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Extracting tsunami source parameters via inversion of DART®

buoy data

D.B. Percival,1, D. Arcas2,3, D.W. Denbo2,3, M.C. Eble3, E. Gica2,3, H.O. Mofjeld2,3,4,
M.C. Spillane2,3, L. Tang2,3, and V.V Titov2,3

Abstract. The ability to accurately forecast the hazards to coastal communities from earthquake-
generated tsunamis requires the knowledge of certain tsunami source parameters. The Short-term
Inundation Forecast for Tsunamis (SIFT) tool developed by the National Oceanic and Atmospheric
Administration estimates these source parameters based upon a combination of observed data from
DART® buoys and a set of precomputed models. We give a detailed description of the procedures
within SIFT Version 2.0 for estimating the source parameters and for assessing the sampling variabil-
ity in the estimated parameters. We illustrate these procedures using detided 1-min data collected
by two DART® buoys (21414 and 46413) in the northwestern Pacific during the 15 November 2006
Kuril Islands tsunami event, generated by an offshore moment magnitude 8.3 earthquake. We dis-
cuss the advantages of using a least squares (L2) method for fitting model tsunami time series to
the data. The model series originate from two model source segments (50 km by 100 km) near the
earthquake epicenter. The fitting procedure estimates the source parameters of each segment, both
individually and together. Realistic confidence limits on the source parameters are obtained by fit-
ting the residual series (from the data-fitted model) to a first-order autoregressive model to account
for the obvious correlation between adjacent residual values. Using data from both buoys improves
the source parameter estimates, at an operational cost of some delay in time for the tsunami to
reach the farther station. An appropriate fit uses the first full tsunami wave at each station with
no improvement found by extending the fitted data segment further. Formulae are derived for esti-
mating the source parameters and computing the confidence limits for multiple DART® buoys and
source segments.

1. Introduction

The National Oceanic and Atmospheric Administration (NOAA) is charged
with primary responsibility for providing tsunami warnings to the United
States and has assumed a leadership role both in research on tsunamis and
in gathering data related to tsunamis (see http://www.tsunami.noaa.gov/
for details on NOAA’s tsunami program). The ability to accurately forecast
potential dangers to coastal communities due to an earthquake-generated
tsunami requires knowledge of tsunami source parameters. The Short-term
Inundation Forecast for Tsunamis (SIFT) tool that has been developed at
the NOAA Center for Tsunami Research extracts estimates of these pa-
rameters based upon two key components. The first is observed data from
DART® buoys collected during a tsunami event, and the second is a set
of precomputed models for each DART® location. The model series are
extracted from the numerical solution to the propagation of tsunami waves
throughout the ocean basin from “unit sources” and, because of the dynam-
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2 Percival et al.

ics of these waves in the open ocean, can be linearly combined to mimic the
observed data. An inversion procedure combines these key components by
using the DART® buoy data to extract parameters that adjust the ampli-
tudes of the precomputed models. These parameters, once determined and
applied to the basin-wide set of “unit source” solutions, provide the bound-
ary conditions for inundation models that generate high-resolution forecasts
of incoming tsunami waves at threatened coastal communities (Gica et al.,
2009). The intent of this memorandum is to describe the key steps in inver-
sion procedures in general and to explain the rationale behind the particular
procedure implemented in SIFT, which is being installed at the U.S. Tsunami
Warning Centers.

The remainder of the memorandum is organized as follows. To motivate
our discussion, we use data recorded by two DART® buoys in November
2006 that include a tsunami event originating from an earthquake near the
Kuril Islands (see Horrillo et al. (2008); Kowalik et al. (2008) for details
about this event). We describe the data in Section 2, after which we con-
sider precomputed models for the observed data (Section 3). For simplicity,
we first focus on a single buoy and a single model and discuss several criteria
for fitting the model to the data (Section 4). Use of a least squares crite-
rion has several advantages, not the least of which is the ability to assess
the sampling variability in the estimated parameters (Section 5). We then
consider the important question of how much data should be used to carry
out the inversion (Section 6), after which we expand our methodology to
allow for more than one buoy and one model (Section 7). We make some
concluding remarks in Section 8.

