotations.
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By this, the geometric interpretation of ~. is that of the cosine of an angle
J

between a. and b .. This angle is ~., the J·th canonic correlation angle.
-J -J J

"Correlation" is used in the sense established by (A2.2l), now in the temporal

domain (since a.,b. are nXl vectors and "n" denotes in this study the number
-J -J

of samples in time of a geophysical field).

B. We now reduce (D2.l9), (D2.20) to forms readily evaluated numerically.

Operating on the left of each side of (D2.l9) with ~p' and similarly on (D2.20)

with P , and using these equations also to simplify the results, we find-a

PpP b. = lJ~b . (D3.5)
- -a -J J-J j =1, ... ,p, (p+l, ... ,n)

P Pp a. = 2 (D3.6)~.a.-a- -J J-J

We may therefore solve either one of these for the respective ~.,b. or ~.,a ..
J -J J -J

The other set of vectors then follows from (D2.l9), (D2.20), as the case may

Hence we take IJ. > 0, and the associated
J

We will comment on the extended j-range

enters only as IJ~.
J

~ n/2.

be. Observe that IJ.
J

angles ~. are in the range 0 ~ ~.
J J

in (D3.5), (D3.6), in §4, below.

To begin the calculations, consider (D3.6). Then by definition of matrix

products

(P PR ) •• =
-a-I-' 1J

n
I (P ).n (Pp)n.-a 1x. - x.JQ=l

i,j = l, ... ,n. (D3.7)

From (D2.l7), (D2.l8), for i,j,Q =l, ... ,n,

(D3.8)

(D3.9)
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where a = [a (l), ... ,a (n)]T, m = 1, ... ,p, as defined in (B3.17). Hence the
-m m m

nXn matrix ~p needed in (D3.6) is fully defined in terms of the orthonormalized

principal components of the data sets ~,~. The remaining details of solution

of (D3.6) proceed as in any other eigenvalue problem.

4. Orthogonal Projections !a' ~p ~

Observe that the routine solution of (D3.6), e.g., yields n (rather than

just p) vectors a .. We began our analysis in (D2.1) restricting attention
-J

only to the first p vectors a., j = 1, ... ,p. Generally the remaining vectors
-J

a +1"'" a in (D3.6) are outside of the A'-space and are associated with-p -n

zero ~.'s. For example, suppose a +1' is a non zero vector in the orthogonal
J -p

complement* of the ~'-space. There are two cases (see Fig. D4.1 drawn for the

case n-1 =3, p =2): (i) either !p+1 is in the ~'-space or (ii) ~+1 is in

the orthogonal complement of the ~'-space. In case (i), ~P!p+1 =!p+1 by

(D3.2), and then P (PRa +1) = P a +1 =0 by hypothesis and (D2.17). Hence-ex - ...-P -ex-p

~p+1 =o. In case (ii), (~P!p+1) = 0 directly (by (D2.18)) and so ~p+1 =O.

Hence in general the a.,j =p+1, ... ,n belong to zero eigenvalues ~ .. On the
-J J

other hand, those ~. in the j range 1, ... ,p, that are zero, are of important
J

physical interest. An estimate of the number of such ~. will be made in §6 of
J

this Appendix.

We observe further that those a.,a
k

belonging to distinct ~"~k are
-J - J

necessarily orthogonal. To see this, multiply each side of (D3.6) in turn by

!I and !~, for an arbitrary choice of j, k =1, ... ,p:

* E can be represented as a direct sum of the space spanned by A' and
n -

another subspace of E , all of whose vectors are orthogonal to all of
n

those in A'. This subspace is the orthogonal complement of A'. See,

e.g. Fig. D4.1.
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CANONIC CORRELATION ANGLES
FOR n-I =3, D=2

I-'-I=cos '/II
1-'-2= COS '/12 =I

1-'-3= COS '/13=0

1-'-4 =COS '/14= 0

Fig. D4.l
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T
(~~p!k)

2 Ta. = IJka .ak-J -J-

T
(P Ppa.) = 2 T

!k lJ. aka .-a- -J J- -J

(D4.I)

(D4.2)

Now, the left sides of these equations are equal. To see this, we have from

(D4.I), (D3.3), and (D3.I):

(The last equality follows from the fact that the transpose of a scalar results

again in that scalar.) Further from (D4.2),

T
QkPRa .- -,..-J

Thus the left sides of (D4.I), (D4.2) are equal. Therefore, from (D4.I)

(D4.2)

whence

j ~ k .

