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NOTATION

The horizontal mean (often just

capitalized: 5 =T, etc.)
The vertical mean over the mixed layer
Buoyancy

Parameter for relative importance of
H* to Ro™! for cyclical steady state

Turbulent buoyancy flux
Complex turbulent momentum flux
Specific heat at constant pressure

Drag coefficient in quadratic wind
stress law

Mean horizontal velocity in complex form

Turbulent horizontal velocity in complex
form :

Ekman depth of frictional resistance

Surface production zone (Niiler); also
used as a depth proportional to Ekman
depth (d)

Total rate of viscous dissipation of
turbulent kinetic energy in the
mixed layer

Molecular diffusion coefficient

Turbulent kinetic energy (per unit mass)

<E>/(haB)
Turbulent kinetic energy nondimension-

alized with the friction velocity
squared, u3

Coriolis parameter



Damping force for inertial motions

Apparent gravitational acceleration

Total rate of mechanical production
of turbulent kinetic energy in the
mixed layer

Depth of mixed layer

Mixed layer depth if the vertical
extent of the region is stationary
or retreating

Mixed layer depth (h) non-dimension-
alized with the Obukhov length

Compensation depth for radiative heating

Mechanical equivalent of heat,

2
4.186 x 107 MM~
cal sec?

Eddy mixing coefficient for neutral
conditions

Eddy viscosity

Eddy conductivity

Obukhov length scale

Integral turbulence length scale
Convective length scale
Rotational length scale

Model constants

Value for integrated flux Richardson
number

Brunt-Vaisala frequency
Fluctuating pressure component

Geostrophic pressure gradient in the
ocean

Vi



Ro

Ri

RF

Ri

Ri

Total mechanical energy per unit mass

in the mixed layer
Nondimensional entrainment flux
Radiation absorption
Solar heating function
Solar radiation through interface
(incident minus reflected)
Horizontal component of turbulent
kinetic energy
Fraction of net production going to
potential energy by means of
entrainment

Rossby number

Gradient Richardson number,
__3B/3z
|aC/8z|?

Flux Richardson number,

—,; — a3l — 3V
- bw/ (uw 57 F W 5;)

Gradient Richardson number in the
entrainment zone

Overall or bulk Richardson number,
hAB/IAC|2

Total Gradient Richardson number

_ _ab/az
(su/5z)2
Salinity

Time

vii



(i.) = (Utu, V+v, Wiw) Total instantaneous velocity, the sum
1 of the mean and turbulent components
(neglecting any geostrophic com-

ponent)

Ug’ Vg Geostrophic components of velocity

Ug : dh/dt, entrainment velocity

u Friction velocity, v|cw(0)|

Uy Surface buoyancy flux, -bw(0)

W Wind velocity; sometimes used as mean
vertical water velocity

* . . . .

W Nondimensional entrainment velocity,
ue/V<E>

(x:) + (x,y,2) Rectangular space coordinates with

1 X5 = z aligned vertically upward,

parallel to the local apparent
direction of gravity

o -po"lap/BS

8 Coefficient of thermal expansion,
po'l'ap/aT

v(z) Extinction coefficient for net solar
radiation

r 3B/3Z for Z < (-h-8) = N2

It 9T/9Z for Z < (-h-6)

8§~ Fraction of turbulent energy dissipated

$ Thickness of entrainment zone

§Cp Excess surface velocity, C(z=0) - <C>

AB Change in mean buoyancy, across the

entrainment zone, B(-h)} - B(-h-6)
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3

e1'k(x - clt)

Mg

T+6

D2
i

Mean velocity drop across the density
interface

Rate of viscous dissipation of tur-
bulent kinetic energy,

Internal wave amplitude on interface
Temperature

Temperature flux scale, b*/Bg
Thermal conductivity

Heaviside unit step function; also
used as dissipation length scale

Molecular viscosity
Kinematic viscosity

The instantaneous density of the sea
water

The density for representative values
of salinity, s,;, and temperature, 6,

Representative density of air

Turbulent heat flux

Surface stress, o uZ
Dissipation time scale
Dimensionless time scale, t/TE
Time constant for damping by F

Latitude
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<E> |AC|2
(haB)?2

* *
E /Ri =
Nondimensionalized turbulent kinetic

energy, h<E> / (u*3r€)
Earth's rotation vector

Angular frequency



A GENERAL MODEL OF THE OCEAN MIXED LAYER
USING A TWO-COMPONENT TURBULENT KINETIC ENERGY
BUDGET WITH MEAN TURBULENT FIELD CLOSURE

Roland W. Garwood, Jr.

A non-stationary, one-dimensional bulk model of a mixed layer
bounded by a free surface above and a stable nonturbulent region
below is derived. The vertical and horizontal components of turbu-
lent kinetic energy are determined implicitly, along with layer
depth, mean momentum, and mean buoyancy. Both layer growth by en-
trainment and layer retreat in the event of a collapse of the ver-
tical motions due to buoyant damping and dissipation are predicted.
Specific features of the turbulent energy budget include mean tur-
bulent field modeling of the dissipation term, the energy redistri-
bution terms, and the term for the convergence of buoyancy flux at
the stable interface (making possible entrainment). An entrainment
hypothesis dependent upon the relative distribution of turbulent
energy between horizontal and vertical components permits a more
general application of the model and presents a plausible mechanism
for layer retreat with increasing stability. A limiting dissipation
time scale in conjunction with this entrainment equation results in
a realistic cyclical steady-state for annual evolution of the upper-
ocean density field. Several hypothetical examples are solved, and
a real case is approximated to demonstrate this response. Of par-
ticular significance is the modulation of longer-period trends by
the diurnal-period heating/cooling cycle.

1. INTRODUCTION
1.1 Purpose of the Study

The objective of this study is the formulation of a unified mathematical
model of the one-dimensional, nonstationary oceanic turbulent boundary layer.
In particular, this model should help explain and predict the development in
time of the seasonal pycnocline.

Interest in the ocean mixed layer stems from both theoretical and prac-
tical considerations. Thermal energy and mechanical energy received from the
atmosphere not only control the local dynamics, but the layer itself modu-
lates the flux of this energy to the deeper water masses. Conversely, flux
of heat back to the atmospheric boundary layer has an important influence
upon the climate and its fluctuations. Figure 1 depicts the mechanical
energy budget for the ocean mixed layer.
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In addition to climatological and ocean circulation studies, other
applications of a practical model of the mixed layer include investigations
of advection and turbulent dilution of dissolved or suspended concentrations
of matter such as pollutants and nutrients. Prediction of entrainment of the
deeper, nutrient-rich water into the mixed layer has particular pertinence to
the estimation of primary productivity.

The need to further develop and attempt to improve the one-dimensional
mixed-layer model is evident. The failure of earlier models to consistently
explain the annual cycle of thermocline development is, for the most part,
not attributable to the assumption of one-dimensionality.

A refined treatment of the often neglected terms of the turbulent kin-
etic energy budget promises to improve the physical understanding of the
turbulent ocean boundary layer and make possible the creation of a better-
performing model.

A detailed review of the Titerature associated with mixed-layer modeling
is undertaken in Chapter II, but Table 1 summarizes the major historical
contributions to the understanding of the physics of the mixed layer.