2. DART® Buoy Data for 2006 Kuril

Islands Tsunami Event

The map in Fig. 1 shows the location of the source of the Kuril Islands
tsunami event of 15 November 2006, along with the locations of two DART®

buoys that recorded the event, namely, 21414 and 46413 (referred to here-
after as buoys 1 and 2). Figure 2 shows plots of the data taken during the
event by these two buoys. The data in these plots have been subjected to
a detiding procedure. The time associated with each detided data point is
in hours since the beginning of the event, which was at 11:14:16 UTC. Note
that the event was observed at buoy 2 about half an hour after it occurred at
buoy 1, which is consistent with their locations relative to the Kuril Islands
shown in Fig. 1. The spacing in time between adjacent values is 1 min, and
each data point represents a 1-min average. There are 105 data points for
buoy 1 and 114 for buoy 2. In Sections 3 to 6 we concentrate on the data
and models for buoy 1 alone, after which we consider both buoys. In what
follows, let ˜T be the set of times associated with the data from buoy 1, and,
for a given t ∈ ˜T , let xt represent the corresponding detided data.
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Figure 1: Map showing the approximate origin of the 15 November 2006 Kuril Islands tsunami
event, which was generated by a moment magnitude 8.3 earthquake at 11:14:16 UTC. The locations
of DART® buoys 21414 and 46413 (henceforth referred to as buoys 1 and 2) are also shown, along
with a grid of 50 km by 100 km “unit sources.” Two of these unit sources are marked as A12 and B13
(henceforth referred to as sources a and b) and are close to the epicenter of the earthquake (denoted
by a star on the map). For both unit sources, models of what would be observed at the two buoys
were precomputed under the assumption that the generating event is equivalent to a magnitude 7.5
reverse thrust earthquake located within the unit source.

3. Models for DART® Buoy Data

Here we consider models for the detided DART® data from buoy 1 (see Gica
et al., 2008, for details about how these models were formulated). The earth-
quake that generated the Kuril Islands tsunami event is presumed to have
originated from one or more unit sources, which are defined by nominal 50 km
by 100 km rectangles located along a fault line. We will consider initially just
one of these unit sources marked on Fig. 1 as “A12” and henceforth referred
to as unit source a. The circles in Fig. 3 show a precomputed model for what
we should expect to observe at buoy 1 under the assumption that there was
a magnitude 7.5 reverse thrust earthquake of appropriate strike, dip, and
depth originating from unit source a. The model was run with a 15-sec time
step, but, to save space on the operational database, was subsampled down
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Figure 2: Detided data from 15 November 2006 Kuril Islands tsunami event as derived from data
recorded by two DART® buoys.
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Figure 3: Model for data observed at buoy 1 generated assuming a magnitude 7.5 reverse thrust
earthquake originating from unit source a (i.e., A12).

to a discrete grid of times with a spacing of 1 min. In general, the times
used in a precomputed model might or might not correspond to the times at
which the DART® buoy data were actually collected. To facilitate matching
up the model and the observed data, we use a cubic spline to interpolate the
model, the result of which is shown by the solid curve passing through the
circles in Fig. 3. We let g(t) represent the spline-interpolated model in what
follows.
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Figure 4: Comparison of detided data from buoy 1 (dots) and its model from unit source a (solid
curve, as also shown in Fig. 3). In the inversion process the model will be rescaled to match the
observed amplitude of the detided data.

4. Fitting a Single Model to Data from a

Single Buoy

Figure 4 compares the precomputed model g(t) from unit source a (the solid
curve) and the detided data xt for buoy 1 (the dots). The model and the data
look different because the model was computed for a magnitude 7.5 reverse
thrust earthquake. We assume that an earthquake with an arbitrary mag-
nitude can be handled by multiplying g(t) by a parameter α. Accordingly
we entertain the model

xt = αg(t) + et, t ∈ ˜T ,

where et is a residual term that represents any remaining mismatch between
the data and the amplitude-adjusted model.

What criterion should we use to set the parameter α? For any proposed
α, we can compute a corresponding set of residuals et = xt−αg(t) for t ∈ ˜T .
As examples, let’s compute residuals corresponding to the choices α = 2,
4. and 8. The adjusted models αg(t) and data are shown in the left-hand
column of Fig. 5, while the corresponding residuals et are displayed in the
right-hand column (the residual with the largest absolute value is marked
with a circle). Arguably the “best” choice for α is such that the residuals et

are “small” by some measure. There are many possible measures, but three
common ones are to

1. make the sum of the squared residuals as small as possible:
∑

t∈˜T

e2
t =

∑

t∈˜T

[xt − αg(t)]2 ≡ f2(α);
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Figure 5: Adjusted model αg(t) with α = 2, 4, and 8 (solid curves in left-hand column of plots),
detided data from buoy 1 (dots in left-hand column) and corresponding residuals et (dots in right-
hand column). The circle in each right-hand plot indicates the residual with the largest magnitude.
The vertical dashed and dotted lines delineate the beginning and end of the first complete wave from
unit source a.

2. make the sum of the magnitudes of the residuals as small as possible:
∑

t∈˜T

|et| =
∑

t∈˜T

|xt − αg(t)| ≡ f1(α);

3. and make the largest magnitude of the residuals as small as possible:

max
t∈˜T

|et| = max
t∈˜T

|xt − αg(t)| ≡ f∞(α).

