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ABSTRACT

The response of linearized long waves to the eight major Hawaiian
Islands is investigated numerically using a mathematical model of the
island system. A spline interpolation scheme is utilized to convert
the actual soundings of the island bathymetry to a 5.5 km square grid
closely approx%mating the topography of the islands. A time-marching,
central difference, explicit scheme is used to evaluate the wave field
by the linear, long wave, Eulerian equations of motion and continuity
in Cartesian coordinates for a frictionless, homogeneous fluid. The
condition of no normal flow is employed at the island shorelines and
a localized interpolation technique is utilized at the outer boundary
to simulate a free-flow boundary. Verification of the numerical pro-
cedure is accomplished by agreement with analytic solutions of steady-
state problems involving wave interaction with geometric islands in
both constant and variable depth cases.

Island response is determined by using a generalized time sequence
input with a stipulated spectrum in the tsunami frequency range. This
input is time-stepped through the model for a duration suffictent to
establish a statistical equilibriwm within the system. The shoreline
hydrographs, which record the time history of water elevation around
the islands, are Fourier analyzed to obtain spectra for each shoreline
point. These spectra are divided by the input spectrum to obtain transfer
functions which represent the relative response of the system to waves in
the tsunami period range. Verificationof the response analysis is judged
in terms of the agreement with the analytic response of a variable depth
geometric island to a set of tsunami period waves. A technique for deter-
mining the period cut off of aparticular model system is demonstrated by
comparison of responses of the same model using coarse and fine grids.

The response analysis methods are applied to the model o lhe
Hawaiian Islands for the case of a tsunami originating in the Alaskan
region. Transfer functions are shown in averaged and contoured form
For the island system and each individual island. The model study
reveals that the numerical technique is appropriate for the response
study of the Hawaiian Islands, that there are at least nine character-
istie periods in the tsunami range to which the islands rvespond, and
that interinsular reflections generate areas of high enerqy concentrations.
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A NUMERICAL STUDY OF THE TSUNAMI

RESPONSE OF THE HAWAIIAN ISLANDS

by

N Eddie N. Bernard

CHAPTER 1

INTRODUCTION

1.1 General Discussion

Tsunami is the scientifically accepted term to describe surface
gravity waves generated by an oceanic crustal disturbance. The pri-
mary sources of these waves are shallow focus (less than 50 km) under-
water earthquakes of magnitude 6.5 or greater on the Richter scale.
However, not all earthquakes of this type create tsunamis, indicating
a strong dependence on the individual generating mechanism and local
crustal structure. Once the tsunami is formed, waves radiate in all
directions across the ocean from the source. The deep water charac-
teristics of these waves have not been observed, but by theoretical
and wave record analyses, it has been deduced that the spectrum of
wave periods ranges from 4 to 90 minutes and the deep water wave
amplitudes are several meters. The wavelengths of the waves are
related to the characteristic length of the seismic source and range
from 10 to 100 km. The ratio of depth of water to wavelength indi-
cates that tsunamis are shallow water waves that traverse the ocean
basin at a speed proportional to the square root of the depth of
water. For example, a wave traveling over a depth of 4000 m has a
speed of 713 km per hour. Aé the waves rapidly spread over the ocean

basins they encounter islands and island groups that respond to the



periodicity, amplitude, and approach angle of the waves. In the
Pacific Ocean, when an earthquake generates a tsunami in the Aleutian
Islands, waves are felt in the southern portion of the Hawaiian
Archipelago 4.5 hours later. The present effort concentrates on the
response of the major inhabited Hawaiian Islands to remotely generated
tsunamis.

Past studies of tsunamis interacting with islands have involved
the use of analytic, numerical, and hydraulic models in attempts to
understand the complex phenomenon. These models have been employed
to simulate the interaction of tsunamis with a single island of simple
geometry (Omer and Hall, 1949; Homma, 1950) or with a single island
of more complicated geometry and realistic bathymetric data (Jordaan
and Adams, 1968; Vastano and Reid, 1970; Brandsma, Divoky, and
Hwang, 1974). Verification of the numerical models has been accom-
plished by analytic and hydraulic comparisons. Further, the approxi-
mate agreement between such mcdels and wave record studies is con-
vincing and indicates that numerical models serve as an effective
means of studying the interaction phenomenon.

As a tsunami approaches the shorelines of islands, the wave train
energy becomes concentrated in a smaller volume of water. The con-
centration of energy results in larger amplitude waves that become
steeper until their advance is arrested in the shoreline region and
their energy is partly dissipated along the coast and partly scattered
back to sea. While the single island studies have made progress in
the understanding of refraction, diffraction, and reflection in the

presence of bathymetry which can produce a partial trapping of wave

N b ok et g, RN,



energy (Longuet-Higgins, 1967), they do not address the problem of the
effect of reflection from other islands within an island system. The
reflected energy from other islands is superimposed on the locally
reflected and trapped waves as well as the incident tsunami and can
generate sequences of positive and negative wave interference.

Tsunami reflection by continental shelves has been investigated
analytically by Cochrane and Arthur (1948) and applied to the tsunami
of April 1, 1946. Shepard et al. (1950) believed that reflections
within the Hawaiian Islands explained the direction of approach of
some of the waves during that tsunami. Unusually high waves from the
1946 tsunami were observed on Kauai at coastal areas opposite Niihau
and Oahu (Fig. l.f). In Fig. 1.1 the peak opposite Oahu represents
three observations as reported by Shepard et aZ. (1950). A close
examination of the Kauai coastline reveals that the 12.2-m observation
at the Oahu azimuth is at the head of a small bay. This localized
concentration of energy could account for such a high runup. However,
the 7.6-and 9.8-m observations are on a straight coastline with no
topographic focusing by the nearshore bathymetry and hence localized
concentration of energy does not explain the large amplitudes. The
coincidence of larger amplitudes opposite these islands suggests the
need for investigation of the reflection of tsunamis within the island
system.