The works of primary concern here are those dealing explicitly with
equations for the production, alteration, and destruction of turbulent kin-
etic energy within the mixed layer. Kraus and Turner (1967) were the first
to heed the turbulent kinetic energy budget in a one-dimensional mixed layer
model, utilizing the approximately decoupled state of the equations for the
thermal and mechanical energies. By neglect of the frictional generation of
heat, the vertically integrated heat equation becomes a relationship for the
conservation of potential energy. However, viscous dissipation cannot be
neglected in the turbulent energy budget, and Geisler and Kraus (1969) as
well as Miropol'skiy (1970) and Denman (1973) added it to the basic model.
Niiler (1975) showed that in addition to the equations for thermal (poten-
tial) and turbulent (kinetic) energy, an equation for the mean kinetic energy
should properly be incorporated because entrainment converts some of the mean
flow energy into turbulent energy, over and above the parameterized wind-
stress production.

Further questions remain and 1imit the general applications of these
earlier models:

a. The viscous dissipation of turbulent energy has been parameterized
as a fixed fraction of the wind-stress production and hence is a function of
the surface friction velocity u,. Dissipation may be related to the integral
velocity scale of the turbulence, but this scale is not always proportional
to u,. Surface heat (buoyancy) flux and entrainment fluxes can contribute
significantly to the turbulent intensity.

b. Entrainment may also be considered a function of the ambient turbu-
lence parameters. Instabilities leading to entrainment are probably induced
by horizontal turbulent velocities locally at the bottom of the mixed layer,
so the entrainment rate doesn't necessarily correspond to an integral con-
straint upon the total turbulent energy budget.



Table 1.

Summary of Histornical Contributions

Date Author(s) Contribution
1905 Ekman Constant eddy viscosity solution to steady-state momentum
equation: Ekman spiral; 'depth of frictional influence';
suggested h = W/Vsin ¢ .
1935 Rossby and Improved current measurements to demonstrate h ~ u,/f
Montgomery (Rossby number ~ constant).
1948 Munk and Simultaneous solution of steady-state heat and momentum equa-
Anderson tions using eddy mixing coefficients variable with Richardson
number,
1960 Kitaigorodsky Using dimensional analysis, suggested that h oz L, the Obukhov
length scale.
1961 Kraus and Penetration of solar radiation to depth makes steady-state
Rooth possible for heat equation because of surface heat loss by
conduction, evaporation, and long wave radiation; unstable
density profile above compensation depth (h.) is source of
turbulent kinetic energy produced by convection.
1967 Kraus and Included mechanical stirring (parameterized in terms of wind
Turner stress) as well as convective production as important source
of turbulence for mixing: turbulent kinetic energy equation
and heat equation form two-equation model in two unknowns--T,
h; non-steady-state solutions and 'retreating' (h) possible;
viscous dissipation neglected.
1969 Geisler First "slab'" model in which momentum equation is solved to-
and Kraus _gether with turbulent energy equation and heat equation; layer
assumed homogeneous in T and U, V and hence moves as a slab;
assumed buoyancy flux is fixed portion of mechanical produc-
tion--essentially same as Kraus and Turner; applied model to
atmosphere with subsidence.
1970 Miropol'skiy; Assumed dissipation a fixed fraction of mechanical production;
Denman remaining turbulent kinetic energy goes to buoyancy flux down-
wards including entrainment; essentially same as Kraus and
Turner.
1973 Pollard, Rhines Slab model applied to ocean mixed layers; used total mechan-
and Thompson ical energy equation (rather than turbulent equation) plus
momentum and heat equations; h, T, U, V--all functions of
time. Ignored effects of turbulent energy budget altogether.
1974 Niiler Re-emphasized the need to use the turbulent kinetic energy

budget apart from the total mechanical energy budget; divided
region into three sub-regions with no mechanical production
in most of the mixed layer. Included turbulent kinetic
energy produced by entrainment of zero-velocity water into
moving slab, but surface mechanical production minus dissi-
pation still parameterized in terms of u,. Dissipation is
not affected by the additional entrainment production, pos-
sibly causing a too-large entrainment rate.




c. The use of the total turbulent energy equation and consequently the
neglect of energy redistribution among components also results in a somewhat
inconsistent method of predicting layer "retreat." The consideration of
separate budgets for the horizontal and vertical turbulent energy components
will permit a more consistent interpretation of both entraining and retreat-
ing mixed layers.

In this paper, ad hoc mean turbulent field modeling of the terms in the
turbulent kinetic energy equations permits the inclusion of these often
salient effects in a generalized one-dimensional model of the ocean mixed
layer.

2. CHARACTERISTICS OF THE OCEAN MIXED LAYER

The ocean mixed layer is defined as that fully-turbulent region of the
upper ocean bounded on top by the sea-air interface. The wind and intermit-
tent upward buoyancy flux attributable to surface cooling are the primary
sources of mechanical energy for the mixing.

The most distinctive feature of this layer and what really defines its
extent is its relatively high intensity of continuous, three-dimensional
turbulent motion. Vertical turbulent fluxes within the mixed layer can be so
much greater than vertical fluxes in the underlying stable water column that
the dynamics of the layer are essentially decoupled from the underlying
region. (Of course the dynamics of the underlying water masses are probably
very dependent upon the mixed layer.)

Typically, an actively entraining mixed layer is bounded on the bottom
by a sharp density discontinuity separating the layer from a stable, essen-
tially nonturbulent thermocline. Minimal stress at the bottom together with
high turbulence intensity results in an approximate vertical uniformity in
mean velocity and density. This ostensible homogeneity is the root of the
term "slab," often used to describe the layer. On the other hand, only small
gradients in these mean variables give rise to large turbulent fluxes. There-
fore, even the slight non-homogeneity is highly important in the physics of
the region and should not be neglected at the outset.

The nearly zero-flux state of the underlying thermocline causes the
bottom boundary condition of the mixed layer to act almost as a slip condi-
tion on the mean velocity. This in turn creates a trap for inertial motion.

Deepening of the mixed layer is accomplished by entrainment of the more-
dense underlying water into the turbulent region above. This process entails
a potential energy increase and cannot take place without an energy source--
the turbulent kinetic energy of the mixed layer above.

A simplified picture of the region is shown in Figure 2. There is an
appealing practical aspect to the judicious use of the assumption of vertical
homogeneity. This assumption permits the use of the vertically integrated
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momentum and heat (buoyancy) equations, thus avoiding the turbulent flux (of
momentum and buoyancy) closure problem altogether.

The depth of the oceanic wind-mixed surface layer is typically on the
order of ten to a hundred meters. The horizontal scale size is that of the
radius of the circle of inertia--seldom larger than a few kilometers in tem-
perate latitudes. These two dominant scale sizes are usually significantly
smaller than the horizontal scale sizes of the driving meteorological distur-
bances, water mass features, and distance to lateral boundaries. Therefore,
the approximation of local horizontal homogeneity for all mean variables is
usually accurate and is a basic assumption of this work. The local conse-
quence of some lateral inhomogeneity can be parameterized without qualita-
tively undermining such a one-dimensional model. For example, a divergence
of the horizontal current field results in a nonzero vertical mean velocity
which in itself can be assumed locally uniform in the horizontal. A minor
rate of loss (compared with the surface flux) of mean momentum by lateral
and/or downward radiation of inertial motion may be parameterized also with-
out compromising the dominant processes.

Substantial barotropic and baroclinic features in the mean fields can
be linearly superimposed. The mean fields of concern are therefore the hori-
zontally homogeneous components of the total fields. In particular, the



momentum equation has the geostrophic component subtracted out, eliminating
any lateral pressure gradient.

1.3 Fundamental Principles and Equations

The underlying principles employed in studying the mixed layer are the
combined conservations of mass, momentum, thermal energy, and mechanical
energy.