These measures correspond to what are known in the literature as the L2,
L1, and L∞ norms. A specialized measure of some interest is to

4. make the sum of the squared residuals at the model peak and trough
as small as possible:

e2
t0 + e2

t1 = [xt0 − αg(t0)]
2 + [xt1 − αg(t1)]

2 ≡ fpt(α),
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Figure 6: Residual measures f2(α), f1(α), f∞(α) and fpt(α) versus parameter α. The vertical
dashed lines show the location of the minima for each measure.

where t0 ∈ ˜T and t1 ∈ ˜T are such that g(t0) = maxt∈˜T {g(t)} and g(t1) =
mint∈˜T {g(t)}. The above can be expressed more compactly as

fpt(α) =
∑

t∈{t0,t1}
e2
t =

∑

t∈{t0,t1}
[xt − αg(t)]2 ,

which points out the similarity between this measure and f2(α), both of
which are based on squared residuals and are commonly referred to as least
squares criteria. In what follows, it will be convenient to let fls(α) stand for
either f2(α) or fpt(α) and to write

fls(α) =
∑

t

e2
t =

∑

t

[xt − αg(t)]2 ,

where it is understood that t takes on values in the set ˜T for f2(α) and in
{t0, t1} for fpt(α).

Figure 6 shows plots of f(α) versus α for the four measures, where we
vary α from 1 to 10 in steps of 0.2, a total of 46 different settings in all.
For any given measure, the estimated parameter is the value of α among
the 46 settings for which f(α) is minimized. The estimated parameters
corresponding to f2(α), f1(α), f∞(α) and fpt(α) are α̂2 = 4.2, α̂1 = 5.0,
α̂∞ = 3.8 and α̂pt = 4.2. These estimates are indicated on Fig. 6 by vertical
dashed lines.

While all four measures give estimated parameters that are roughly the
same, the two measures based on least squares criteria have certain advan-
tages. First, the value of α minimizing fls(α) is given by a simple formula,
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namely,

α̂ls =
∑

t xtg(t)
∑

t g2(t)
(1)

(this follows by setting the derivative of fls(α) with respect to α to zero
and solving the resulting equation for α). This formula yields the more
refined estimates α̂2

.= 4.17 and α̂pt
.= 4.26, without the need to locate the

minimizing α using an exhaustive grid search. Second, as we show in the next
section, we can quantify the statistical variation in α̂ls readily once we make
some assumptions about the nature of the residuals et. Similar assessments
for either α̂1 or α̂∞ are not as easy to come by. Third, the f1(α) measure is
known to be less influenced by large data values than least squares measures.
De-emphasizing large data values is a disadvantage in the current context
because they are arguably the best indicators in the measured data of the
magnitude of the tsunami event. Fourth, while f∞(α) is more influenced by
large data values than least squares measures, it can be unduly influenced
by a single rogue data point. Given these considerations, we will focus on
the least squares measures f2(α) and fpt(α) henceforth.

5. Assessing Sampling Variability in

Fitted Model

Here we consider how we can quantify the sampling variability in a least
squares estimator of the parameter α. To facilitate our discussion, let us
reformulate the model xt = αg(t) + et in vector notation as

x̃ = αg̃ + ẽ,

where x̃, g̃, and ẽ are column vectors whose tth elements are, respectively,
xt, g(t), and et. The dimension ˜N of these vectors is the number of elements
in ˜T for f2(α) and is two for fpt(α). The least squares estimator of αls in
(1) can be rewritten as α̂ls = g̃T x̃/g̃T g̃, where g̃T denotes the transpose of
g̃.

In order to quantify the sampling variability in α̂ls, we need to consider
the statistical properties of the residuals et. A common assumption is that
the residuals are a sample from a collection of independent and identically
distributed (IID) random variables from a Gaussian (normal) distribution
with mean zero and variance σ2

e . With this assumption, a standard statistical
result says that α̂ls is Gaussian distributed with mean α and with a variance
given by σ2

e/g̃
T g̃ (see, e.g., Draper and Smith, 1998). Let ê ≡ x̃− α̂lsg̃ be a

vector containing the observed residuals. An unbiased estimator of σ2
e is

σ̂2
e =

êT ê
˜N − 1

.

The estimated standard deviation for α̂ls is the square root of σ̂2
e/g̃

T g̃. Using
this estimate, we can express the uncertainty in the least squares estimates
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as α̂2 = 4.17 ± 0.59 and α̂pt = 4.26 ± 2.69, with the interpretation that the
corresponding intervals [3.58, 4.76] and [1.57, 6.95] represent 68% confidence
intervals for the unknown parameter α. Note that the sampling variability
in α̂pt is considerably larger than that of α̂2, presumably a reflection of the
fact that α̂2 is based on significantly more data than is α̂pt (105 data points
versus 2).