Since the a. are by construction unit vectors (cf. (D2.3)), we may write
-J

the preceding result as:

j,k = I, ... ,p. (D4.3)

In an exactly similar manner, we can show

j,k = I, ... ,p (D4.4)

when the associated eigenvalues IJ
j

,lJk are distinct.
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FinallYt and most interestinglYt we have

T
akb. =~.6.k j,k =1, ...•p.- -J J J '

(D4.5)

To see this, observe that from (D3.6) and (D4.3)t we have, for j, k =1, ..• ,p,

~~6·k
J J

The left side simplifies via (D3.3), (D2.20) for j, k =1, ... ,p,

On comparing these two results, (D4.5) follows.

When j =k in (D4.5), we return to (D3.4).

5. COREL via Canonic Correlation Angles

It is difficult to make a picture that illustrates (D4.3), (D4.4), (D4.5)

in a non-trivial setting. However, the sketch in Fig. D4.1 may be of help in

visualizing the relations for the case n-1 =3, p =2. Note that we use

"n-1 = 3" instead of "n =3". This is in accordance with the fact that the

space of the vectors ~' ,~' is actually an n-1 dimensional subset of E. (For
n

more discussion of this, see §6 below.)

Continuing to examine Fig. D4.1, we see that in the ~'-space we have

~1'~2 orthogonal to each other, as also are £1,£2 in the ~'-space. The rotating-

minimizing action on COREL (cf. (D2.8), (D2.9), (D2.10)) forces ~2 and £2 to

coincide at the intersection of the two subspaces, and constrains ~1'£1 to

remain normal to ~2'£2' respectively. As a result, the canonic correlation

angle ~1 measures the angle of separation of the two subspaces, a situation,
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by virtue of (D4.5), to be generally the case. In this way we see that (D2.5)

for the minimum value of COREL becomes, via (D3.4):

2 P T
COREL(~,!!) = I (l-a.b.)

p j=l -J-J

2 p
= I (l-IJ· )

P j=l J

2 p
= I (l-cos~.) ~ COREL(A' ,B'). (D5.1)

p j=l J - -

Observe that, in computing the ~., we are using the a. and b. of the the minimizing
J -J -J

frames ~,!! instead of the vectors of the original data-derived frames ~' ,!!'.

6. Estimating the Number of Expected Zero Canonic Correlation Angles

A. When computing the canonic correlations IJ., some of them in the
J

range 1 ~ j ~ p will necessarily be of unit magnitude, indicating a corresponding

zero correlation angle ~ .. The more of these ~. that are zero, the closer do
J J

the subspaces spanned by ~' and B' lie to each other, and the more of the time

series {a.(t): t = 1, ... ,n}, j = 1, ... ,p that can be represented by the {p.(t):
J J

t = 1, ... ,n}, j = 1, ... ,p. In what follows we give two ways of estimating the

numbers of ~. expected to be zero.
J

the other is approximate by general reasoning.

B. Exact Determination of s

From the general theory of finite dimensional vector spaces we have the

following theorem (Halmos, 1958, p. 19). Let P,Q be two subspaces of an

n-dimensional vector space. Let the dimensions of P,Q be respectively p,q.
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Let r be the dimension of the union of P and Q (the set of all linear combinations

of the pooled set of vectors in P and Q), and let s be the dimension of the

intersection of P and Q (the subspace of all vectors common to P and Q). Then

p+q = r+s . (D6.1)

It can be shown that the dimension s of the intersection of P and Q is the

expected number of zero correlation angles.

This fact can be illustrated in Fig. D4.1. First of all we recall

(Appendix B, below (B3.22» that space-centering the data sets reduces the

span of the ~' ,~' vectors to a common n-I dimensional subspace of E. For, if
n

we have {!!.(t): t = I, ... ,n} as the orthonormal basis of E in which the data
n

values of a.,A. are represented, then
-J ~J

n
a. = I a.(t) u(t)
-J t=1 J -

But by space centering,

j = I, ... ,p (D6.2)

n
I a. (t) = 0

t=1 J
j = I, ... ,p (D6.3)

Hence we can write (D6.2), for j = I, ... ,p, as

n-I
a. = I a.(t)[u(t)-u(n)]
-J t=1 J - -

In a similar way we have, for j = I, ... ,p,

n-I
1!J' = I P

J
. (t) [!!.(t)-!!.(n)]

t=1
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The set of vectors {~(t)-~(n): t = 1, •.. ,n-1} is easily seen to be linearly

independent, and therefore forms a basis of an n-1 dimensional subset of E •
n

In Fig. D4.1, the common n-1 dimensional setting for ~' ,~' is drawn as three

dimensional, and the latter basis sets have p =2. In (D6.1), therefore, we

have p =q =2. As drawn in the Figure, we estimate visually, that r =3.