The conservation of momentum and the condition of incompressibility are
reflected by the Navier-Stokes equations of motion, invoking the Boussinesq
approximation:

~J ~J ’\)2N
au. ou. ~ 9 U.
—_—t . — + e e S + - - s T FyYvaarevnniiE
Po3t T Po Yj X Po &1 5k%3k aX; (pg - p)g 655 = w 3 39X 3 (1.1)
au;
gx—i—= 0. (1.2)

Because frictional generation of heat is negligible compared with typi-
cal magnitudes for the divergence of heat flux, the conservation of thermal
energy is decoupled from the mechanical energy budget, and the first law of
thermodynamics for an incompressible fluid gives the heat equation.

2,
30 , ~ 96 K 36 Q
U = + . (1.3)
R .9X. - p.C
ot J axJ pOCp axJaxJ Polp

The conservation of salt mass is of the same form, but it lacks a term
analogous to the radiation absorption term, Q.

2.
58  ~ 3% 3S
=+ U, = =0D (1.4)
ot J xJ S axjaxJ

A simplified but sufficiently accurate equation of state for local
and reasonably short-term application in the mixed layer is given by

0= pg[1-8(F-6p)+alS-sg)l (1.5)



where pg = 5(6p,Sp) 1S a representative but arbitrary density at the time
and location of consideration. The coefficients (8) and (a) are assumed to
remain constant.

Taking the scalar product of (Uj) with the respective terms of equation
(1.1), the mechanical energy equation is formed,

~ o~ ~ o~ ~ ~ N2V\l
u.u. u.u. u. ~ u. 9 U,
d ii),~ 3 id i 3p v _ i i

J

where the buoyancy (b) is given by

g . (1.7)

Assuming horizontal homogeneity of mean variables, where the horizontal mean
is defined by

é_ X

_ 2 .,

(¥) (z,t) = Tim 1 / f(x,y,z,t) dxdy ,
X J-x

and separating all variables into mean and fluctuating components gives

Ug + U(z,t) + u(x,y,z,t)

vg + V(z,t) + vix,y,z,t)

—
=
[,
S
]

0 + w(x,y,z,t)

0 = T(Z,t) + e(XsYsz9t)
BI = ' Pg + P(Xs.YsZ,t)
B = B(z,t)  + b(x,y,z,t)

Strictly speaking, the total fluctuating part of each variable includes
a component directly attributable to surface and internal wave motion. This
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component has been removed from the fields depicted above. The virtually
irrotational wave velocities are assumed noninteractive except as an external
source or sink of turbulent energy due to the net contributions of breaking
surface waves and radiating internal waves.

In practice, a time mean is employed in data analysis rather than even
the horizontal mean. Ideally, the averaging time should be short compared
with the time necessary for significant changes in the mean fields but Tong
compared with the integral time scale of the turbulence.

L8t

2
B(z,t) = (b) ~ %}'— f b dt, for example.
Jat
=
In making the Boussinesq approximation, the hydrostatic component of

pressure has already been eliminated. The remaining mean pressure is assumed
to be geostrophic:

3P

hall s

= Po T Vg - (1.8a)
3P

9.

5y TRA (1.8b)

Subtracting the geostrophic equations from the total momentum equation
and dropping the negligible viscous terms, the equations for the mean momen-
tum become in complex notation (for the sake of brevity)

?C _ . oCW
- ifC - 37 ° (1.9)

where C=U+iVandc=u+1v.

Using equations (1.3), (1.4), (1.5), and (1.7) and again neglecting
molecular fluxes, a buoyancy equation is formed:

b,y B - 89 g (1.10)



Equation (1.11) is the mean buoyancy equation.

9B _ _ abw . Bg
ﬁ“'ﬁ*poch . (1.11)

The use of a buoyancy equation reflecting the combined conservations of
thermal energy and dissolved material is not only more general than a heat
equation alone, but it makes more obvious the coupling with the mechanical
energy budget.

Using the decomposition into mean and fluctuating parts and taking the
mean of equation (1.6) yields the mean equation for the total mechanical

energy. Where E = uju; = uZz + v2 + w2,

s fuz+vz E\ 3 | [E_ p_ 9 — —1_
9 _ o)t w(?+ t o Uuw + V vw | =

Po

bw| - v — — | ° 1.12
X -
X; axJ |

The viscous diffusion and viscous dissipation of the mean kinetic energy are
negligible and have been dropped in equation (1.12).

The turbulent kinetic energy equation is formed by subtracting the
scalar produce of (U;j) and equation (1.9) from equation (1.12).

1 b . E — U, —av|_ |=
et tar [¥ o)t uway ] = bw |-1[¢e] . (1.13)

The budgets for the individual components of turbulent energy are
formed in the same manner from equation (1.1) by setting i = 1,2,3 without
summation:

1au2 . —3U 3 [wu? P au — — e

R T e B B—0-57+ Q3 UV - 0 UW - 3 . (1.14a)
LavZ _ oy _a w2}, P av_  — ¢ (1.14b)
'2‘8 3 NZ 2 903 Q3UV--3-. .
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Notice that the orientation of the horizontal axes is (x) positive to the
east and (X) positive to the north. The rate of viscous dissipation

e = v dujaui/axjaxj behaves 1ike (E/te) and the small size of the dissipation
time constant (T % h/Y E) compared with the time scale of the meteorological
forcing causes the intensity of the turbulence to track along in a quasi-
steady state with a continually changing net rate of production. Hence the
time rate of change of turbulent kinetic energy is usually much smaller than
the other terms of (1.13) and thus may be neglected. Because viscous dissi-
pation of energy occurs primarily in the range of wave numbers that exhibit
local isotropy (the equilibrium range), dissipation (e) is divided equally
among the component budgets (1.14 a-c).

The second term in equation (1.13) 1is the divergence of the turbulent
flux of kinetic energy. Over the whole mixed layer, it probably accounts for
a net gain of energy. Wind-wave interactions at the surface result in some
net downward flux, primarily from breaking surface waves. If the Brunt-
Vdisdld frequency (N) of the adjacent underlying stable water column is suf-
ficiently large so as to be comparable with the frequency of the integral
scale of the turbulence, turbulent energy may be lost to the generation of
internal waves. One of the most significant aspects of this term is that
locally, at the bottom of the layer during occasions of entrainment, a net
convergence of flux of energy is necessary to maintain the downward buoyancy
flux for a deepening mixed layer.

The third term, the rate of mechanical production, is perhaps the
dominant source of turbulent kinetic energy. It is the rate of conversion of
mean to turbulent kinetic energy by the turbulent flux of momentum down-
gradient.

The last term on the left, the buoyancy flux, locally within the mixed
layer can be either a sink or a source. Usually, however, the mixed region
is slightly stable overall, and this term represents the rate of increase of
potential energy by fluxing buoyancy downward. During instances of large
buoyancy flux up across the surface, this term can become an important source
as in the case of strong convective cooling in the autumn.

The summation of separate component equations yields (1.13), but one
term that is very important in mixed layer dynamics sums to zero and there-
fore appears only in the component budgets (1.14 a-c). This term is the
correlation between pressure and rate of strain, p/pg 8uy/dx,. Since it sums
to zero b cont1nu1ty, it causes only a redistribution of energy among uZ,
vZ, and w

The individual turbulent energy budgets also have redistribution terms

due to rotation of the Earth, but these shall be neglected because of the
usually short integral time scale in comparison with one day. Perhaps this

11



effect does become significant in some of the very deep convective mixed
layers that are not limited in growth by a permanent pycnocline.

Application of the vertical homogene1ty assumption to the momentum and
buoyancy equations (1.9) and (1.11) gives relationships for the turbulent
fluxes in terms of the boundary conditions (specified externally) alone:

o (z) =W (0) (1+3) +ac B) G0 (1.15)
0 0
bw (2) = Bw (0) (1+3) + 2 ABS—E-D—BSCL/ de-p_:‘%; [ Qdz .
op J, 2
(1.16)

The integral of (1.16) over the mixed layer gives the net buoyant damping for
the whole layer.