Unfortunately the IID assumption is highly questionable for the data
used to estimate α̂2. A plot of the observed residuals ê associated with this
estimate looks virtually the same as the α = 4 case shown in Fig. 5 (middle
plot, right-hand column). The IID assumption dictates that the residuals
have the same variance, but note that those associated with the data prior to
the tsunami arrival clearly have less variability than elsewhere. Data prior
to the wave arrival are associated with portions of model for which g(t) is
practically zero. As can be seen from (1), these data values do not influence
the estimate α̂2 since the products xtg(t) are also close to zero. For values of
t corresponding to the actual tsunami, the observed residuals appear to have
the same variability to a viable approximation, but they cannot reasonably
be assumed to be independent: residuals that are adjacent to one another
are quite similar, exhibiting a significant degree of autocorrelation.

We can adjust our model to account for the obvious violations of the IID
assumption by considering the reduced model

x = αg + e, (2)

where the vector x of dimension N = 70 is the portion of x̃ that contains just
the data starting from the earliest time at which g(t) differs substantively
from zero, with g and e being similarly extracted from g̃ and ẽ. The least
squares estimator of α is now expressed as α̂2 = gT x/gT g. To account for
the apparent autocorrelation in the observed residuals, we assume a simple
model, namely, that the residuals obey a first-order stationary autoregressive
process et = φet−1+wt, where |φ| < 1, and the wt variables are IID Gaussian
deviates with mean zero and a common variance. This model implies that
the correlation between residuals et and et+τ separated by τ minutes is φ|τ |.
Let us redefine the vector of observed residuals to be ê ≡ x − α̂2g. Since φ
is the correlation between adjacent residuals et and et+1, we can estimate it
via

φ̂ ≡
êT

(f)ê(l)

êT ê
.= 0.86, (3)

where ê(f) consists of all of ê except for its first element, and ê(l) has every-
thing but the last element. Statistical theory says α̂2 is Gaussian distributed
with a mean of α and a variance given by σ2

e gT V g/(gT g)2, where V is a ma-
trix whose (j, k)th element is φ|j−k|. An approximately unbiased estimator
of σ2

e is given by

σ̂2
e =

(1 − φ)2êT ê
N(1 − φ)2 − (1 − φ2) + 2φ(1 − φN )N−1

. (4)

We can thus estimate the standard deviation of α̂2 by taking the square
root of σ̂2

e gT V g/(gT g)2 after replacing φ by φ̂. We now have α̂2 = 4.17 ±
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1.50, which reports a larger uncertainty than under the questionable IID
assumption, namely, α̂2 = 4.17 ± 0.59. (The procedure for getting a more
realistic estimate of the uncertainty in α̂2 breaks down if we attempt to
adjust it to work with α̂pt. This estimator is based on just two data points,
and hence getting a good estimate of φ is problematic.)

6. Selecting Amount of Data to Use for

Estimating α

The inversion algorithm in Version 2.0 of SIFT uses the least squares esti-
mator α̂2 to estimate the parameter α based upon available DART® buoy
data. In the example in the previous section, we used all of the data relevant
to the Kuril Islands tsunami event observed by buoy 1. Using the estimated
parameter to forecast the potential dangers of a tsunami to coastal commu-
nities leads naturally to the question of how this estimate would be affected
if we were to use less data than what eventually became available. In theory,
using more data should yield a better estimate of the parameter, but this
must be balanced off with the necessity of obtaining an estimate as quickly
as possible. Here we use the example presented in the last section to illus-
trate how estimates of the parameter change as we use smaller amounts of
data.