A study of a three-island system, which modeled a portion of the
Hawaiian Islands, illustrated the local reflection concept (Vastano
and Bernard, 1973). This model was of very simple geometric config-

uration utilizing a polar coordinate system. Since the polar grid
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design enabled fine resolution at the center of the model and decreas-
ing resolution with radial distance, only one island could be studied
in detail by thi§ coordinate system. To simulate a more realistic
model of the Hawaiian Islands, a model employing a rectangular
coordinate system was required to permit equal resolution of the model
region and to allow multiple islands to be studied simultaneously.
This system, utilized in a computer such as a CDC 7600, can adequately
and economically simulate tsunami interaction with a topographic

model of the Hawaiian Islands.

1.2 Objectives

The analytic evaluation of the spectral response for wave-island
interaction is feasible only for islands of simple geometric configu-
ration. In view of this limitation, the present study emphasizes
the numerical approach to the problem of the response of frequency-
limited pulses with island systems of general shapes and general
bathymetry, within the framework of linear, undamped, nondispersive
long wave theory. To this end the following general objectives are
pursued: (1) the development of a numerical model in Cartesian
coordinates of long wave interaction with the Hawaiian Islands using
charted bathymetric data of the major island system, (2) evaluation of
response patterns produced at each island to a specified input
representing a generalized time sequence with a known band limited
spectrum, corresponding to the tsunami frequency range and originating
in the North Pacific, and(3) analysis of the relative tsunami energy

distribution at each major island as a function of frequency and



relative position to the other islands.

Within these guidelines the first goal is the confirmation of the
numerical modeling technique by agreement with analytic solutions of
waves interacting with islands of simple geometry. On verification,
investigation of the response of the Hawaiian Islands system can be
made. It is to be emphasized that possible dissipation of energy by
either bottom friction or nonlinear bore phenomena in the nearshore
zone is not considered in this study, implying that the spectral

response is generally overestimated.



CHAPTER II
THE MATHEMATICAL MODEL IN CARTESIAN COORDINATES

2.1 The Equations of Motion and Continuity

Data gathered at recording stations show tsunamis to be long,
small amplitude waves having most of their energy in a band of periods
from 4 to 90 minutes. This is a simplified description but adequate
for the study of responses for multiple islands. The upper period
limit of tsunamis is small enough to allow the effect of the rotation
of the earth to be neglected, and the lower limit is still large
enough to allow shallow water wave theory to be applied. The approxi-
mations of shallow water wave theory require that the vertical com-
ponent of acceleration is negligible compared to the acceleration of
gravity g . This implies that the vertical distribution of pressure
is hydrostatic. Additionally, the horizontal fluid velocities
(u , v) are assumed small compared with the wave speed, and the free
surface elevation n is considered small compared to the depth H .
These assumptions permit squares and cross products of these quanti-
ties and their derivatives to be smaller in comparison with the
linear terms. Further, it is assumed that the fluid is frictionless,
homogeneous, irrotational, and incompressible.

Applying these limitations to the Navier-Stokes equations and
imposing kinematic boundary conditions at the surface and bottom, the
resulting classical, linear, long wave equations of motion and con-

tinuity in Cartesian coordinates are :




U _ _.38n
ot 9 3x (2.1)
VY _ _42n
at oy (2.2)
an _ _ 3(Hu) _ 3(Hv)
> ax 2y . (2.3)

The approximation used in the derivation of these equations will
undoubtedly lead to errors in their application to the response study.
The size of errors may be estimated nearshore, where the greatest
jnaccuracy of the wave speed vgH takes place. Nearshore, the
speed is more accurately described by vg(H+n) , where the amplitude
is an appreciable part of the depth of water. The numerical model of
the Hawaiian Islands takes 50 m as the shallowest depth; therefore,
for n =5m the wave speed will be in error by 5% when only vgH
is used. The shallowest depth in the Hawaiian Island model was chosen
to eliminate having the wave amplitude a considerable portion of the
water depth and to describe the major bathymetric features of the
region. The wave speed can also be incorrect for periods < 5 minutes,
since vertical acceleration is of consequence for such periods. For
example, the wave speed for a 3-minute period in 4000-m depth is
about 8% less than the value given by vgH . The effect of this
error will arise in the phase relationship calculated for shorter

period waves around the shorelines of the islands.

2.2 Numerical Analogue in Cartesian Grid System

The finite difference representation of a boundary value problem

is restricted in resolution by the discrete grid system that models




the continuum, while the minimum grid size is dictated by the avail-
able storage capacity of the computer system for a given total area
to be modeled. Within this limitation, the primary consideration is
an accurate mod;]ing of the waves. Since the rectangular grid
evenly divides the area to be modeled, the grid size dictates the
shortest period wave that can be described. In the case of monochro-
matic waves, at least four grid points are needed to define a wave
unambiguously. However, the higher the resolution, the less area can
be modeled per computer storage space. In order to describe a given
area adequately, the limiting factor for the description of waves
of low periods is the computer storage and available machine time,
since the time step must be compatible with grid size for numerical
stability.

The stability criterion for explicit central differences of

hyperbolic equations can be stated for a rectangular grid (Platzman,

1958) as

where ax and Ay are grid spacings in the x and y directions, At

is the time increment, and Hmax is the greatest depth in the system.

If &ax = 4y, one can simplify (2.4) to

At S -—A—X—-. , (2.5)

For the case of (2.5), At 1is chosen such that the fastest wave
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cannot propagate more than one-half of the diagonal of one cell to
insure numerical stability.

The finite difference analogue of (2.1),-(2.2), and (2.3) is an
explicit, space-staggered scheme (Platzman, 1958; Reid and Bodine,
1968; Loomis, 1972). The variables computed are water level, n , from
the undisturbed state, and the velocity components u and v in the
x-y directions. The velocity grid points are interlaced in space with
the water level grid points such that the water level brackets the v
component in the y direction and the u component in the x

direction. Fig. 2.1 illustrates the grid arrangement for computation.