0 0 0
T4, = D B h
-[ bw dz = o ABa-—-bw(O _Q%;'/‘ 97-[ oAl dz .
h-5 —h-§ 2

(1.17)

Integrating the turbulent kinetic energy equations from z = (-h-§) to

= 0 gives
0 —— —
1d_ (Fon) = —3.!_ 8y - - Pyl +¥
2-dt(<>h) f (-uw e + bw - ¢) dz w(2-+ ) +°o .
h-6 -h-§
0
(1.18)
0 0
1d - — 33U . p 3u _wu _1
2 dt ‘U7 '/ ('”waz+poax )dz 2| "3 e dz
-h=§ . -h-§
(1.19a)
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1d .oy - — 3V . p_ av wZ | 1
2dt(<v>h) / (-vw-é—z—+p0§}7)dz-—2—-§ e dz
-h-& 0 -h-§
(1.19b)
0 0
1d = . p_ oW w2 wp 1
7 o (<w2>h) = (bw + 2- My g7 - w4+ 2 + ¥p - = e dz .
2 dt po 9z 2 o po -h-§ 3
“h-6 °d, - Lh-s
(1.19¢)

The surface boundary conditions are prescribed functions of time:

_ T, (t)
- uw (0) = . (1.20a)
o
T t
- W (0) = y ) , (1.20b)
Pg

- bw (0) = g [o Sw (0,t) - g 8w (0,t)] . (1.21)

Also to be prescribed in deriving the system is the radiation absorption
function, Q (z,t).

The boundary conditions at the bottom of the mixed layer, z = -h, will,
on the other hand, conform to the developing situation. To derive these
conditions, the equations (1.9) and (1.11) are integrated over the entrain-

ment zone from z = (-h-§) to z = (-h):

ot

-h
6/h ]lm 0 / a_U.dz = [U (—h) - U (‘h'(s)] d_t'= AU R
~h-6
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Tim -h
§/h »0 fvVvdz=0.

-h-§
-h .
JUwW R
/ -E—dz—-uw(-h).
-h-§
Therefore
— _ dh . .
- uw (-h) = aU at ° and similarly
— _ dh .
- ww (-h) = AV at or in complex
notation,
— _ dh
- cw (-h) = AC It - (1.22)
Also,
— _ dh
- bw (-h) = aB it (1.23)

where AC = AU + 1AV and AB are the respective jumps in the values of the
mean variables across the density interface separating the mixed Tayer from
the nonturbulent region below. The discontinuity need not be a perfect one
(s = 0) for the boundary conditions (1.22) and (1.23) to be valid. A suffi-
cient condition is for the fluxes of momentum and buoyancy from the mixed
layer into the interface zone, resulting in a lowering of the vertical pos-
ition of the zone, to be much larger than that portion of the fluxes con-
tributing to changes in the momentum and buoyancy profiles of the moving
interface zone itself.

Integrating equations (1.9) and (1.11) from (z = -h - 6) to (z = 0)
provides a form of the equations that includes the effects of the entrainment
stress and entrainment buoyancy flux of (1.22) and (1.23).

h d<C>
dt

dh

+ AC at

A= - if<C>h - cw (0) (1.24)
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and hd;—?f-+ AB@A=;@3— Q dz - Bw (0) (1.25)

d
’ 0P J_hos
where the Heaviside unit step function, A, is dependent upon (dh/dt).

1 for g%-> 0
dh
A [ﬁ] = (1.26)
dh
0 for a—-s 0

and < > denotes a vertical mean for the mixed layer:

0
<C> = }]—1—5—/ C dz, etc.
-h-8§

1.4 Course of Action in Attacking the Problem

To lay a foundation and present a perspective of the problem at hand,
the literature treating models of the surface mixed layer is reviewed rela-
tive to the basic principles and general equations laid down in the previous
sections. This approach organizes the historical work in terms of the funda-
mentals, and it provides the stepping stones for the development of this
research.

The turbulent kinetic energy budget is examined closely. The role of
the previously neglected redistribution terms is assessed. All of the terms
are modeled by use of mean-turbulent-field techniques, permitting the even-
tual implicit solution for the turbulent energy content of the mixed layer.

.The final preparatory work needed to complete the model is treated in a
chapter on entrainment. This includes the derivation of an equation relating
the rate of entrainment (dh/dt) to the other variables.

The final numerical method of solution of the nonstationary, non-linear
set of equations permits the solution of hypothetical cases as well as the
simulation of field observations. The numerical model requires as input the
initial conditions of density and current and the surface boundary flux of
buoyancy (heat and/or salinity) and surface wind stress as functions of time.

Model outputs include the mean density profile, the turbulent kinetic energy,
and the mixed-layer depth, all as functions of time.

15



2. REVIEW OF THE LITERATURE
2.1 Ekman Depth of Frictional Resistance

V. Walfrid Ekman (1905) originated the concept of a "depth of frictional
resistance" for the upper section of a wind-stressed ocean. This depth (d)
comes from the mathematical solution to the steady state horizontal momentum
equation, (1.9), in which the Reynolds stress is related to the mean shear by
a constant eddy viscosity (K).

%%.: - ifC - %%ﬂ. (1.9)
where %§-= 0
— _ aC
and - cw = K 37
2
Then 0=-ifc+ kI, (2.1)
dz?

If the boundary conditions are

and -cw (=) =0,

the solution is
TZ
2 T
Usk . d

C(z) = — |sin ( 3=+ E') ~ § cos ( gz_+ 1-) e (2.2)

where d=n (2.3)

—hlr\a
~

At the depth (z = - d) the direction of the flow is opposite to the surface
current and the magnitude has been reduced to (e-T) times the surface magni-
tude.

Classical thought has suggested that any surface layer mixed by the
action of the wind should have a depth that is of the same order as (d).

16
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Using a quadratic law relating windspeed (W) to surface stress
Py uz = CD Pa W2 (2.4)

and an empirical relation from observations,

Ic (0)] = 20127 W

R (2.5)
/sin ¢

Ekman derived a formula for (d) as a function of wind speed and latitude (¢):

W

d = 7.5 sec”! .
/sin ¢

(2.6)

2.2. Rossby Number

Rossby and Montgomery (1935) pointed out that the depth (h) of a surface
drift current layer and Ekman's depth of frictional resistance (d) are not
necessarily comparable: the depth (h) has a definite physical meaning, but
(d) designates only the theoretical rate of exponential decay for a system
obeying ?2.1),

Rossby and Montgomery derived the formula (h = W/sin ¢) or, equivalently
h « u,/f (2.7)

where the constant of proportionality is the Rossby number, Ry = u,/hf. They
then presented measurements demonstrating the greater validity of.zZ.7) in
comparison with (2.6.)

It should be recognized, however, that Ekman's result differs from that
of Rossby and Montgomery only because of the use of the relation (2.5.) If
instead of applying this empirical constraint, the eddy viscosity (K) is
modeled in terms of Tikely turbulent length and velocity scales (K ~ uih) and
is assumed to be constant with depth, then (d = 2n2u,/f) and the quadratic
stress law gives

W
d = 5 eTa - (2.8)
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So, in spite of suggesting a distinction between the mixed layer depth
and the depth of frictional resistance, Rossby and Montgomery obtained a
result perhaps more comparable with that of Ekman than with the real situ-
ation. This was the case because both derivations considered only the momen-
tum budget, neglecting the effects of buoyancy and mechanical energy upon the
vertical fluxes of buoyancy and momentum within this turbulent oceanic
boundary layer.