The top plot of Fig. 7 shows the data (the dots) for the Kuril Islands
tsunami event recorded at buoy 1, along with the model (shown as a curve)
from unit source a after multiplication by the parameter α̂2 = 4.17, which
is based on all the available data. There are two vertical dashed lines on the
plot, which mark the times t0 = 2.046 and t1 = 2.196. The first of these is
the earliest time at which the model g(t) is measurably different from zero;
the second, the time just following the crest of the first full tsunami wave
as measured at the buoy (i.e., just after the so-called quarter-wave point).
There are 10 data points in all between (and including) t0 and t1; similarly,
there are 70 data points between t0 and the last observed value (te = 3.196).
Various results related to estimating α using just the first 10 points and all 70
points are shown by, respectively, the left and right ends of the curves in the
bottom four plots. The rest of the curves shows results using 11, 12, . . . , 69
points. From top to bottom, the second plot in the figure shows the least
squares estimates α̂2; the third, the estimated standard deviations for α̂2;
the fourth, the root mean square (RMS) errors of the residuals over just the
data used to determine α̂2 (solid curve) and over all 70 data points (dashed
curve, which necessarily corresponds exactly to the solid curve at the very
end); and the fifth, two versions of the so-called R2 statistic, which is the
percentage of the sample variance of the data explained by the model (the
solid curve is the squared correlation—expressed as a percentage—between
the observed data and the fitted model, while the dashed curve shows the
correlations under the assumptions that the true means of both the data
and the model are zero).
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Figure 7: Detided data from buoy 1 (dots, top plot) and model αg(t) from unit source a, with α
set to the least squares estimate α̂2 = 4.17 using all the data (solid curve, top plot). The bottom
four plots summarize the effect of using increasing amounts of data to estimate α, with the smallest
amount used being indicated by the vertical dashed lines in the top plot. From top to bottom, these
plots show α̂, the estimated standard deviation for α̂, the RMS error over the selected data (solid
curve) and all the data (dashed) and two variations on the R2 statistic. The left-most dashed line
and the dotted line in the top plot delineate the 24 data points recorded during the first complete
wave from unit source a; the dotted lines in the other plots mark values corresponding to an estimate
of α based on these 24 values.
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Some interesting patterns emerge as the amount of data used to estimate
α increases from 10 to 70. The second plot shows that the estimated param-
eters α̂2 roughly decrease with increasing amounts of data, so the estimated
parameter does depend on the amount of data used. The third indicates
that the associated standard deviation of the estimator increases initially,
but then decreases as more data are used, as intuition would suggest. The
fourth shows that the root mean square errors over the data used in the
fit and over all the data are relatively constant after about t = 2.4. The
last plot shows that the percent variance explained is initially fairly high
(around 90%) when just 10 data points are used, but then decreases mono-
tonically after about t = 2.5 with the use of more data, eventually ending up
at around 32%. This indicates that the model has little explanatory power
beyond the first complete wave observed at the buoy.

This Kuril Islands tsunami event is one in which the very first wave is the
largest when observed at buoy 1. This is because there is an unobstructed
path for the tsunami to propagate from the source of the event to this
buoy (see Fig. 1, where buoy 1 is marked as 21414). For this case, we
are thus better off just using the data up to the first complete wave (as
defined by model a) to estimate α since the data and the model disagree
substantially beyond that point. Doing so yields α̂2 = 5.15 ± 2.36 based
upon N = 24 data points. There are other situations in which later waves
can be larger, in which case it would be desirable to use a longer stretch of the
data for estimating the parameter α. How best to select the amount of data
to use in the inversion procedure is an open question requiring additional
research. Version 2.0 of SIFT allows the user to manually select the portions
of DART® data to use from each buoy, but there are provisional plans for
future versions to offer guidance based upon statistical tests.

7. Handling Multiple Unit Sources and

Buoys

So far we have considered an inversion procedure that is based upon a model
from a single unit source for the data received at a single DART® buoy. In
practice, certain tsunami events are potentially better described by consid-
ering multiple source models. This possibility is illustrated in Fig. 1, where
sea floor disturbances are highlighted in several unit source rectangles that
might have contributed to the tsunami. In addition the same tsunami event
can be recorded by multiple buoys. Figure 2 reflects the fact that the Kuril
Islands event was clearly detected at at least two DART® buoys, thereby
providing additional observations for use in source determination. In the
subsections that follow, we describe extensions to our inversion procedure
that handle multiple source models and/or multiple buoys. We use unit
sources a and b and buoys 1 and 2 to illustrate how these extensions work.
For j = 1 or 2, we let xj,t, t ∈ Tj , represent the relevant data from buoy
j, and we let xj be the corresponding vector of length Nj , where Nj is the
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Figure 8: Model series for buoy 1 from unit sources a (thin curve, which is the same as the curve
in Fig. 3) and b (thick curve with dots) generated under the assumption that a magnitude 7.5
reverse thrust earthquake originated from each source alone. The dashed and dotted lines mark the
beginning and end of the first complete wave from source a.

number of elements in the set of indices Tj. With this new notation, we can
re-express the reduced model of (2) for buoy 1 as

x1 = αag1;a + e1, (5)

where the subscript on αa says that this parameter is associated with the
model from unit source a; the subscripts on g1;a indicate that this vector
contains the model for buoy 1 from source a; and the subscript on e1 says
that these are the residuals associated with buoy 1. We can now express the
least squares estimator of αa as

α̂1;a = gT
1;ax1/gT

1;ag1;a =
(

gT
1;ag1;a

)−1
gT

1;ax1 (6)

(cf. Equation (1)), where the subscripts on α̂1;a emphasize that this esti-
mate of the parameter for unit source a is based on data from buoy 1 (the
right-most expression above is of interest to compare with generalizations to
come).