Let
u{ (i-9)ax, J ay, n at}s u?’j (2.6)
v{ i ax, (j-%ay, n at}-= V?,j (2.7)
n{ i ax, Jj ay, (n-%)at}-= n?’j (2.8)

where i, j , and n are integers. The centered difference numeri-

cal analogues of (2.3), (2.1), and (2.2), respectively, are

ntl _ n At

n n
"i,i T M. T ax [ Hien,5 Yier,5 ~ Mg YiLg ]

At n ' n
zy'[ i,541 Vi, 7 M5 Vi, J

(2.9)

ntl _ n _ gat ntl _ n+l
R LR eeti)
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i,j+l
o

Grid arrangement for explicit, space-staggered scheme.

11



12

ntl _ n _ gat ntl _ n+l
RERREE - B "i,j-l]' Gan)

The wave amplitudes at time (t0 +-%}) are evaluated using amplitudes
at (t0 - %}) and velocities at t, 3 then the velocities at (t0 + At)
are evaluated using velocities at t, and wave amplitudes at

At igni at
t0 + 5 - Thus by assigning n at t0 -3 and u , v at t0 » the

time marching procedure is calculated:

n %}-, uat , vat , n §%£ , u(2at) , v(2at),....

Because the u and v grid points are offset from the grid
points, (2.9) reveals that water depths H are the actual water
depths at the positions of u and v . To calculate the u and v
velocities one must usually supply two depth-field arrays to obtain
the greatest accuracy for the model. The drawback to such an arrange-
ment is that extra computer storage is required to handle the two
arrays. An economical compromise is to set the H field the same

for u and v .

2.3 Lateral Boundary Conditions

Equations (2.1), (2.2), (2.3) represent free, undamped, gravity
waves propagating in a laterally infinite ocean. With only a finite
amount of area to model, it is necessary to restrict the bounds of the
ocean and to approximate the actual island boundaries in some manner.
The Hawaiian Islands were modeled using a reflecting boundary that
allows no fluid to pass through an impermeable wall and an open or

transparent boundary that allows disturbances to flow through as if
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no material boundary existed.
At the shorelines, the Islands are considered to extend vertically
through the sea surface as solid, impermeable barriers that totally

reflect the impinging waves. This requires a condition of no normal

flow,or in terms of wave amplitude
U (2.12)

The condition on n 1is selected in order to provide n values on the
boundary and because the proper rendition of the condition is facili-
tated for oblique boundaries as discussed below. Since islands form
closed curves of general shape, an appropriate inner boundary condi-
tion should allow reflection from a boundary which is at an angle with
respect to the grid configuration. To approximate this condition a
second order series expansion is utilized to approximate the water

elevation in the neighborhood of the boundary by
n = dg + da;X + dary + a:§X2+aqu + a5y2 (2.13)

where x , y are now local coordinates. By taking the derivative of

n with respect to its normal, one gets

o

d d
D= (a) + 2a3x + ayy) ot (3 +aux + 2a5y) . (2.18)

dx _ dy
dn cos 6 and an

angle characterizing a given point on the island boundary (Fig. 2.2).

sin 8 where 6 is a specified orientation

The restriction (2.12) requires that

(a; + 2a3x + auy) cos 8 + (ap, + ayx + 2asy) sin o = 0 .
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."7(1.0) 1(2,0)

FIG. 2.2. Reflecting boundary condition.
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By employing these formulas to the discretized grid and referring to

Fig. 2.2, one gets

-+

Wi o = ap + ajax + azax?  (x Ax,y = 0)

+

”?,0 = ay ZaIAx + 4a3AX2 (X ZAX,Y = 0)

np,1 = ag *axdy +ashy? (x =0, y = ay)

+

2a,Ay + bdagay (x = 0, y = 2ay)

ng,2 = dayp

Noting that ng o = ap and solving the above system of equations for

ag , yields

Ay(4n1 0 - N2 0) cos 6 + AX(4nO 1 - Ng 2) sin o
L] L] ) ] (2.15)

n = p
v,0 3(ay cos 8 + Ax sin 8)

Similar equations apply at each island boundary point for which the
boundary orientation is characterized by the angle o .

To simulate a group of islands in the middle of an ocean, a trans-
parent outer boundary must be created to allow reflected or scattered
waves to radiate outward toward the open ocean. For consistency
with the inner boundary, again only the water elevation is utilized
in describing the open outer boundary. The basic assumption is that
the wave profile does not change during one time step as it moves

through the boundary, or in Lagrangian form
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(2.16)

=i
i
o

In traveling from t to (t + at) (Fig. 2.3), the particles move an
x distance of uat. Each particle is marked with a value of n ,
which represents an intrinsic property associated with a particular
fluid particle. That is,in the absence of friction, each surface
disturbance will retain its value of n .

Equation (2.16) is just the inviscid advection equation which can

be written (Shapiro and 0'Brien, 1970) as

an an
5t U oy 0. (2.17)
In the case of long waves, the intrinsic property is the wave eleva-
tion n which allows the wave to pass through the boundary at the
Lagrangian wave speed vgH (analogous to u). Thus the equation

pertinent to the model becomes

an o _
= YgH == Q. (2.18)

The finite difference analogue of this condition can be expressed by the

upstream differing method (Roache, 1972),

nn+1 - &t L P
i L i-1 i
ot § T (2.19)

Equation (2.19) implies that the interior points are projected in time

to obtain a boundary point. The interpolation parameter
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At
‘ 48 (n+1) At
‘?l 42 n\t
.
. Ax—

FIG. 2.3. The open boundary condition is graphically represented
by the time scale (upper part) and the spatial scale (lower part). The
water elevation n, is calculated for time step (n+l)at by the up-

stream difference method and is represented by the dashed line in the
lower part.
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At fgH (2.20)

is sometimes called the Courant number and makes the interpolation

stable as long as

at JgH (2.21)

(Roache, 1972). A graphical representation of the outflow boundary
condition is shown in Fig. 2.3 and its finite difference analogue is

+
nf*l 0+ /g AL (] - D) (2.22)

For waves passing through a boundary which is normal to the y direc-
tion a similar analogue is computed using Ay . Using the
constant depth region allows the waves to attain a condition in
which they are essentially propagating outward without reflection by
topographic features.