2.3 Eddy Transfer Coefficients in a Steady-State Problem

Munk and Anderson (1948) first combined the two problems of density
structure and current structure into a unified theory on a steady-state
thermocline. Like Ekman, they proposed an eddy viscosity (Ky) plus an eddy
conductivity (Kp), but these parameters were made variable with the local
gradient Richardson number (Ri).

Ri = {98/92) (2.9)
(aU/sz)?

This model therefore included some of the effects of the turbulent energy
budget.

ko
Ko T TTFC R Mmoo (2.10)

This function for the eddy viscosity and eddy conductivity was chosen because
of its asymptotic behavior for small and large values of (Ri):

Tim Km = KO, coefficient for no density gradient
Ri > 0 oM

1im Km g 0, for extreme stability.
Ri » = ?

Because Munk and Anderson assumed steady state and did not recognize the
presence of a sharp interface marking a boundary between the fully-turbulent
mixed layer and the essentially quiescent stable region below, their results
still resembled Ekman's original solution more than they do the physical
reality.

2.4 Obukhov Length Scale
The more recent efforts in modeling the oceanic mixed layer started with

a one-dimensional steady-state study by Kitaigorodsky (1960). Assuming thqt
the ocean surface mixed layer was analogous to the constant-flux atmospheric
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surface layer (as in Businger et al., 1971), Kitaigorodsky concluded by
dimensional analysis that the mixed layer depth must be proportional to the
Obukhov length, L.

For Kitaigorodsky's assumptions, the momentum and buoyancy equations,
(1.9) and (1.11), reduce to

dCW _

M -0 (2.11)
and abw _

37 - 0. (2.12)

The radiation absorption, Q, was assumed to be confined to the immediate
surface layers. Taking the x-direction to be in the direction of the wind,
the solutions to equations (2.11) and (2.12) are

1

- cw = constant = u2

and - bw = constant = u,b,

where (u?) and (u,b,) are the downward surface fluxes of momentum and buoy-
ancy.

If the depth of the surface mixed layer (h) is dependent only upon the
two parameters (u,) and (b,), then

F{JEEKQLL—}= F {U%b*} =0, or

hgg|ew(0) | "
h =H* L (2.13)
where L = u2/b* (2.14)

and H* is a constant of proportionality.

If the coriolis force is a significant component of the mean momentum
budget, then (2.11) is replaced by

ICW _ .
F— - ifC . (2.15)
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2Q sin ¢) to the dimensional analysis

!l: H* R*_
L u,f

with a second dimensionless product (b,/u,f).

Adding the coriolis parameter (f
makes H* variable.

H* (2.16)

Using data from the NORPAC expedition, Kitaigorodsky found that equation
(2.13) with a constant H* was insufficient for cases varying over more than
twenty degrees of latitude (see Fig. 3).

Using Kitaigorodsky's data, it should be noticed that the Rossby number
(Ro) based upon the layer depth and (u,),

- fh

Uy

Ro R (2.17)

is less variant than H* = h/L for the same data. This can be seen in Figures

3 and 4.

00— \ ------- Data 1

Ro dependence: h « W/f !
\ —--— h«L, Obukhov length: / \

haW3/{8qQ) 15— ! \ —

v /
E f__\ \\
' \T\\\~//// \‘_5*“
‘Ro_ '/ \
Ro / \
[ hf
05— J Ro « ™ |
%, h
/* H*Y @ 'L‘
/(%
0 — | N 0 | | | |
23 28 33 38 43 48 23 28 3 38 43 48
Latitude (Degrees North) Latitude (Degrees North)
Figure 3. Mixed Layer depth vs. Figure 4. Mixed Layen dependence upon

Latitude from Kitaigorodsky (1960).

both Ro~! and H* (data from Kitaigon-

odsky, 1960).
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There is a basic flaw in this model arising from the assumption that the
ocean mixed layer is analogous to the "constant-flux" atmospheric surface
layer. The ocean, in all probability, does have a surface layer over which
fluxes are approximately constant and a quasi-steady state does exist. How-
ever, the depth of such a layer would be limited to at most the upper ten
percent of the vertical extent of the entire mixed layer. With a constant
heat flux at the surface, the mixed layer temperature and depth cannot both
remain unchanged.

2.5 Compensation Depth for Shortwave Radiation

Kraus and Rooth (1961) also conceived a steady-state model based pri-
marily upon the buoyancy equation. In their model however, steady state was
made feasible by balancing the short wave radiation input Q(z) with a net
surface heat loss, pOCpew(0)>0, by means of evaporation, conduction, and
infrared radiation. "A compensation depth (h.) is the depth at which a bal-
ance is struck between the surface heat loss, pOCpGW(O), and the total radi-
ation absorbed in the layer above,

0
d/r Qdz.
r -hc

If Q=v Qe

and if buoyancy is a function of temperature alone, then (1.11) becomes in
steady state

3 OW Q
0= - + . (2.19)
9 Z pOCp
The depth (z = - he) is that Tevel at which the turbulent flux 6w goes to

zero, with a stable temperature profile below and an unstable one above.
Therefore in the region (0 > z > - hc) turbulent kinetic energy can be con-
vectively produced since here

bw = Bg 6w > O .
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Integrating (2.19) from (z = - he) to (z = 0) and using (2.18) gives

h, = y71 In L . (2.20) |
1 - oCow(0)/Qq “

Figure 5 is a schematic portrayal of the Kraus and Rooth concept. If }

-ow = K aT . KH ~ constant in z , (2.21)

then (hc) is also the depth of maximum temperature.

Using the eddy conductivity closure posed by (2.21), Kraus and Rooth
examined the structure of the temperature field from the surface down through
the mixed Tayer and across the interface, and its variation with changes in
(Q) and the boundary conditions. Their solutions are only qualitatively
useful because not only is (Ky) unknown, but.also it is assumed to be con-
stant--even across the density interface.

11
{11
2 1] 2
/ _

1!
0 T Vi
solar radiation conduction, evap-
through surface oration and infra-
red radiation

aw(0) >0

Qg > poc, 8W(0)

el ———

Q9%
Q, - poc, 8w (0)

ow(z) = 6w(0) %
wiz}= w Pocp

he= y Un( (1-e7")

h 2 he

Figure 5. Effect o4 the compensation deptg, ho, assuming steady state and
Q = vQpe'”.
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With regard to the depth of the mixed layer (h), all they could really
say was it must reach some depth greater than (hc). ""Dependent upon the
intensity of the convective and wind drive turbulence, this convective regime
may penetrate more or less deeply beyond the level (hc)."

They visualized a steady-state layer depth as being possible only by
requiring upwelling (W>0) of sufficient magnitude to maintain the vertical
position of the entraining interface.

2.6 Prototype Turbulent-Energy-Budget Model: Kraus and Turner

Recognizing the limitations in application of the Kraus and Rooth
model--no provision for a possible downward surface heat flux, no account of
mechanical production of turbulent kinetic energy, and the steady-state
constraint--Kraus and Turner (1967) further improved and generalized this
kind of one-dimensional model. Their model was the first instance in which
it was recognized that the budgets for thermal and mechanical energies could
be considered separately. This is valid because the dissipative rate of
heating (po/J+e) is several orders of magnitude smaller than either Q(z) or
looCp 96wW/3z|. Therefore, their model consisted of two separate equations--
the ﬁeat equation and a mechanical energy equation in which the net effect of
the work of the wind on the sea surface and the viscous dissipation within
the mixed layer are parameterized. This use of a mechanical energy equation
together with the buoyancy (heat) equation and the boundary condition (1.23),

= - dh
- bw (-h) = AB it (1.23)

g?v§ for the first time a closed set of equations whose solution provided
h(t).