7.1 Multiple Unit Sources and a Single Buoy

The event that generates a tsunami is sometimes better described as orig-
inating from more than just one unit source. When this is the case, we
assume that the overall effect of the generating event is a linear combination
of the individual models from each source. As an example, the thin curve
in Fig. 8 shows the model from unit source a for buoy 1 (shown previously
in Fig. 3), while the thick curve with superimposed dots shows the model
from source b. Note that the first quarter wave from b arrives later than
that from a, but that the duration of the first complete wave is shorter for b
than for a. If we compare the data from buoy 1 with the fitted model from
a in the top plot of Fig. 7, we see that the peak in the data occurs after the
peak in the model, and hence the peak location might be better represented
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by the model coming from b; on the other hand, the duration of the first
wave in the data is more in keeping with that exhibited by a than by b. We
might get a better overall fit if we postulate an overall model for the data
from buoy 1 as being a blend of the models coming from a and b.

Accordingly we now augment the model of Equation (5) to include an
additional term:

x1 = αag1;a + αbg1;b + e1,

where αb is the parameter for unit source b, and g1;b is a vector of dimension
N1 containing the unadjusted model for buoy 1 from source b. As before,
we assume that the residual term e1 is multivariate Gaussian with a mean
vector of zeros and a covariance matrix given by σ2

1V1, where the (j, k)th
element of the N1 × N1 matrix V1 is given by φ

|j−k|
1 for some |φ1| < 1. We

can express this model more compactly as

x1 = G1α + e1, (7)

where G1 is an N1 × 2 dimensional array whose first and second columns
are g1;a and g1;b, while α = [αa, αb]T . The least squares estimator α̂1 of α
satisfies the equation

GT
1 G1α̂1 = GT

1 x1, (8)

where the subscript on α̂1 emphasizes that the parameters are being esti-
mated based upon the data from buoy 1. Under the assumption that the
2 × 2 matrix GT

1 G1 is invertible, the least squares estimator is given by

α̂1 =
(

GT
1 G1

)−1
GT

1 x1,

which is similar in form to the estimator in Equation (6) when using unit
source a alone. Standard least squares theory says that α̂1 is an unbiased
estimator of α and obeys a Gaussian distribution with a covariance matrix
given by

Σ1 ≡ σ2
1

(

GT
1 G1

)−1
GT

1 V1G1

(

GT
1 G1

)−1
(9)

(see, e.g., Draper and Smith, 1998 for details). Once we have determined
α̂1, we can compute the observed residuals

ê1 = x1 − G1α̂1

and use these to form an estimator of φ1 via the obvious analog of Equa-
tion (3). Conditional upon this estimate of φ1, we can obtain an approxi-
mately unbiased estimator of σ2

1 using the analog of Equation (4), following
which we have all the pieces needed to determine the elements of the covari-
ance matrix Σ1.

Using the N1 = 24 data values collected by buoy 1 during the first
complete wave from source a, the least squares estimate of α is

α̂1 =
[

α̂1;a

α̂1;b

]

.=
[

4.24
3.00

]

. (10)
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Figure 9: Comparison of fitted models involving unit sources a and b with data from buoy 1. The
left-hand plots show the data (dots) along with the models after adjustment using the estimated
source parameters (solid curves). The right-hand plots show the corresponding observed residuals.
The vertical dashed and dotted lines mark the stretch of 24 data points used to estimate the param-
eters. In the first row, only unit source a is used; in the second, only b; and the bottom row uses
both sources together.

The corresponding estimates of φ1 and σ2
1 are 0.89 and 0.00061, based upon

which we calculate

Σ̂1
.=

[

3.43 −0.11
−0.11 2.19

]

. (11)

The estimated parameters, along with their standard errors, for the two
sources are thus α̂1;a

.= 4.24 ± 1.85 and α̂1;b
.= 3.00 ± 1.48.

The left-hand plot in the bottom row of Fig. 9 shows the fitted model
G1α̂1 over T1 and its extension outside of T1 (solid curve), where the vertical
dashed and dotted lines indicate the earliest and latest times in T1. The data
from buoy 1 that were used to determine α̂1 are shown as dots between the
vertical lines, and the remaining data, as the dots before and after these
lines. The right-hand plot shows the observed residuals ê1 (dots between
the vertical lines) and the differences between the observed data and the
extended fitted model (dots outside the vertical lines). The top row in
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Figure 10: As in Fig. 8, but now for buoy 2.

Fig. 9 shows corresponding plots when the data are modeled using just unit
source a, and the middle row, just source b. We see that the use of both
unit sources gives somewhat smaller observed residuals over the first quarter
wave of the observed data.