Having discussed the outflow boundary condition, one can now
apply it with respect tu a transparent boundary for scattered waves.
The present model of linearized long waves allows scattered waves to

be separated in the flow field by simple decomposition, or in terms

of n

" scattered = " total ~ " incident -

The value of n is determined by the input and represents

incident
the undisturbed passage of an incident wave through the model in the

absence of topography. To provide an uncontaminated incident wave to
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be used along the borders of the model, a one-dimensional canal is
generated to be used as a reference for the incident wave (Fig. 2.4).
The one-dimensional model is evaluated on the right-hand side of the
grid assuming incident waves from the upper boundary. By setting the
depth of the reference canal equal to the constant depth region of the
model, the celerity of the waves in the canal is identically matched
to the waves propagating along the borders of the model.

Having discussed all boundary conditions, one can see
schematically how the model works (Fig. 2.4). The island is sur-
rounded by transparent boundaries (to scattered waves), with the
island being completely reflective. The region close to the trans-
parent boundary is constrained to be of constant depth as discussed
earlier. The one-dimensional model on the right is the incident

wave reference insuring the proper description of an undisturbed

wave.

2.4 Confirmation of the Numerical Procedure

Verification of the numerical scheme described in the previous
sections should be judged in terms of the agreement with those cases
where analytic solutions of long waves interacting with islands exist.
Boundary value scattering problems of simple geometry have been
solved and are available in standard texts, as documented by Vastano
and Reid (1966). In the cases to be considered, the diffraction
pattern established at the shoreline is generated by the interaction

of plane monochromatic waves given by :
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N = e1(kr cos 6 - wt) (2.23)

where k is the wave number, « 1is the angular frequency, the ratio
w/k is the wave speed in the far field, and r 1is the radial distance
from the center of a polar scheme.

Case 1. The simplest case is that of a cylindrical island of
circular cross section (Fig. 2.5) in constant depth water. The water
elevation at the shoreline is represented in polar coordinates with

origin at the center of the island (Vastano and Reid, 1966) by:

r .n+1

( ) ‘;: 2 1 €
nlr s B t = T
0 n=0 nkY‘o Hn(kY‘O

? cos ne| e 19t , (2.24)

where Hn refers to the nth order Hankel function (Hn = Jn + iYn),
€, assumes the value 1 for n =0 and the value 2 for n # 0 , and
the prime indicates a differentiation of the function with respect to
its argument. By extracting real (a) and imaginary (b) parts of the

bracketed part of (2.24) one obtains

.n+l
( ) fi’ R 2 1 en )

a(e) = e ; cos n

nZo | mkr Hn(krdy |

[ .n+l ]

5 2 1 ‘n (2.25)
b(e) = ) Im —- cos no | . .

N0 I mkr Hn(xr07 ]

The amplitude A(¢) and phase ¢ of the diffraction pattern at the

island shoreline can be evaluated from the relations
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A(¢) = vaZ + b2
#(e) = tan~1(bsa) . (2.26)

The numerical model was constructed to duplicate as nearly as possible
the analytic model. Fig. 2.6 shows the Cartesian coordinate model of
the cylinder (Fig. 2.5) and Table 2.1 gives the parameters and dimen-
sions of the cylindrical island. The inner boundary condition allows
each shoreline point to be oriented by a particular angle 6 . Thus,
by appropriate matching of the angle orientation a circular island can
be approximated. The model was designed so that the incident wave
arrived from the 180° azimuth (top of Fig. 2.6) and, to save
computational expense, symmetry was utilized. Therefore only one-half
of the flow field was calculated. Plane monochromatic waves of 4 and
8 minutes were used as incident waves and the model was time-stepped
until maximum amplitudes did not change in time. At this point, a
periodic forced response was assumed to exist. The maximum amplitude
of the waves from the numerical computations is plotted versus
azimuth in Figs. 2.7 and 2.8, and is compared with the analytical solu-
tion to amplitudes on the shoreline. In these figures the azimuth
exposed to the incident waves is 180°. Good agreement was found for
both 4- and 8-minute periods; the deviation that occurred was attributed
to the "octagonal" modeling of a cylinder.

Case 2. The case with variable depth is that of a parabolic
island (paraboloid with a cap) (Fig. 2.9). The shoreline water eleva-
tion can be expressed by the following relationship, originally shown by

Homma (1950) and adapted for .—omputation by Vastano and Reid (1966):
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TABLE 2.1. Parameters of verification comparison for the
cylindrical island

Analytic island Grid system
Radius (ro) ........... 19 km Size of rectangle....46ay x 324X
Water depth (HO) ...... 4 km AX = Ay = 2.235 km

At = 5 seconds

FIG. 2.5. Cylindrical island of radius "o in
constant depth ocean H0
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—— ANALYTIC CASE

——— RECTANGULAR GRID
APPROXIMATION

FI1G. 2.6. Cartesian coordinate approximation of a cylindrical
island where, for example, the value of 6 at A = 86.5°, B = 22.5°,
= -22.5°, and D = -86.5°.

Che 0y o, e Ui
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o £ _pa .
n(r .6 ,t)= 7 21 LD o5 (na) o Tut , (2.27)
0] & A
n=0 n
where .
o =ri/r .,
a, = Y1 + n2 - 2
An = - Hn(r)(uﬁ - 1) sinh (anS) + rHa(r)[an cosh (ans) + sinh (ans)] .
wr‘l
T = ==
vgH,
and
s =1np .

As in Case 1, the amplitude and phase of the diffraction pattern can be
ascertained by using the real and imaginary parts of (2.27).