If buoyancy is a function of temperature alone and constant in the mixed
layer, equation (1.25) is applicable. Using the radiation absorption func-
tion (2.18) it becomes

d<T> dh Qo (1 - e-yh)

- aw (0) . (2.22)

The turbulent kinetic energy equation, integrated from the top of the en-
trainment zone (z = - h) to the surface is

0
G -D = -8g f oW dz (2.23)
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0 ____an
where G = - v[;] u1.w 37 dz

is the total rate of mechanical production and

0
D= / edz
-h

is the total rate of dissipation within the mixed layer. Neither of these
parameters in the Kraus-Turner model is an implicit variable, and each must
be specified externally. The heat equation that leads to (2.22) is also used
to eliminate ew from (2.23) by integrating between z and O:

0/, = —
d<T> , 26w Q .
+ =~ - dz- =0, or
L (dt 9z pocp)

(2.24)

Integrating ew (z) as prescribed by (2.24) from (z = - h) to (z = 0) gives

0

‘}/. ow dz =

d<T> _ Qo — Qo -vh .

2 -
h* =gt o Pyl

(2.25)

N =

Neglecting e Yh, equations (2.22), (2.23) and (2.25) can be used to give
another equation (2.26), which together with (2.22) constitutes a closed
system in h(t) and <T> (t) where G, D, Q; and 6w(0) are prescribed functions
of time at most.

h? d<T> ¢, _6-0, %

A+ —— + ATh 5= A . (2.26)
2 dt g pOCpY

dt

An important contribution by Kraus and Turner was the conceptualization
of a model for which a stationary or even retreating mixed layer depth is
possible. In such a case where
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equations (2.22) and (2.26) are still applicable because of the presence of
the Heaviside unit step function. Setting (h = hy) in the case of a retreat-
}ng or)steady mixed layer depth, these equations reduce to (2.22a) and

2.26a

d<T> _ Qo g AL
hY‘ a4t - m (1 - e ) - oW (0). (2.22&)
2 —
M 4> _6-0, 0

(2.26a)

2 dt  "gg p Cp

Neglecting short-wave radiation that escapes the mixed region and eliminating
(d<T>/dt) between (2.22a) and (2.26a) gives

_ 2(6 - D)
" 89 (Qo - w(0))

Whenever the surface boundary conditions and/or solar radiation adjust
to make (hp, < h) the mixed layer will "retreat." Of course, the region does
not unmix, in accordance with the second law of thermodynamics. The net rate
of production of turbulent kinetic energy, G-D, is insufficient to balance
the rate of increase of potential energy,

h (2.27)

0

f 'Bge—WdZ,
h

required to mix the region all the way to the density interface. Conse-
quently, as the region warms (notice that d<T>/dt can be only positive at
this time), a new density interface is established at z = - hp.

Kraus and Turner model G in terms of the friction velocity:

G = u,3. (2.28)

Not knowing the importance of the viscous rate of dissipation,
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0
D = f edz,
h

they simply neglect it. They find, however, that their model predicts a too-
large value for (h), and that the dissipation should possibly be included.

Turner (1969) felt that there was a problem with (2.28) as well. From
examination of observations of sudden wind speed increase and ensuing mixed
layer deepening, he deduced that "a substantial fraction of the part of the
work done by the wind which goes into the drift current is eventually used
to deepen the surface layer." This statement reflects the need for a more
comprehensive model, particularly for unsteady situations. Such a model
should reflect the input of energy into the mean velocity profile and the
time delay needed to shift some of this energy to turbulence.

Again with regard to the Kraus and Turner model, the setting of (D = 0)
so that

0

- Bg / ow dz = G (2.29)

-h

places an unrealistic constraint upon the buoyancy term: it becomes depen-
dent only upon the mechanical production. The error in this is most obvious
when there is strong surface cooling and

is less than zero.

Kraus and Turner also neglect the effect of entrainment in their turbu-
lent kinetic energy budget, equation (2.23).

In spite of these deficiencies, this model was a big step in the right

direction in its consideration of the turbulent energy budget in recognition
of the energy source for mixing and entraining.

2.7 Adding Dissipation

Miropol'skiy (1970) and later Denman (1973a) assume that dissipation is
a fixed fraction of the shear production, equation (2.30).

D=s6"G (2.30)
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where 8§~ is an empirical parameter to be determined from observations. This
gives, instead of (2.29), the equation (2.31):

0
-Bg/ owdz = (1-8")G . (2.31)
-h

This does not solve the dissipation problem because §” cannot have a constant
value. In essence, dissipation must be allowed to adjust to the total situ-
ation as it evolves.

Miropol'skiy also assumed that G«u3, but a variation of an exercise he
uses to deduce this demonstrates perhaps the major source of error in a model

Tike (2.28).
0
_ — U , — Vv
G = - / (uw E+vw E)dz.

If suw/az = - fV and avw/az = fU, then

0
G= |-uwV -uwV ~ould
-h
In general, however,
dUW _ U
aT—-fV-'a—t ,and
VW _ oV .
37 - fu - 3¢ » 9iving
0 0 2 2
6= [-wUu-wv| - / AL (2.32)
-h

and thus indicating the importance of the mean kinetic energy and its distri-
bution within the mixed layer. As will be shown, even if the wind is steady
for long periods of time, the mean kinetic energy can change markedly on a
time scale corresponding to the inertial period.

Most recently, the trend in the Titerature has been to model the mixed
layer as a vertically homogeneous moving slab with density and velocity
discontinuities at the entraining interface. Geisler and Kraus (1969) were
the first to use the slab approach in their model of the atmospheric boundary
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layer. This problem is almost completely analogous to the oceanic mixed
layer problem except that the atmospheric boundary layer is driven by a
horizontal pressure gradient rather than by a surface stress. A rigid sur-
face boundary rather than a free surface also results in a subtle but impor-
tant difference. Nevertheless, the basic setups of the two problems are the
same.

Simultaneous calculation of the mean velocity together with (h) and (T)
permits the implicit calculation of the mechanical production of turbulent
energy, an improvement upon the previous (u}) method.

The equations (2.33) and (2.34), reflecting the conservations of mean
momentum and mean buoyancy are essentially the same as (1.24) and (1.25).
The only real difference is that Geisler and Kraus assume a prescribed mean
subsidence (analogous to ocean upwelling) in their atmospheric boundary
layer. This non-zero vertical velocity (W) can result in a stationary mixed
layer depth even when entraimnment is occurring. This then is a different
mechanism than that developed by Kraus and Rooth (1961) for obtaining a
constant (h).

d<C>

h =g+ AC ( W) = - ifh (<C> - Cg) - cw (0) . (2.33)
h d1f11+ AT (g{l - W) = - 3w (0) . (2.34)

In (2.33), (- ifCq) is the kinematic geostrophic pressure gradient, the
source of momentum ge kinematic surface stress, cw (0) is a momentum sink
in this case.

Geisler and Kraus seem to avoid the problem of dealing with the viscous
dissipation of turbulent kinetic energy by prescribing a fixed value for the
integrated flux Richardson number, RfI.

) = n, constant . (2.35)
d

uw aU uw 3V
3z

This, however, is equ1va1ent to Miropol'skiy's method. From (2.31) and
(2.35),

=1-6". (2.36)
Since (n) is always a fixed positive number, and with no radiation
absorption in the model, the buoyancy flux (heat flux) can only be downward.