Hence s = (p+q)-r =4-3 =1. The two vectors !2'~2 are shown lying in the one

dimensional intersection of the A'-space (= P) and the B'-space (= Q). Thus

~2 = cos~2 =1, and ~2 =0 between !2 and ~2.

We now return to the main thread of the argument leading to an exact

determination of s. The procedure is numerical. Start with the sets A' =-p

{a ••• a } and B' ={A ••• A}. Hence in (D6.1), p =q. The number p of
-1 -p -p ~1 ~p

linearly independent vectors in A' is assumed to be p and less than n-1. (If
-p

P =n-1, then r =n-1 and s =n-1.) Note that, in general, p =min[n-1,p].

Recall that, by construction, the a. are pairwise orthogonal and of unit
-J

length. We now determine r by starting with the estimate r = p. Then we take

Al from B' and find its representation in the A' frame:
~ -p -p

p
.f!1 = I

j=l
(D6.6)

Next, find 1I.f!1-.f!111. If this is zero (say to within* £), then we conclude that

of these examinations, we

then A is not in the span of A' and
~1 -p

a new orthonormal basis ~'p+1'

.f!1 is in the span of ~. If 11.f!1 -.f! '11 > £,

we add .f!1 to the A'-frame, and thereby produce
-p

using the Gram-Schmidt procedure. As a result

update ~ to ~+1 or leave it as ~;, as the case may be. Next we take .f!2 from

* For example £ =10- 1°.
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B' and form its representation in the updated ~'-frame, find 1Il!2-l!211 , and
-p

decide to augment the ~'-frame or not. In this manner, we eventually go

through B', pick up, say, a new vectors beyond A' and the end result is an
-p -p

augmented ~'-frame of dimension p+a. This p+a is, by construction, precisely

r. Then from (D6.1), since p =q,

s =2p-r =p-a (D6.7)

is our required exact determination of the number of zero canonic correlation

angles.

C. Approximate Estimate of s

The approximate estimate of s depends on the following two intuitive

insights into the growth of the dimension r with dimension p. The first

insight is as follows. When 2p is small relative to (n-1), then (with probability

1) the union of the subspaces spanned by two randomly chosen ~' and ~', each

of dimension p, has dimension r =2p, and so by (D6.7), we have s =O. As P

grows, r continues to keep pace with 2p and s remains zero until we reach

2p = n-1. The second insight is as follows. At this point, with probability

1, r attains the limit n-1 and it cannot grow larger than n-1; but of course p

can continue on to n-1. In this latter range, then, (D6.7) is of the form

s =2p-(n-1). These two intuitions can be summarized succinctly by the formula:

s = (number of ~. equal to zero) =max[O, 2p-(n-1)]
J

(D6.8)

Since the total number of ~. of interest is p (recall from §4 of this Appendix
J

that n-p are necessarily 90°, corresponding to ~. =0), we also can say:
J

t - (number of ~. greater than zero) =p - max[0,2p-(n-1)] (D6.9)
J
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The following table gives a simple illustration of these rules of thumb for

the case n =10.

number of ~. equal to 0° number of number of ~.
J J

P s =max[0,2p-(n-1)] nonzero ~. equal to 90°
J

t =p-s n-p

1 0 1 9
2 0 2 8
3 0 3 7
4 0 4 6
5 1 4 5
6 3 3 4
7 5 2 3
8 7 1 2
9 9 0 1

From this we see that the desirable research setting is one in which n-1

exceeds 2p, so that s =o. In this way there is no geometrically forced

coalescence of the spaces spanned by~' and B'. Then, if COREL(~,~) is significantly

small under these conditions, the corresponding members of the ~' ,~' frames of

the data sets would be close in temporal evolution, or at least could closely

represent one another by appropriate linear combinations.
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The Distribution of a Component of a Random Unit Vector in E
p

and its Link with the Distribution of the Correlation Coefficient

1. Introduction

The discussion in this Appendix provides a reference probability distribution

for the significance test in §7 dealing with the comparison of two eigenvectors

of a given pair of data matrices, ~ and M. The discussion, interestingly,

also informally provides a link between such a distribution and that of the

classical correlation coefficient between two samples from a population of

uncorrelated gaussian variates.