The numerical model was constructed with the parameters 1isted
in Table 2.2. Again, the inner boundary condition approximated a
circle, the incident plane monochromatic wave arrived from the 180°
azimuth, and symmetry was utilized. The 8-minute period was used and
the comparison is plotted in Figure 2.10. Good agreement is illustrated
except for the bow side (incident side) of the cap, where the numerical
model shows about a 4% deviation. The deviation is explained pri-
marily bv *he depth field having been described by Cartesian coordi-

rates.  ihe failure of square grids describing circular bathymetry
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TABLE 2.2. Parameters of verification comparison for the
parabolic island

Analytic island Grid system
Radius (ro) ............. 10.5 km Size of rectangle.... 220Ay x 96Ax
Shoreline depth (HO).... 0.446 km Ax = Ay = 1.176 km

At = 4 seconds
Radius of variable depth Coarse grid system
Topography (r;)........ 30 km Size of rectangle.... 116ay x 50Ax
Depth at r;(Hy)..... 4.014 km AX = Ay = 2,222

At = 4 seconds

FIG. 2.9. Parabolic island of radius r_ with variable
topography out to r; .
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could result in the discrepancy. As a measure of sensitivity to the
prescribed bathymetry, the paraboloidal island case was run using a
flattened paraboloid (H = 0.4 r? instead of H = 0.446 r2), and the
resulting amplitudes varied about 10%. The analytic solutions also

showed similar variations with the same bathymetric changes.
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CHAPTER TII

APPLICATION OF THE MODEL FOR RESPONSE ANALYSIS

1Y

3.1 Generalized Time Sequence Input

As noted previously, the goal of this investigation is to deter-
mine the response of the Hawaiian Islands to gravity waves over a
band of frequencies in the tsunami range. A method for determining
response patterns of single islands was presented by Longuet-Higgins
(1967) and Knowles and Reid (1970). Longuet-Higgins (1967) examined
the response of a circular island with a step sill analytically
while Knowles and Reid (1970) determined the response with a numeri-
cal model. In both cases the trapped modes which induced resonances
in the response pattern were excited by a sharp pulse.

Before we continue, an explanation of trapped modes is necessary.
As Tong waves approach an island, the shallowing of the topography
refracts the waves toward the island. The refraction captures
waves of certain wave frequencies, i.e., the bathymetry creates a
nearly continuous ray path around the island. Other waves may be
trapped due to a reflection at the shoreline and a reflection at an
abrupt bathymetric change. The reflection at the change in bathym-
etry is created by an angle of incidence exceeding the critical angle.
Any combination of these trapped modes may exist for a single island
with an arbitrary bathymetry.

Knowles and Reid (1970) demonstrated that a numerical excitation
supplied by an incident wave sequence with a stipulated spectrum in

the frequency domain could produce shoreline response spectra closely
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approximating analytic solutions of island response. The input must
be applied for a sufficient time span to insure that the shoreline
response spectra become invariant with time. Thus, by appropriately
describing the incident wave sequence, all resonances in the tsunami
frequency range for a given island or island system can be excited.
The frequency-band-limited, generalized time sequence, H(k) , is

defined by the Fourier Series

M
H(k) = § A(j) cos (2nj(k-KS)/NT) (3.1)
j=0
where NT is the maximum number of time intervals, M 1is the maxi-
mum number of frequency intervals, k = t/at, j = f/af are integers,
and KS 1is a constant determining the number of time steps the pulse
peak is delayed from t = 0 . The coefficients A(j) are calculated

using the relation
-gi2
A(j) = ™™ (3.2)

where g = 9/2M2, i.e., with a standard deviation of M/3. The shape
of the input resembles a wide, high-amplitude pulse. For example,
the incident pulse used for the Hawaiian model was 305.6 km wide with

30.0-m peak amplitude.

3.2 Verification of the Response Technique

Verification of the numerical response study was achieved by
agreement with the analytic solution of the response of the parabolic

island as shown in Fig. 2.7 (page 25). Muirhead (1967) determined
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analytically the response of the parabolic island by examining the
average potential energy of the water elevation at the shoreline.
The energy is Proportiona] to | n (ro, 8,t) |2 where the average
is with respect to 6 over the range 0 to 2n. By using (2.27) and
the orthogonality property of trigonometric functions, it can be

shown that

n (3.3)

where E signifies the mean energy of the waves at the shoreline
relative to incident waves. The variables o and An are a
function of w (angular frequency).

A plot of analytically determined E versus frequency for the
parabolic island described in Table 2.2 (page 28) is represented by
the upper solid line in Fig. 3.1. The peaks in energy show resonance
of selected frequencies trapped by the bathymetry of the island. The
general shape of the response pattern is an increase in energy with
frequency and a narrowing of the resonance peaks with frequency.
Physically, the number of waves trapped by the bathymetry increases
as the wavelength decreases (frequency increases), allowing more
energy to be captured. Wavelength reduction accentuates the energy
amplification of selected frequencie$ and results in a narrowing of
resonance peaks.

To simulate the analytic response, the following numerical proce-
dure was implemented: (1) time step the generalized time sequence

input until the output spectrum becomes invariant (equilibrium),
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FIG. 3.1. Conparison of numerical and analytic transfer func-

tions {(upper part) for the parabolic island of Fig. 2.9 and compnari-
son of numerical and analytic input spectra (lower part).
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(2) record and Fourier analyze the time history of the water elevation
for each shoreline grid point,(3) establish a transfer function by
ratio of the sqectrum of output to that of input, and(4) average

the transfer function around the island. The numerical transfer
function was obtained by the ratio of numerical output spectrum to
that of numerical input spectrum. To secure the proper numerical
input spectrum, a hydrograph, recorded in the center of a constant
depth model (4014 m) with jdentical parameters, dimensions, and input
as the parabolic test case, was Fourier analyzed. The parameters of
H(k) in (3.1) and (3.2) were NT = 1000, M = 100, KS = 46, and At =
4.0 sec.

