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The past few decades have seen 
an unprecedented increase in 
the number of physical and 
biogeochemical measurements 
in the global oceans. These 
observations are crucial for 
documenting how the ocean 
interacts with the overlying 
atmosphere. We know that 
ocean variations have profound 
effects on weather and climate 
and can strongly influence 
surrounding coastlines and 
coastal communities. Further, the 
ocean circulates and redistributes 
heat, salt, carbon, and nutrients 
around the globe, having major 
impacts on the systems that 
sustain marine life and ecosystem 
diversity. In essence, ocean 
observations supply information 
important to society.  

To date, the primary focus of the 
global ocean observing system 
has been on the surface and 
intermediate layers of the ocean. 
Far fewer observations are being 
collected in the deep layers – 
here defined as below 2000 m. 
For example, less than 15% of 
the holdings in the World Ocean 
Database are from below 2000 
m. This drops to less than 1% 
below 4000 m. The majority of 
these deep measurements were 
obtained from hydrographic 
surveys, which produce highly 
accurate data but require 
substantial personnel and ship 
time resources.

1

By storing global increases in carbon and heat, the ocean plays critical roles        
 in climate change, counteracting effects of anthropogenic emissions. The 

storage roles are different for the two quantities because of the natures of the 
other sinks (Figure 1). Storage of carbon increases is distributed among the 
atmosphere, terrestrial biosphere, and ocean. The ocean presently holds about a 
quarter of the total increase (Ciais et al. 2013) and that portion is expected to grow 
relative to the other sinks over time. The carbon that remains in the atmosphere 
contributes to radiative heating of the surface climate system — the atmosphere, 
land surface, and ocean mixed layer. Since this system has a small heat capacity, 
the radiative energy source is balanced, on timescales beyond a decade, by heat 
fluxes downward from the ocean mixed layer and upward to space (Held et al. 
2010). These fluxes are proportional to surface temperature change so thermal 
coupling to space, by radiative feedbacks, and into the ocean, by circulation and 
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We know that the deep ocean 
plays a crucial role in the Earth’s 
climate, primarily through 
property redistribution via 
the large-scale overturning 
circulation, as well as serving 
as a massive reservoir for heat 
and carbon storage. Although 
the deep ocean has long been 
perceived to be slowly changing, 
the limited observations from 
the last few decades show 
pronounced changes in deep 
water mass properties. These 
changes suggest that the deep 
ocean has already begun storing 
excess heat and carbon from the 
atmosphere and is, thus, playing 
an important role in the Earth’s 
energy imbalance and carbon 
cycle.

Expanding the global ocean 
observation system into the 
deep ocean is in the best interest 
of humanity. The main obstacles 
to enhancing the deep ocean 
observing system include limited 
ship time, inadequate funding, 
and the technical challenges 
posed by collecting high-quality 
measurements in an extreme 
environment. This edition of 
Variations highlights the existing 
“state-of-the-art” methods to 
measure the deep ocean, some 
of the scientific insights that 
have already been gained from 
these observations, and new 
methodologies and technologies 
to expand the network of deep 
observations.
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diffusion, jointly determine a surface warming magnitude that balances the 
radiative forcing. In contrast to its carbon uptake, the ocean has gained over 90% 
of the global energy imbalance (Rhein et al. 2013). Ocean uptake of carbon and 
heat mitigate surface warming but contribute impacts of their own through ocean 
acidification, habitat shifts, and sea level rise.

Consider the response of these balances to an anthropogenic pulse of carbon 
emitted to the atmosphere as simulated by climate models (Joos et al. 2013). 
During the emission, the ocean reduces warming of the surface climate system by 
removing atmospheric carbon, hence reducing the radiative forcing, and by taking 
up heat at an increasing rate. After emission, the offsetting effect of ocean carbon 
uptake continues for millennia until the ocean and atmosphere strike a new 
chemical balance, with the ocean containing most of the emitted carbon. Ocean 
heat uptake diminishes over this period as deep ocean temperatures approach 
equilibrium with the declining atmospheric CO2 forcing, a warming effect that 
opposes the carbon uptake. Models typically show these two effects balancing, 
leading to relatively stable warming over the post-emission period, although 

Figure 1. Schematic balances for carbon and heat. CO2 accumulates significantly 
in the atmosphere, the land, and, increasingly, the ocean. Heat is lost to space and 
accumulates in the ocean.
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there is a considerable range of simulated post-emission 
trends (Frölicher et al. 2014). Although the role of the 
processes described above is conceptually clearest in the 
post-carbon-emission period, they also contribute to the 
present-day response to anthropogenic emissions.