The squares of these components, namely

The Distribution of a Component of a Random Unit Vector in E
p

We construct a random unit vector in E , P ~ 2, as follows. We randomly
p

Let these be y., j =1, ... ,p. Then the set of random
J

1, ... ,p} comprises the components of a random

2.

draw p samples from N(O,l).

variates {y./( i y:)\: j =
J k=l

unit vector in E .
P

p
y. =y~/ I y:

J J k=l
(E2.1)

are such that the y~, j = 1, ... ,p are independent chi-square variates, each of
J

a single degree of freedom. Moreover, if we write (E2.1) as:

y. =
J

y~
J

y~ + c5~
J J

j = 1, ... ,p . (E2.2)
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where

P
6~ = I )'~

J k=l

k~j

(E2.3)

then we recognize y. as a random variate with the beta distribution of 1 and
J

p-1 degrees of freedom. That is, in general, if xl is a chi-square variate

with kl degrees of freedom and x2 is an independent chi-square variate with k2

degrees of freedom, then the pdf of y = XI/(XI+X2) has the form*

p(y) = f(\(k l +k2» y\kl -1 (1_y)\k2-1

f(\k l )f(\k2)
(E2.4)

In the case of (E2.2), since )'~ and 6~ are independent, and kl = 1 and k2 = p-1,
J J

we find,

f(lw)
y.-\(1-y.)\(P-3)dy.p(y.)dy. = (E2.5)

J J f(\) f(\(p-l) J J J

for j = 1, ... ,p, and 0 ~ y. ~ 1.
J

We are at present interested not in y. but X =±y~,
J J

random vector. Moreover, it is clear that the pdf of y.
J

With this change of variables to x, so that 2xdx = dy. =
J

the components of the

is independent of j.

\2y.dx, (E2.5) becomes
J

f(lw)

f(\) f(\(p-l)
p(y.)dy. = -----

J J

- q(x)dx (E2.6)

* For a derivation of this well known pdf, from first principles, see
Preisendorfer (1979), Equation (ASO). Otherwise, see Rao (1973), p. 167.
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~where -1 ~ x ~ 1, and "x" denotes any of the components ±y.. In this way we
J

attain the required distribution q(x) of the projection x of a random unit

vector on a fixed unit vector. The factor "2" in the differential connection

above was accounted for by going from the range ° ~ y. ~ 1 to the range -1 ~ x ~ 1.
J

The integral of q(x) over the latter range is unity. By symmetry, the first

moment of x is 0, and by a simple calculation using (E2.6), the second moment

of x (its variance) is IIp. This shows that the "widths" of the pdfs in

Figs. 4.1-4.8 go to zero approximately as 1/p~,

3. The Link with the Correlation Coefficient

The classical correlation coefficient arises in the following typical

sampling operation. Draw p random samples xl""'x from N(O,l) and againp

another p random samples Yl,."'y from N(O,l), and then form the correlationp

coefficient:

(E3.1)

This then is equivalent to the exercise in §2 above of finding the inner

Tproduct! ! of the two associated unit vectors formed via each x. or y. being
J J

divided by the square root of the sum of squares of the xk or Yk' respectively,

as shown in (E3.1). A moment's thought will show that this inner product of

two random unit vectors !,! is equivalent, in the derivation of §2, to finding

the component of ! along a fixed unit vector !, provided we reduce the number

of independent components of ! by 1, i.e., from p to p-1. (In effect x now

lies in a variable 2 dimensional plane determined by it and!. Hence, as seen

from !'S vantage, ! has p-1 degrees of freedom, for p ~ 3.) Thus we have at

once from (E2.6), on replacing "p" by "p-1":
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r(\(p-1))

r(\)r(\(p-2))
p ~ 3 (E3.2)

for -1 ~ r ~ 1, which is the classical pdf for the sample correlation coefficient

for p pairs of random samples from an uncorrelated bivariate normal distribution

of zero population ~e~ns.
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