We can readily adapt the above procedure to handle more than two
unit sources. If we are interested in Ns sources in all, then G1 becomes
an N1 × Ns dimensional array whose kth column contains the unadjusted
model for buoy 1 from the kth source, while α becomes an Ns dimensional
column vector. Two problems, however, can crop up when dealing with
multiple unit sources. The first is that, due to dependencies amongst the
models from different unit sources, the matrix GT

1 G1 might not be of full
rank or might be close enough to being rank deficient so that computing the
inverse of GT

1 G1 becomes numerically unstable. We deal with this potential
problem by using a singular value decomposition in solving Equation (8)
for α to determine α̂1. The second problem is that some of the estimated
parameters might turn out to be positive, while others are negative. A
mixture of positive and negative parameters is difficult to reconcile with
the physics of earthquake generation. While use of such a mixture might
achieve a closer fit between model and observations, the application of these
parameters throughout the ocean basin can lead to unrealistic predictions
for inundations of coastal regions. We can deal with this problem using a
constrained least squares procedure, whereby, given x1 and G1, we minimize

‖x1 − G1α‖2 over α subject to either the condition α ≥ 0 or α ≤ 0,

i.e., all of the elements of α are either nonnegative or nonpositive (in the
above ‖ · ‖ denotes the Euclidean norm, and 0 is an Ns dimensional column
vector of zeros). This constrained least squares procedure can result in some
parameters being set to zero, which in effect removes the corresponding unit
sources from our model for the data. The above minimization problem is a
special case of Problem 10.1.1 of Fletcher (1987), and the method we use to
solve it is a variation of Algorithm 10.3.4 of Fletcher (1987).
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7.2 Multiple Unit Sources and Multiple Buoys

We now consider the data collected by buoy 2 (i.e., 46413), which is shown
in the bottom plot of Fig. 2. Figure 10 shows the unadjusted models for
these data from unit sources a and b. We can make use of these additional
data and associated models in three ways. First, we can use the least squares
estimates of the parameters from Equation (10) based upon the data from
buoy 1 to see how well it matches the data observed by buoy 2 (i.e., “cross-
validation”). The first row of Fig. 11 shows the data for buoy 2, its adjusted
model using unit sources a and b and the associated residuals (the layout
of the plots follows that of Fig. 9). The agreement between the model and
the data is relatively good, thus lending some additional credence to the
estimated parameters. Second, we can formulate a model that is analogous
to what we used for buoy 1 and estimate α based upon just the data from
buoy 2. Let x2 be a vector of dimension N2 = 19 containing the data from
buoy 2 that was sampled over the first complete wave in the model from
unit source a (this region is marked by the dashed and dotted vertical lines
in Fig. 10 and in the middle two rows of Fig. 11). The model parallels that
of Equation (7) and states that

x2 = G2α + e2, (12)

where G2 is an N2×2 dimensional array whose first and second columns are
g2;a and g2;b (vectors of dimension N2 containing the unadjusted models for
buoy 2 from sources a and b), and e2 is an N2 dimensional vector of error
terms that is multivariate Gaussian with zero mean and a covariance matrix
given by σ2

2V2 (the (j, k)th element of the N2 × N2 matrix V2 is given by
φ
|j−k|
2 for some |φ2| < 1). The least squares estimate of α is

α̂2 =
[

α̂2;a

α̂2;b

]

.=
[

3.43
3.63

]

.

The estimates of φ2 and σ2
2 are 0.95 and 0.00098, based upon which we

calculate the analog of Σ̂1 in Equation (11), namely,

Σ̂2
.=

[

2.49 0.19
0.19 1.94

]

.

The estimated parameters are α̂2;a
.= 3.43 ± 1.58 and α̂2;b

.= 3.63 ± 1.39,
which, when sampling variability is taken into account, are in reasonably
good agreement with what we obtained using just the data from buoy 1.
The second row of Fig. 11 has plots for this model that parallel those in the
top row.

A third use of the additional data from buoy 2 is to estimate α using
a model involving data x1 and x2 from both buoys. This joint model can
be formulated by “stacking” together the models given by Equations (7)
and (12):

x1:2 = G1:2α + e1:2, (13)
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Figure 11: As in Fig. 9, with upper three rows comparing the data from buoy 2 to models based
upon unit sources a and b with parameters determined by data from buoy 1 alone (upper row), buoy
2 alone (second row) and both buoys (third). The two values given in the upper left-hand corners
are the estimated parameters involving unit sources a and b. The bottom plot compares the data
from buoy 1 to the model using the parameters determined by data from both buoys (i.e., the same
as in the third row). In the left-hand plots the vertical dashed and dotted lines indicate the starts
and ends of the data used to estimate the parameters (these lines are replicated in the right-hand
plots).
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where x1:2 is an N1 + N2 dimensional vector obtained by stacking x1 on top
of x2; G1:2 is an (N1 + N2) × 2 dimensional array obtained by stacking G1

on top of G2; and e1:2 is the residual vector; thus

x1:2 =
[

x1

x2

]

and G1:2 =
[

G1

G2

]

.