The upper dashed line in Fig. 3.1 (page 34) represents the
numerical transfer function while the Tower dashed line illustrates
the numerical input spectrum. The lower solid line shows the
analytic input spectrum. Examination of the comparison between the
numerical and analytic transfer functions reveals fairly good agree-
ment for periods of 1.09 minutes and greater. At periods below 1.09,
a shift develops in the numerical response that may be explained by
the rectangular grid approximation of circular bathymetric contours.
The period (or frequency) at which the numerical response separates
from the analytic response is also related to the grid size of the
model. If it is assumed that four grid points are necessary to
describe a wave, then dividing 4ax by the slowest wave speed
(shallowest depth) should yield the lowest period describable by a
given grid size. For the numerical parabolic test, the grid spacing

is 1176 m and the slowest wave speed is 69.0 m/sec,indicating the
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lowest predictable period as 1.15 minutes. The parabolic test case
is close to the 4aAx criterion.

To investigate the changes in response accuracy with grid size,
a parabolic case with less resolution was considered. The parameters
of the coarse parabolic model are found in Table 2.2 (page 28).
Except for a change in grid spacing from 1176 to 2222 m, the proce-
dure followed in the coarse model duplicated the first run. The
upper and lower dashed lines of Fig. 3.2 show the analytic spectra.

Separation of the numerical response of the coarse model from the
analytic takes place at a period of 1.75 minutes. By using the 4A:
criterion, the lowest period describable at the shoreline is 2.23
minutes. If a 3ax rule were applied, the lowest period would be
1.67 minutes. The coarse model yields a better cut-off frequency
than the first model since the departure from the analytic curve
occurs at a lower period relative to grid size. Improvement in the
cut-off frequency could be explained by the bathymetric difference
between the two models. Even though the bathymetry has the same
parabolic shape in both models, the coarse grid has fewer shallow
water grid points that affect reduction in the residence time of
waves trappec in shallow water. Instead, the waves remain longer in
deeper water with higher phase speed,which in turn reduces the value
of the lowest period for a given grid size.

The dual response study'enables the cut-off frequency of the
numerical scheme to be determined. The coarse and reqular grid
response analyses indicate that the generalized time sequence is

appropriate for exciting the modes trapped by island bathymetry, and
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that the cut-off of the frequency response lies between the

4ax  criteria for the shallowest depth in the system.

3ax

and
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CHAPTER TV

A STUDY OF THE RESPONSE OF THE HAWAIIAN ISLANDS TO A

' TSUNAMI APPROACHING FROM ALASKA

4.1 The Hawaiian Islands Numerical Model

Since the speed of long waves is proportional to the square root
of the depth of water, careful attention was given to the accuracy of
the depth description in the Hawaiian Islands model. National Ocean
Survey chart 410z, the most precise sounding information of the
Hawaiian Islands available to the general public, was used to create
the modeled underwater bathymetry of the islands. To convert the
soundings for use in a digital computer, a grid was formed by a
spline interpolation technique (Bernard, 1973) allowing a field of
arbitrary (in the x-y plane) spaced points to bé interpolated onto a
specified grid. The numerical spline interpolation was programmed
by Taylor, Richards, and Halstead (1971) and utilizes a second
order, piecewise, polynomial fit.

To create the Hawaiian Islands model, the 4613 arbitrary (in the
x-y plane) soundings on NOS chart 4102 were digitized and splined
onto a 5.5-km square grid. Because a constant depth region was re-
quired for proper rendition of the open boundary condition, a flat
skirt was merged into the outer eage of the topographic portion
representing chart 4102. Fig. 4.1 illustrates a plan view of the
model including the topographic region surrounded by a constant
depth region. The model encloses an area of approximately 6° lati-

tude by 10° Tongitude and is composed of 26,000 square grids. A
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perspective view of the topography of the model region is shown in
Fig. 4.2. Since cathode ray tube graphics are Iimited, each square in
Fig. 4.2 represents nine grid points of the actual model. Each

outer boundary grid point allows scattered waves normal to the
boundary to pass unobstructed, and each inner boundary grid point

totally reflects all waves.

4.2 Results of the Hawaiian Islands Response to Generalized

Input Approaching from Alaska

Following the procedure described in Section 3.2, a generalized
time sequence input H(k) 1in (3.1), approaching from 180° azimuth
(normal to the upper boundary of Fig. 4.1) with parameters (NT = 2048,
M= 70, KS =46, and at = 15 sec) was time-stepped into the Hawaiian
Islands model. A transfer function for each island shoreline point
was obtained by dividing the output spectrum by a numerical input
spectrum derived from a constant depth model (4550 m) of the same
dimensions. The analytic and numerical input spectra are compared
in Fig. 4.3. The frequency cut-off of the response analysis is
bracketed by the limits of the numerical scheme, i.e., upper period

4nx 3ax

limit ——=>=— and lower period limit ——=——— as dis-
vgH /

ng ..
minimum

minimum

cussed in Section 3.2. For the case of the Hawaiian Islands model
with 50 m as the shallowest depth, the period cut-off lies between
16.74 minutes and 12.55 minutes, respectively.

To evaluate the response of the island system, an overall system

response was calculated by averaging the 235 shoreline grid point



42

Qp
_’né‘,;}\
A2
N IR
. .‘: ".:ooo \
e LN T OR

R\ - = &
N\ N ‘\\\'o\vfo‘;\\ze.
/ \V =

A \
N

-,
-

b NN
N 'A LA™
=S W=

FIG. 4.2. Perspective view of the Hawaiian model topography
Tooking from the southeast. Each grid point represents nine grid
points of the actual model.