Therefore, this model 1ike that of Kitaigorodsky is restricted in application
to only those cases where the mixed layer is stable throughout.
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2.8 Role of Mean Kinetic Energy

Pollard, Rhines and Thompson (1973) apply the slab approach to the
oceanic mixed layer, but they complete the entrainment problem with a differ-
ent mechanical energy requirement. The time rate of change of the total mean
mechanical energy, potential plus kinetic, of the slab is set equal to the
rate of work by the wind on the mean flow:

E 2 - [- Uuw -V UW] : (2.37)
z=0

This is the same as (1.12) integrated from (z = - h - §) to the surface if

viscous dissipation is neglected and (U) and (¥) are constant in (z) within

the mixed Tayer. The turbulent buoyancy flux (bw) gives the potential
energy change using equation (1.11):

N|—

0
3PE _ Bw dz = £ h2 38 3h
ot - / bw dz h3t+hABat'
~h

Neglecting the time rate of change of the turbulent kinetic energy,
N GRel
If radiative heating is ignored, (2.37) reduces to

R} = B _ . (2.37a)

oy 42

Pollard, Rhines and Thompson assume that (2.37) applies as long as

T, U(z=0)= [- Uuw - V GW‘]O

is positive. As soon as this rate of work by the wind becomes negative,
"energy flow to increase (h) ceases and since the water cannot unmix, (h)
must be constant...". Therefore, mixed layer deepening would occur only up
until one-half of an inertial period following the onset of a steady wind
stress. This result is demonstrated by setting cw (0) = - u% and

AC = <C> in equation (1.24), giving

gﬁfﬁiﬂl.+ if (<C>h) = u%

dt
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The particular solution is <U> + i <V> = (1'u3,/fh)(e'1.ft -1). Hence 7-U (z
= 0) goes to zero when <U> vanishes at time t = =/f.

In this model, energy for entrainment is derived directly from the mean
flow. A separate budget for turbulent energy is not considered. That is to
say, the intensity of the turbulence is not considered to have an active role
in the mechanism of entrainment in this model.

In a three-layer model of the ocean mixed layer, Niiler (1974) combined
elements of Pollard et al. and Kraus and Turner (1967) in that both turbulent
kinetic energy and the mean kinetic energy are considered to be important in
the mechanism that determines rate of entrainment. Figure 6 is a diagram of
the vertical temperature and velocity structures in this model. The turbu-
lently active region was divided into three subregions: (i) a constant-flux
surface layer, (ii) the major part of the whole region, and ({iii) the en-
trainment zone, lying just above a "quiescent abyss."

The momentum and buoyancy equations used by Niiler are virtually the
same as the "slab" equations (1.24) and (1.25) if B = B(T) only.

0 (NAANANANNAN
“Perturbation Energy
_d' ____ Production Zone"

T Mixed Layer

"Perturbation Energy
Production Zone"

c Pe e i P LE
: 9w-uw-vw-w(P°+2) 0

Figure 6. Tdealized picture of ocean mixed Layern (NiiLen, 1974).
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h d<C> dh

+AAC = ifh <C>-- cw (0) - — . (2.38)
dt dt p0
h d31> =AAT g%_= - ow (0). (2.39)

Radiation absorption was assumed to occur entirely in the uppermost
layer and was therefore included in ew (0). The additional term (F/pg) is
a "damping" force for inertial motions

Eoeclch (2.40)

0

within the mixed layer and presumably is related to the "'dissipation' of
mean motions as well as the radiation flux of momentum from the bottom of the
mixed layer." Pollard and Millard (1970) considered such a term as well, but
one that was linear and thus resulting in an exponential damping. The time
constant (1 ) ranged from four to twenty-five inertial periods, depending
upon the s1ze of the inertial circle relative to the horizontal scale of the
forcing wind system.

Chp0

T1T°°F

If the mean velocity below the density interface is zero and the mean
temperature below the interface is given by T(z < - h) = I1Zs then the fluxes
at (z = - h) reduce to

— _ dh _ dh
- -CW (-h) = AC at <C> at (2.41)
— _ dh
and -ow (-h) = AT rr (<T> + rTh) ——-. (2.42)

Since T = <T> and C = <C> for the bulk of the mixed layer, the turbulent
fluxes are linear functions in (z):

-cw (z) = - cw (0) - %- [EW'(O) + <C> g%] . (2.43)
37 () = - B z [ dh —
-ow (z) = -ow (0) - | [ew (0) + (<T> + r;h) a?]' (2.44)

The relative importance of the terms of the turbulent kinetic energy budget
(1.13), was hypothesized to vary with subregion,
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E — 3l |, — 3V =
2. 3 w(?.+%) - Juw s v |+ [BW]| -] (1.13)

The rate of mechanical production, -ujw 3Uj/3z, was assumed to be non-zero
only in the surface and entrainment subregions. In these two regions of
small vertical extent, the buoyant damping was considered by Niiler to be
insignificant. Thus the balance is between mechanical production, turbulent
and pressure diffusion, and dissipation, equation (2.45a):

0>2z>-d-
W %~.+ %. wl Wi c-0 for . (2.45a)
0

d
3z 3z 3z hsz>-h-s

In this model 3U/3z = 3V/3z = 0 within the central part of the mixed region,
and hence mechanical production is necessarily assumed to be zero. There-
fore, here the buoyant damping and viscous dissipation are balanced by
diffusion from the two adjacent production layers, giving equation (2.45b).

L E .L _—— = .." -
53 w( >+ o ) bw + € =0 for {- d>z> - h} . (2.45b)

Integrating equations (2.45a) and (2.45b) vertically and combining them to
eliminate w(E/2 + p/py) at (z = - d°) and (z = - h) gives

0 . 0
- wf B\ B\l - w Y Vg, -
po+2 / (uwaz+vwaz dz e dz
. L ~d
0
<C>[2 dh _ —
+J_2_LE-- / bw dz . (2.46)
-h

In the manner of Kraus and Turner, Niiler parameterized the sum of the
first three terms of (2.46) in terms of the surface stress.

—_—— 0 3U 0

E — 77

'”‘%4'7"0' / Ui g7 92 - /Edzfmouio (2.47)
Ld <4
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Integrating (2.42) to give

0 0 .
- f Bw dz = - Bg / Wdz:gg[ﬂ_(ro)_ﬂ+%(<T>+rTh)%%]
- Zh

and using (2.47), equation (2.46) becomes

) _
moug + 151 sg[—"—”—(gu + 8 (<T> + 70h) g%] (2.48)

The system of equations (2.38), (2.39), and (2.48) is a closed set of equa-
tions in the three unknowns: - h, <T> and <C>.

This model more resembles that of Kraus and Turner than it does that
of Pollard et al because of the utilization of a parameterized turbulent
kinetic energy equation rather than a total mechanical energy equation.
The primary difference is the presence of the entrainment production term,
|<C>|2/2-dh/dt, in (2.48) which necessitates the additional equation, the
integrated momentum equation (2.38).

One aspect of important consequence in Niiler's model manifests the need
for an even more comprehensive term-by-term modeling of the turbulent kinetic
energy equation. This is the fact that the turbulent kinetic energy produced
by entrainment, |<C>2/2.dh/dt, must go entirely toward increasing the poten-
tial energy. Because of the parameterization, (2.47), dissipation is not
permitted to adjust to include either the direct effect of this particular
source, or the less obvious effects related to the entrainment or lack of
it.

The only solution to this predicament would seem to be to model dissi-
pation separately from any of the source terms, allowing it to adjust to
total turbulent intensity.

3. CLOSING THE PROBLEM

The equations (1.19a-c), (1.24), and (1.25) do not by themselves consti-
tute a closed system of equations for the mixed layer. Vertical integration
over the mixed layer simplified the equations but introduced yet another
unknown, the mixed layer depth (h).
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3.1 Net Viscous Dissipation in the Mixed Layer

-h-8 ~h-§

A dissipation time scale (t.) is defined by e = <E>/1,.

