National Oceanic and Atmospheric Administration
NOAA logo PMEL - A leader in developing ocean observing systems

 

FY 2012

Biological production in the NE Pacific and its influence on air-sea CO2 flux: Evidence from dissolved oxygen isotopes and O2/Ar

Juranek, L.W., P.D. Quay, R.A. Feely, D. Lockwood, D.M. Karl, and M.J. Church

J. Geophys. Res., 117(C5), C05022, doi: 10.1029/2011JC007450 (2012)


We determine rates of gross photosynthetic O2 production (GOP) and net community O2 production (NCP) using the triple oxygen isotope and O2/Ar approach on two spring and two late summer meridional transects of the NE Pacific. Observed GOP and NCP in the subtropical (89 ± 9 and 8.3 ± 1.3 mmol O2 m−2 d−1, respectively) and subarctic (193 ± 16 and 16.3 ± 3.8 mmol O2 m−2 d−1) were in agreement with rates previously determined at time series stations in each region, validating the regional representativeness of these sites. At the transition zone chlorophyll front (TZCF), which migrates seasonally from 32°N in spring to 40°N in summer, GOP and NCP were elevated by 2–4× compared to adjacent areas. Coincident with the TZCF, increases in surface nitrate concentration and extensive changes in phytoplankton community composition were observed. HPLC pigment data indicated substantial increases in a prymnesiophyte (e.g., coccolithophore) biomarker at the TZCF on a spring and summer cruise, and a diatom biomarker on the spring cruise. Increases in remotely sensed surface particulate inorganic carbon concentration were also observed at the TZCF on all four cruises, indicating that coccolithophore production may contribute to increased productivity at the TZCF. Meridional trends in observed air-sea CO2 flux on each cruise resembled those of the biologically induced CO2 flux (NCP), but with an overprinting of the response of air-sea CO2 exchange to summer warming. A simple carbon budget based on regional CO2 flux climatology demonstrates the importance of NCP for net annual air-sea CO2 uptake, although slow air-sea equilibration and seasonal solubility effects obscure this term.



Contact Sandra Bigley |
Acronyms | Outstanding PMEL Publications
About Us | Research | Publications | Data | Infrastructure | Theme Pages | Education
US Department of Commerce | NOAA | OAR | PMEL
Pacific Marine Environmental Laboratory
NOAA /R/PMEL
7600 Sand Point Way NE
Seattle, WA 98115
  Phone: (206) 526-6239
Fax: (206) 526-6815
Contacts
Privacy Policy | Disclaimer | Accessibility Statement
oar.pmel.webmaster@noaa.gov
Watch PMEL's YouTube Channel