43

' Input Spectrum

1 0 . 000 ' L A T O T A SN T A B B B BN TN SR B 1—I'T'TTTT—T7—7—1—T—T_Wm—T-T—TE

U o |

LIRS R

1

1.000 /= -
S - i
p i A
c
c
L 100 3 3
T C 3
u - N
m L i
.010

T T TTTaTy

-~
—
—

T

001 111[11111‘111‘[11141AL‘L1L4LLJAJLAJLLJlllllllllll[l

3.26£-05 3.580-04 6.84E - 04 1.01€-03 1.5%-03 1.66€-05
F'requency (s™')

512.0 46.5 2a.4 16.5 12.5 10.0
Period (min)

FIG. 4.3. Comparison cf numerical and analytic input spectra for
the Hawaiian model. The solid Tine is the analytic curve and the
dashed line is the numerical model equivalent.



44

transfer functions over each frequency band. As shown in Fig. 4.4,
the system average transfer function indicates nine resonant peaks
between 512.0-and 12.5-minute periods. The most energetic period is
14.2 minutes followed by 17.7, 16.0, 12.5, 36.6, 20.5, 25.6, 56.9,
and 73.1 minutes, respectively. The longest period had the least
energy associated with it, indicating little excitation in periods
longer than 512 minutes. Comparison of Fig. 4.4 with the parabolic
island response (Fig. 3.1, page 34) reveals a similar overall
pattern, i.e., the response is unity at the longest period and rises
to a plateau with resonance peaks fluctuating from this level.

In addition té the system average, individual island averages
were determined. The individual island averages, shown in Figs. 4.5
through 4.12, were helpful in analyzing each island separately and
in evaluating each island's contribution to the system average.
Table 4.1 lists the values of the response of individual islands
as well as the value of the system average response for resonant
periods trat appear in Fig. 4.4. The table also indicates resonant
peaks (and their value) for periods other than the system average
and identifies those islands having these additional peaks. Exami-
nation of Table 4.1 is very useful in ascertaining and interpreting
resonant peaks associated with specific islands. For example, the
17.7-minute period resonance in Fig. 4.4 is associated with Kauai
only, the 36.6-minute period peak is a contribution of the Molokai,
Lanai, Maui, Kahoolawe island group, and the 16.0-minute resonance

is an almost equal <ontribution of all islands except Kauai.

)
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To determine the response behavior for each shoreline point of

individual islands, contours of Yenergy ratio were plotted on a fre-

quency versus perimeter diagram. The Yenergy ratio was contoured

for graphical clarity and represents the shoreline amplitude in
response to a unit amplitude deep water input. The contour maps are
illustrated in Figs. 4.13 through 4.20 with the key for the grid points
around the island shown in Figs. 4.21 and 4.22. Ffor each island the
perimeter is numbered clockwise starting with the southernmost grid
point. The numbering system places the northern part (incident side)
of each island in the center of the contour map.

As an aid in the interpretation of the response patterns, travel
times between islands and around islands at selected depths were cal-
culated and compiled in Table 4.2. Travel times were based on the
propagation speed of long waves in the model system. Table 4.2 also
indicates the grid points facing each other on individual islands. For
example, grid numbers 8 through 13 on Niihau face grid numbers 3
through 11 on Kauai, disclosing that resonances between Niihau and
Kauai may be found at a period of 14.7 minutes on the contour maps.
Examination of Fig. 4.13 and Fig. 4.14 reveals peaks in response
ampiitude in the areas facing each island. Travel times were computed
around each island (or island group) at depths of 500, 1000, and 2000
meters. It should be understood that these travel times are only
roughly indicative of those corresponding to true wave rays. The
trapped wave rays will follow the path of least time whether it be on
a contour or not. Further, local resonances coupled with trapped

waves and interinsular reflections may combine to reinforce or
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TABLE 4.2.

islands at selected depths

Travel times between islands and around

2 3%

Island

Travel
combination time (min)

Opposite grid points

Niihau-Kauai
Kauai-0ahu
Oahu-Molokai
Molokai-Lanai
Molokai-Maui
Lanai-Maui
Kahoolawe-Lanai
Kahoolawe-Maui
Maui-Hawaii
Kahoolawe-Hawaii

14.7 Niihau 8-13
40.0 Kauai 19-25
29.6 Oahu 24-29
19.9 Molokai 23- 3
23.7 Molokai 19-22
26.4 Lanai 11-13
22.7 Kahoolawe 3- 7
16.8 Kahoolawe 6- 8
25.9 Maui 31-35
27.9 Kahoolawe 8- 1

Kauai
Oahu
Molokai
Lanai
Maui
Maui
Lanai
Maui
Hawaii
Hawaii

Travel times around islands at selected depths

Depth
(m)

500
500
500
500
500
1000
1000
1000
2000
2000
2000

Island
Niihau
Kauai
Oahu
Oahu-Molokai-Lanai-Maui-Kahoolawe
Hawaii

Kauai-Niihau
Oahu-Molokai-Lanai-Maui-Kahoolawe
Hawaii

Kauai-Niihau
Oahu-Molokai-Lanai-Maui-Kahoolawe
Hawaii

6-11
11-15
9-13
12- 1
3-7
33-37
23-28

Travel time
(min)

CONPOOWO NN
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diminish excited modes, allowing an indeterminate number of resonant
combinations. The travel times in Table 4.2 are given only to suggest
simple resonaqt associations.

With the aid of Tables 4.1 (page 54), 4.2 (page 66), and Figs.
4.13 (page 56) through 4.20, some interpretation of the response of a
tsunami approaching the Hawaiian Islands from Alaska can be made.
Starting with Niihau (Fig. 4.13, page 56), a peak is seen opposite
Kauai at approximately 15.0 minutes, and another peak is seen at grid
points 3 through 5 at 21.7 minutes. The 21.7-minute period coincides
with the travel time around Niihau at the 500-m contour (Table 4.2,
page 66). The other peak at 16.5 minutes and 12.8 minutes may be
caused by resonances created by the Tocal bathymetry.

For Kauai in Fig. 4.14 (page 57), the 14.7-minute peak appears
opposite Niihau and a 40.0-minute peak appears opposite Oahu. The
45.2-minute peak at grid points 1 and 26 can be associated with the
travel time around Kauai at 500 m (Table 4.2, page 66). The enormous
peak at 17.7-minute period at point 14 is related geographically to
Hanalei Bay where historically high amplitudes have been observed
(Pararas-Carayannis, 1969).