The balances that determine long-term climate evolution 
are effected by ocean circulation and diffusion distributing 
heat and carbon increases, stemming from anthropogenic 
emissions, throughout the ocean. Hence, deep and 
bottom water formation over centennial to millennial 
timescales is important for the long-term evolution of the 
warming. As discussed below, 
model simulations of present-
day deep and bottom water 
formation and their response to 
changing climate differ greatly 
and suffer from well-known 
biases, calling into question 
their fidelity on long timescales. 
Consequently, observation and 
monitoring of deep and bottom 
water formation, properties, 
and circulation are crucial for 
constraining climate models and 
their projections.

The two major water-masses 
filling the deep ocean (Figure 
2) are Antarctic Bottom Water 
(AABW), and North Atlantic Deep 
Water (NADW). AABW originates 
as a result of complex ocean-ice-
atmosphere interactions around 
the margins of Antarctica, 
with plumes of very cold, 
dense waters formed on the 
continental shelves descending 
the continental slopes to the 
abyssal ocean, entraining 
offshore ambient waters by 
turbulent mixing as they do so 

(Orsi et al. 1999). NADW is formed from a mixture of 
open-ocean convection to mid-depths in the Labrador 
Sea and turbulent plumes of dense overflows located 
between Greenland and the Shetland Islands (Yashayaev 
2007). Together, AABW and NADW account for over half 
of the water-mass volume in the ocean, with the AABW 
volume estimated at 36% of the total, and NADW at 21% 
(Johnson 2008). Zonally averaged around the globe, 
AABW concentrations peak in the Southern Ocean and 
the abyss, whereas NADW has its highest concentrations 
in the North Atlantic Ocean, and at mid-depth.

Figure 2. Vertical meridional sections of fractional concentrations of North Atlantic Deep Water 
(NADW; top panels) and Antarctic Bottom Water (AABW; bottom panels) zonally averaged 
across the Indo-Pacific (left panels) and Atlantic (right panels) oeans, based on Johnson (2008). 
Concentrations are contoured at 0.1 intervals from < 0.1 (white) to > 0.9 (darkest blue). Select 
neutral isopycnals (thick black lines) are contoured, 28.03 and 27.6 kg m-3 in the Indo-Pacific 
and 28.11  and 27.7 kg m-3 in the Atlantic, as the approximate divisions (e.g., Lumpkin and 
Speer 2007) between northward flowing bottom waters, southward flowing deep waters, and 
the intermediate waters above them. Latitude is reversed in the Indo-Pacific versus the Atlan-
tic, so the Antarctic is toward the center of the figure (negative values), and the Arctic toward 
its right and left borders (positive values).
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These water masses play vital roles in the global ocean 
circulation (Figure 3; Talley 2013). AABW spreads 
northward from its formation regions in the Southern 
Meridional Overturning Circulation (SMOC; Heuzé et al. 
2015), primarily via deep western boundary currents 
(DWBCs) that largely follow bathymetry. AABW mixes as it 
flows through sills and interacts with rough topography, 
ultimately filling much of the abyssal Pacific, Indian, and 
western South Atlantic oceans (Johnson 2008). NADW 
spreads south from its formation regions, first as part of 
the Atlantic Meridional Overturning Circulation (AMOC), 
in part via DWBCs. However, NADW only fills the abyssal 
North Atlantic and eastern South Atlantic. NADW is less 
dense than AABW, and so overlies it in the Atlantic. NADW 
is carried from the Atlantic into the other oceans via the 

Antarctic Circumpolar Current, before contributing to 
AABW as well as spreading north in DWBCs.

The southward transport of NADW out of the North Atlantic 
has been estimated at about 15 Sv (1 Sv = 106 m3 s-1), with 
a similar magnitude northward transport of AABW out of 
the Southern Ocean (Lumpkin and Speer 2007). Dividing 
the volumes of these water masses by their transports 
yields rough estimates of their replacement timescales: 
about a millennium for AABW and approximately six 
centuries for NADW. These timescales are comparable to 
those from ocean radiocarbon data (Matsumoto 2007).

