National Oceanic and Atmospheric Administration
NOAA logo PMEL - A leader in developing ocean observing systems

 

FY 2004

Impact of anthropogenic CO2 on the CaCO3 system in the oceans

Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero

Science, 305(5682), doi: 10.1126/science.1097329, 362–366 (2004)


Rising atmospheric carbon dioxide (CO2) concentrations over the past two centuries have led to greater CO2 uptake by the oceans. This acidification process has changed the saturation state of the oceans with respect to calcium carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data, and we also discuss the future impacts of anthropogenic CO2 on CaCO3 shell-forming species. CaCO3 dissolution rates, ranging from 0.003 to 1.2 micromoles per kilogram per year, are observed beginning near the aragonite saturation horizon. The total water column CaCO3 dissolution rate for the global oceans is approximately 0.5 ± 0.2 petagrams of CaCO3-C per year, which is approximately 45 to 65% of the export production of CaCO3.



Contact Sandra Bigley |
Acronyms | Outstanding PMEL Publications
About Us | Research | Publications | Data | Infrastructure | Theme Pages | Education
US Department of Commerce | NOAA | OAR | PMEL
Pacific Marine Environmental Laboratory
NOAA /R/PMEL
7600 Sand Point Way NE
Seattle, WA 98115
  Phone: (206) 526-6239
Fax: (206) 526-6815
Contacts
Privacy Policy | Disclaimer | Accessibility Statement
oar.pmel.webmaster@noaa.gov
Watch PMEL's YouTube Channel