The Oahu contour map (Fig. 4.15, page 58) does not show either
the Kauai-Oahu reflection or the Oahu-Molokai reflection. These two
reflections were the only interinsular travel times for the eight
Hawaiian Islands that did not have a counterpart on the contour maps.
For this reason, the Oahu average response (Fig. 4.7, page 48) was
inspected. A rise corresponding to the Oahu-Kauai travel time (40.0

minutes) was found at 39.4 minutes. The apparent contradiction was
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solved by examining the individual transfer functions on QOahu at grid
points 5 through 16. The transfer functions showed a peak at 39.4
minutes, with values ranging from 1.5 to 10.5. Because the contour
program's lowest level was 10.0, a contour was not drawn for the two
values greater than 10.0. This points out a problem that can arise

by using only the contour maps. By using the contour maps with the
averaged response, many additional features can be resolved. In addi-
tion to the 39.4-minute peak in Fig. 4.7 (page 48), a peak is observed
at 73.1 minutes corresponding to the Oahu 500-m contour travel time
(65.8 minutes).

The Molokai, Lanai, Kahoolawe, Maui island group contributes the
most resonant energy to the nine peaks in Fig. 4.4 (page 45). The
complicated response patterns are created because of the nearness of
the islands to each other and shallowness of the water between them.
By looking at the energy ratio versus frequency graphs of Fig. 4.9
(page 50) and 4.10 (page 51), the island average of Lanai and Kahoolawe,
it is revealed that a resonant peak exists between 170.6 and 128.0
minutes. Corresponding to this period range is the 1000-m contour
around the complex with a travel time of 143.0 minutes. The travel
time between island resonance is evident on each island contour (Figs.
4.16, page 59, through 4.19): Molokai-Lanai,19.9 minutes; Molokai-
Maui, 23.7 minutes; Lanai-Maui, 26.4 minutes; Kahoolawe-Lanai,22.7
minutes; Kahoolawe-Maui,16.8 minutes. Each island shows a minor
resonant peak at locations opposite other islands and at the appro-
priate period associated with respective islands (Table 4.2, page 66).

Molokai (Fig. 4.16, page 59) also shows the reflection resonance of
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Oahu at 29.6 minutes. The Maui and Kahoolawe contours (Figs. 4.19,
page 62, and 4.18) display the reflection off Hawaii at 25.9 minutes
and 27.9 minutes, respectively.

The largest island, Hawaii, has suffered the most tsunami damage
at Hilo. In the model, Hilo is represented by grid point 53 on the
Hawaii contour (Fig. 4.20, page 63). Around this point a high ridge
in the response amplitude appears at periods higher than 16.5 minutes.
During the April 1, 1946 tsunami, 173 people were killed, 163 injured,
488 buildings demolished, 936 damaged, the waterfront washed out, and
the tide gauge destroyed (Pararas-Carayannis, 1969) at Hilo. Shepard
et al. (1950) reported that for that tsunami the principal period
observed was between 14 and 15 minutes which corresponds well with the
high energy peak of Fig. 4.20. The reflection resonances off
Kahoolawe and Maui are visible at periods of 27.9 and 25.9 minutes.

No peaks have been associated with the travel times around Hawaii.

The complexity of the Hawaiian Islands' response to tsunamis
cannot be overstated. The case for a tsunami originating in Alaska
has been shown in averaged and contoured form to examine the gross and
detailed features of the response patterns. Certain characteristics
of the whole system as well as individual islands may be correlated
with simple travel times between and around islands, but the resolu-
tion of a complete interpretation will require an extensive numerical

and analytic effort.
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CHAPTER V

SUMMARY AND RECOMMENDATIONS

5.1 Sumnmary of Results

A numerical modeling procedure has been developed and verified to
simulate the response of islands to sharp pulses. Peaks in the
response patterns identify wave periods trapped by the bathymetry that
create higher amplitude shoreline water elevations. The modeling
method has been applied to the eight major Hawaiian Islands, resulting
in response patterns for each shoreline grid point. Appraisal of
the response patterns of the Hawaiian Islands model has led to the
following conclusions:

1. The few historical observations available for com-
parison indicate the model accurately determines
areas of tsunami susceptibility for the State of
Hawaii.

2. Based upon a system averaged response, the model
indicates the Hawaiian Islands are most responsive
to tsunamis originating around Alaska which are
energetic in periods of 14.2, 18.3, 16.0, 12.5,
36.6, 20.5, 25.6, 56.9, and 73.1 minutes,
respectively.

3. Based upon travel time comparisons, the model
indicates that reflections between islands
establish resonances which contribute to or
constitute peaks in the response patterns.

4. The model indicates that the energy concentration
experienced at Hilo, Hawaii during the 1946
tsunami was partly due to the response of the
island bathymetry to the 14-15 minute period
fsunami.
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5.2 Future Research

Two immediate applications of the Hawaiian Islands model should be
be (1) to evalugte the response patterns for a set of different
approach angles and(2) to use the output as input for a more detailed
nearshore model. An investigation to determine the tsunami suscepti-
bility of the State of Hawaii as a function of approach angle would
aid in establishing insurance and coastal planning criteria. The
second application of the Hawaiian model would be as a source of input
data for more detailed numerical models. Since the time history of
the water elevation is recorded at each grid point, the present model
could provide input time sequences along the borders of the area of
interest. In this manner, the more detailed model would, represent
the action of the island system without modeling the whole system.

The simulation efforts could include the remote reflection effect at
a fraction of the computer expenditure.

The present model has been tested for cases where the incident
wave approaches the islands at an angle with respect to the grid
configuration. The results indicate that the open boundary rendition
is inadequate to properly model this simulation. More refined
numerical techniques must be combined with the present model to
undertake the study of response patterns produced by different

approach angles.
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