The AMOC effects a substantial transport of heat 
northward in the subtropical North Atlantic Ocean 
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Figure 3. Schematic of the global meridional circulation modified from Talley (2013). Antarctic Bottom Water (AABW) formed by 
cooling and brine rejection around Antarctica descends in dense plumes with turbulent entrainment (cyan swirls) and then spreads 
north. North Atlantic Deep Water (NADW) is formed by deep convection in the North Atlantic with contributions from turbulent dense 
overflows from the Greenland-Iceland-Norwegian Seas and then spreads south. AABW and NADW mix and upwell (cyan squiggly 
arrows) far from their formation regions, contributing to Lower Circumpolar Deep Water (LCDW) as well as Pacific and Indian Deep 
Waters (PDW/IDW) over time, with some NADW transiting to the Indian Ocean, where it mixes with IDW. PDW/IDW contribute to 
Upper Circumpolar Deep Water (UCDW). UCDW and LCDW moving south near the surface lose buoyancy from surface fluxes (orange 
arrows), feeding AABW formation, whereas UCDW moving north near the surface gains buoyancy and forms Subantarctic Mode 
Water (SAMW) and Antarctic Intermediate Water (AAIW). PDW/IDW and SAMW/AAIW gain buoyancy through surface fluxes to form 
subtropical/tropical upper ocean waters, with portions transiting the Indonesian Throughflow (ITF). These upper ocean waters lose 
buoyancy through surface fluxes in the North Atlantic and form NADW.
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because of the large temperature contrast between 
the relatively cold NADW flowing south and the warmer 
upper ocean waters that flow north (Talley 2003). While 
the North Atlantic exports carbon southward, it exports 
less now than in preindustrial times (Macdonald et al. 
2003), consistent with a substantial increase in carbon 
storage in that basin (Woosley et al. 2016). In contrast, the 
colder, deeper SMOC has a much smaller temperature 
contrast between AABW flowing north and the very old, 
but only slightly warmer Circumpolar Deep Water (CDW) 
flowing south and upwelling in the Antarctic Circumpolar 
Current, thence feeding both AABW and Antarctic 
Intermediate Water (AAIW) formation. Thus, the SMOC 
effects a relatively small heat transport. However, CDW 
— a mixture of “aged” AABW (including Pacific and Indian 
Deep Waters), various intermediate and mode waters, 
and some NADW — has not seen the sea surface for 
many centuries. Hence, it takes up significant amounts 
of heat and carbon, relative to preindustrial times, when 
exposed to the modern atmosphere with its increased 
carbon concentration and warmth (Russell et al. 2006). 
Much of this increase in carbon and heat is stored in 
AAIW as it flows north, with a smaller amount of warming 
and additional carbon stored in the AABW as it forms.

Variations in deep ocean water properties, including 
NADW and AABW, reflect surface forcing variations. In the 
deep Greenland Sea, cessation of ventilation has resulted 
in warming at a rate similar to the warming rate of Earth’s 
mean surface temperature over the past several decades 
(Somavilla et al. 2013). In contrast, formation rates, depths, 
and water properties of Labrador Sea Water, formed 
by open-ocean deep convection, have varied decadally, 
at least in part with fluctuations of the North Atlantic 
Oscillation (Yashayaev and Loder 2016). Striking warming 
is found in the AABW over recent decades throughout 
the Southern Ocean, extending into the abyssal Pacific, 
western South Atlantic, and eastern Indian1 oceans 
(Purkey and Johnson 2010; Desbruyères et al. 2016). 
Furthermore, AABW has been freshening over recent 
decades, especially in the Indian and Pacific sectors of the 
Southern Ocean (Purkey and Johnson 2013). Freshening 
of the Ross Sea Shelf waters, one of the components 

of AABW in the region, linked with increased melting of 
marine terminating ice sheets (Jacobs and Giulivi 2010), 
may be one factor in observed AABW changes. The 
increased buoyancy from this freshening may result in a 
warmer, lighter variety of AABW and reduce the amount 
of AABW formed. In the Weddell Sea, one hypothesis is 
that the 1970s Weddell Polynya substantially cooled the 
deep and abyssal ocean in the region, and the AABW 
warming observed there may be partly a rebound from 
that cooling event (de Lavergne et al. 2014).

A frequently asked question is how the warming signal 
of AABW has already been observed in the North Pacific. 
The answer is that it has probably not been advected 
there yet, but is the result of a teleconnection of 
changing formation (either rates or densities) of AABW 
by planetary (Kelvin and Rossby) waves (Masuda et al. 
2010). This teleconnection effects what oceanographers 
term an isopycnal “heave” signature of the changes, 
rather than an advective “water-mass” signature (Bindoff 
and McDougall 1994). To date, water-mass signatures 
(changing temperature-salinity relations) in the deep 
and abyssal ocean are most easily observed near 
the formation regions of NADW and AABW; although 
transient gasses such as chlorofluorocarbons, which 
were introduced into the atmosphere starting in the 
1930s and can be observed in the ocean at extremely low 
concentrations, reveal advective signatures spreading 
from the formation regions of NADW (LeBel et al. 2008) 
and AABW (Orsi et al. 2002).

Deep ocean temperature and salinity changes play roles 
in both the global energy budget and sea level budgets. 
Ocean warming below 2000 m has been estimated to take 
up about 10% of Earth’s total energy imbalance during 
2005–2015 (Johnson et al. 2016). Deep ocean warming 
is currently a smaller contributor to global sea level 
budgets (Purkey and Johnson 2010), since the thermal 
1expansion coefficient of seawater is smaller for colder, 
deeper waters. However, deep ocean temperature and 

1The deep western Indian Ocean has not been sampled since the World 
Ocean Circulation Experiment in 1994 owing to pirate activity.
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