We assume that e1:2 is multivariate Gaussian with a mean vector of zeros
and an (N1 + N2) × (N1 + N2) covariance matrix given by

V1:2 =
[

σ2
1V1 0
0T σ2

2V2

]

,

where the (j, k)th element of the N1×N1 dimensional submatrix V1 is given
by φ

|j−k|
1 while that for the N2 × N2 dimensional submatrix V2 is φ

|j−k|
2 ,

where |φ1| < 1 and |φ2| < 1 (in the above 0 and 0T are taken to represent an
N1×N2 matrix of zeros and its transpose). This model assumes that any two
error terms are uncorrelated if they are associated with different buoys (this
assumption is a reasonable starting point, but is subject to further research
pending examination of residuals from operational use of this model). The
least squares estimator α̂1:2 of α satisfies the equation

GT
1:2G1:2α̂1:2 = GT

1:2x1:2, (14)

which is analogous to Equation (8). As with the models involving data from
a single buoy, α̂1:2 is an unbiased estimator of α and follows a Gaussian
distribution with a covariance matrix given by

Σ1:2 ≡
(

GT
1:2G1:2

)−1
GT

1:2V1:2G1:2

(

GT
1:2G1:2

)−1

(this is analogous to Equation (9)). The least squares estimate of α is

α̂1:2 =
[

α̂1:2;a

α̂1:2;b

]

.=
[

3.80
3.35

]

.

The corresponding estimates of φ1, φ2, σ2
1 , and σ2

2 are 0.89, 0.96, 0.00059
and 0.00113, based upon which we calculate

Σ̂1:2
.=

[

1.48 0.04
0.04 1.04

]

.

The estimated parameters using data from both buoys are thus α̂1:2;a
.=

3.80 ± 1.22 and α̂1:2;b
.= 3.35 ± 1.02. When we take into account sampling

variability, these estimates are consistent with what we got using the data
from each buoy by itself. The standard errors associated with these esti-
mated parameters are smaller than those obtained when we used data from
just one buoy. The last two rows of Fig. 11 compare the observations, model
fits, and residuals at buoy 2 and buoy 1 when sources a and b and data from
the first complete wave at each buoy are considered.
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8. Summary and Discussion

We have described in some detail the SIFT inversion procedure by which
data from DART® buoys are used to estimate parameters that adjust pre-
computed models for the data arising from one or more unit sources. The
models are computed under the assumption that a magnitude 7.5 reverse
thrust earthquake occurred within each unit source. The parameters α es-
sentially adjust the models to take into account earthquakes whose magni-
tude differs from 7.5, and does not coincide with, or is of greater spatial
extent than, a single unit source. We advocate a least square criterion for
estimating the parameters. This criterion has appeal for picking out appro-
priate estimates for the problem at hand and, in addition, leads to quick
computation and realistic assessment of the effects of sampling variability.

Version 2.0 of SIFT allows the user to select which unit sources are
to provide models for the observed data. For upcoming versions we plan to
implement ideas from statistical model selection to help the selection process.
Given the now completed U.S. array of DART® buoys in the Pacific and
Atlantic Oceans and given the extensive database of precomputed models
from over 1200 unit sources providing coverage of potential tsunami sources
in these oceans, a statistical approach to selecting appropriate combinations
of models and data can relieve some of the burden on users, particularly when
using SIFT during an ongoing tsunami event. Two simple approaches involve
step-up or step-down strategies. Suppose, for example, that we entertain
eight unit sources in all. A step-up approach would start with the unit
source whose model gives the best individual fit to the data (as measured
by residual variance) and would then use statistical tests to add models
from other unit sources one at a time, stopping when using an additional
model does not significantly improve the match with the data. A step-down
approach would start with a model that involves all eight unit sources and
then would use statistical tests to remove sources that do not appear to be
important contributors to the tsunami event.

Other areas of on-going research that might impact future versions of
SIFT are (1) the use of statistical criteria to select the amount of data to be
used to estimate the parameters; (2) allowing the precomputed models to be
shifted in time a bounded amount to compensate for uncertainties in propa-
gation times between the unit sources and the buoys; (3) real-time detiding
of the DART® buoy data; and (4) use of a Kalman filtering formulation to
allow efficient updating of the estimated parameters as new data arrives.

Finally we note that an important topic that we have left unaddressed is
the connection between the estimated source parameters α and coastal in-
undation forecasts that use these parameters as inputs. The quality of these
forecasts depends on how well the source parameters can be used to success-
fully predict the tsunami event at locations far removed from the DART®

stations whose data formed the basis for the parameter estimates. For ex-
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ample, in the context of the Kuril Islands event focused on here, a further
test would be to see how well we can use the estimated α’s to predict what
was actually observed at far-field DART® stations along the West Coast
of the United States. An additional test could be based on tide gage data
at Crescent City and Hilo using nearshore standby inundation model (SIM)
forecasts (see Gica et al., 2009 for details). These additional tests need to
be done in order to fully validate the inversion procedure. In addition, work
is needed to determine how uncertainty in the estimated source parameters
translates into uncertainty in the SIM forecasts themselves.
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