For fully-turbulent geophysical flows having large Reynolds numbers,
viscous dissipation of the turbulence occurs primarily in the small eddies
that are locally isotropic. As explained by Tennekes and Lumley (1972), an
inviscid estimate of dissipation may be made by taking the rate at which
large eddies supply energy to small eddies (equal to the rate of dissipation)
to be proportional to the reciprocal of the time scale of the targe eddies.
If the time scale of these large eddies is p:pngntiona1 to the mixed layer
depth divided by the rms turbulent velocity v <E>, then an integral model for
dissipation in the mixed layer, independent of viscosity and the small scales

is
0
/ edzs= m1<E>3/2 (3.1)

-h-§

where (m;) is a constant of proportionality. For those situations where
<E> « u2, equation (3.1) is the same as that used by Miropol'skiy (1970) and
Denman Y1973).

An important concept in modeling dissipation is that of local isotropy.
Turbulent kinetic energy generated at the largest scale (vh) is transferred
without much additional production or dissipative loss through the inertial
subrange to the larger and larger wave numbers (smaller eddies) by vortex
stretching. Dissipation is significant only at the lower end of this iner-
tial subrange.

Because there is no preservation of the original orientation, the small
eddies of the inertial subrange are "locally isotropic."” Therefore, dissi-
pation draws approximately equally from all three turbulent energy compon-
ents. Of course, the existence of an inertial subrange is dependent upon a
large Reynolds number, and this is certainly the case for the oceanic mixed
layer.

3.2 Net Effect of Redistribution of Turbulent Energy
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As previously discussed, Ry + R, + R3 = 0, but R, may be an important source
of sink term for the individual turbulent kinetic energy budgets.

Following the early lead of Rotta (1951), but in agreement with the
?ominant term of the rational closure technique of Lumley and Khajeh-Nouri
1974),

Ra = -m, /<E> (3 <u§> - <B>) . (3.2)

In addition to dimensional consistency, the concept leading to (3.2) is that
of a "return to isotropy." In other words, the correlation of pressure and
turbulent rate of strain tends to redistribute energy equally among the three
components.

3.3 Shear Production

— 3l , —— 3V _ AC|2 dh
- (uw a7 T v 52) dz = u |sCq| + l—?l— It (3.3)
~h-§

where |8Cq| is the "excess" surface mean velocity in the direction of the
wind stress. Notice that in this instance the inhomogeneity of the mean
velocity field cannot be neglected.

0 -
_a_. L E_ = m- 3
- /[azw(po+2)sz_m3u*
-h-¢

where uZz = |cw (0)].

If |sCy| is proportional to (u,), then (3.3) may be combined with the param-
eterized net input from breaking waves less loss to radiating internal
waves:

0
. . — — 2
G = / -[uw&+vwﬂ+a—(wp—+‘g—E)]dZ5m3U3+J%L%- (3.4)

This is basically in concurrence with the work of Kraus and Turner, Denman,
and Niiler.
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3.4 Need For an Entrainment Equation

Using the suggested relationship (1.24), (1.25), and (3.2), equations
(1.14 a-c) become (3.5 a,b). The two horizontal component equations have
been added together to give an equation for horizontal turbulent kinetic

energy <q%> = <u?> + <v?>, together with the equation for vertical turbulent
energy <w?>:
2m
2 — 1
%_d_t (h <q%>) = m3u3 + AC 3—2— A - mo/<E> (<q%> - 2<w?Z>) - -5 <E>3/2;
(3.5a)
24 () = L oW ) - I s - p—gag;o' +my KB (0% - 2 W)
S LLs B
— BV (3.5b)
0 0
where Q° = - (Q -~% ./f Qdz) dz and <E>= <qZ> + <w?> .
-h-¢ z

If h (t) is unknown, equations (3.5a,b) together with (1.24) and (1.25)
are an incomplete system of four equations in five unknowns: h, <C>, <B>,
<qZ>. An entrainment hypothesis will provide the fifth equation needed to
close the system.

4. ENTRAINMENT HYPOTHESIS
4.1 Entrainment in Earlier Mixed Layer Models

In this study the entrainment velocity, ug = dh/dt, will be modeled
explicitly in terms of the other free parameters of the system. However, in
much of the literature treating models for the ocean mixed layer, (ue) is a
consequence of various assumed constraints placed upon the mechanical energy
budget for the layer as a whole.

In the first really tenable model of the mixed layer that was capable of
simulating a growing mixed-layer, Kraus and Turner (1967) assumed that all
of the turbulent kinetic energy produced in the mixed layer goes to increase
the potential energy of the system. After taking into account any surface
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buoyancy flux, the balance of the potential energy change went to entrain-
ment--mixing the requisite amount of underlying denser water uniformly
throughout the homogeneous mixed region.

Their resultant entrainment velocity is
2 (G -D) +whb(0)h + (—39—) Q°h

poC
= p
Ue hAB (4.1)

where (G-D) is the net rate of mechanical production of turbulent kinetic
energy minus the rate of viscous dissipation for the whole layer. The
surface buoyancy flux wb(0) may either increase or decrease the entrainment
velocity, depending upon its sign. Again, not knowing how to deal with the
dissipation (D), Kraus and Turner ignored it. They set G = uj, so (4.1)
becomes

u3 - ugb,h
ug = 2 * il (4.1a)
haB

where the solar heating function (Q°) and the surface buoyancy flux have been
combined in defining a buoyancy flux scale:

899° _ ub (0)
oocp
b, = ™ (4.2)

Geisler and Kraus (1969), Miropol'skiy (1970), Denman (1973) and Niiler
(1974) al11 assumed that a fixed fraction of the mechanical production of the
turbulent kinetic energy would be dissipated. Therefore, their resultant
entrainment rates are the same as (4.la) except that some constant smaller
than 2.0 would precede uj.

Pollard, Rhines and Thompson (1973) did not explicitly consider the
turbulent part of the mechanical energy budget, and therefore a conceptually
different relationship results from their use of the total mechanical energy
equation:

(haB - [ac|2) = uubyh . (4.3)
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If (b, = 0) this reduces to Ri* = 1, or

h>M

AB

The (=) sign was added to prevent the mixed layer from retreating when mean
kinetic energy is removed in the second half to the inertial cycle.

This approach at first seems to give a plausible result based upon the
stability of the mean flow. The problem is that the mixed layer is already
turbulent, and the system has an excess of turbulent kinetic energy, some of
which may be available for mixing at the interface, regardless of the value
of the overall Richardson number, Ri*. It is granted that Ri* may be con-
strained to having a value greater than some critical value by reason of a
mean flow instability, but the fact is that in the laboratory and in geophys-
ical cases, measurements indicate that entrainment occurs even though Ri* is
much Targer than one.

The entrainment experiments with mean shear of Kato and Phillips (1969)
and Moore and Long (1971) (Figs. 7 and 8) show no direct relationship between
Ri* and a maximum layer depth. More importantly, Turner (1968) and others
have conducted experiments with growing mixed layers that had only turbulence
and no mean shear (Ri* = =),

A1l of these laboratory results when examined together strongly imply
that the bulk Richardson number Ri* is not the parameter most relevant to
entrainment rate. Instead, a similar nondimensional number, using the tur-
bulent kinetic energy (E) rather than |aC|2, is suggested.

As shown by Niiler (1974), the mean kinetic energy can influence entrain-
ment rate by increasing (E) in a growing mixed layer. This in turn increases
the average position of the bott